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Logarithmic dynamic scaling in spin-glasses
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Evidence is presented that "freezing" in spin-glasses is a consequence of anomalous critical slo~ing
down associated with a zero-temperature transition: temperature and field dependences of the relaxation
time are compatible with ln7 ~ T "f(HT ) both for nearest-neighbor + J-Ising models and Eu048ro6S.
The exponents u, z, and 5 are estimated. Also, the nonlinear susceptibility of CuMu 1/0 is sho~n to be
very similar to that of the d = 3, +J model, compatible with our description.

&EA = $ [(~;Sg)H-
J

arc assumed to dlvclgc as T~ 0, l.c.,

1tEA~ T i GAEA~ T (2)

the brackets [ . ],„denoting a configurational average
over the quenched disorder. At a finite-temperature transi-
tion the various locally ordered states, in which a correlated
region of size (EA can exist, are mutually accessible by
small-amplitude fluctuations of a coarse-grained local order
parameter, and hence the relaxation time exhibits "ordi-
nary" critical slowing down, v~ GAEA, z being a dynamic ex-
ponent. ' Near a transition at T =0, on the other hand, the
local spin alignment is strong and fluctuations relating the
various locally ordered states in anisotropic systems are

The nature of the freezing transition in real spin-glasses
has remained controversial; some data (e.g. , Refs. 1 and 2)
seem to support the idea of a thermal-equilibrium phase
transltlon, slmllar to that occu111ng ln thc lnflnltc-I'ange
Edwards-Anderson model "—only the critical exponents be-
ing different from the mean-field ones. Other data show
that the spectrum of relaxation times starts to broaden
dramatically far above the freezing temperature Tf, and at
Tf it ranges from microscopic times I c (e.g. , I c = 10 "sec)
to the time scale of observation, t (e.g. , Refs. 5 and 6).
However, a simple picture of thermal activation over con-
stant energy barriers (e.g. , Ref. 7) does not work: the typi-
cal relaxation time 7 increases faster than predicted by an
Arrhenius law as T is lowered, and the resulting frequency
dependence of Tf is also weaker than the Arrhenius
behavior Tf '(co)rein(l/eIre) (e.g. , Refs. 8-10). Thus, if
one accepts the theoretical prediction that the lower critical
dimension for an Edwards-Anderson transition is dt = 4, so
that no nonzero transition temperature is possible at
d=3," ' onc has to find another cooperative mechanism
which is responsible for the freezing.

In this Rapid Communication wc wish to pl'cscnt cvldcncc
that one can understand freezing as a consequence of the
phase transition occurring at T = 0 for d & dI. The
Edwards-Anderson susceptibility ~EA and correlation length

MFA, defined for Ising spins by

[(S;Sq) r],„~r) 'd+'+" exp( —r;, /(EA)

"walls" 6 nucleating these walls requires thermal activation
and hence it is natural to expect ' 8 that

~here J is a typical interaction energy in the system and one
assumes that GAEA also controls the heights of typical free-
energy barriers. Static scaling at the T=O transition im-
plies, for the field dependence of M and GAEA,

" '

(4a)

(4b)

where" b = I+ (y+P)/2. Equations (3) and (4) then im-
mediately yield the field dependence of the relaxation time

Ample evidence is already available' ' '" to show that a
zero-temperature transition occurs in the d = 2 Ising model,
with exponents

I =2, fz=2, @=4 (d=2)

for a continuous distribution and probably a slightly dif-
ferent value for y with a + J distribution because q = 0.4 in
this case. '" In this paper we argue that the evidence in
d = 3 is also consistent with a T = 0 transition.

Results for lnv from simulations of the d = 3, + J
nearest-neighbor Ising model" are shown in Fig. 1(a) and
are consistent with Eq. (3), but now

zv=4 (d=3) .

Since Tf(el) can be defined from rer[Tf( &), He=0]=1,
this result implies [Tf(ce)1 ~ in(I/rebec). It is encouraging
that data available for Eu04Sr06S over a broad frequency
ranges are compatible with this result, Fig. 1(b). Equation
(3) also leads to

AT)

Tf 5 logteol z p logte(1/tere)

Fof Rllderfllafl-Klttel-Kasuya- Yostda (RKKY) systellls tllls

quantity seems to be rather nonuniversal, varying from
about 50 in NiMn to around 2000 in CuMn, AgMn, and

1 1

AuMn. With reasonable values of cue(), e.g., ~7O-10
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FIG. 1. (a) Log-log plot of lnr(T, H=O) vs T/1 for the d=3,
+ J-Ising spin-glass (Ref. 24). (b) Experimental data (Ref. 8) for
~f(~) in Eu04Sr06S replotted as t Tf(0))] vs ln0).

onc would need zv = 20 for Cu Mn, although our estimate,
Eq. (7) works fairly well for Ni Mn We shall r.eturn to this
discrepancy at the end.

Figure 2 presents recent Monte Carlo estimates of XEA

and gsA for the d = 3, + J-Ising spin-glass, together with es-
timates of XEA from Pade approximants. There is substan-
tial curvature in this log-log plot, particularly for GAEA, so
that a phase transition at nonzero Ty is not ruled out. How-

ever, the Tf(r) scen in Monte Carlo work" for r =10'
Monte Carlo steps per spin is clearly a dynamical effect be-
cause XaA and (sA are rather small at this temperature. The
data are certainly consistent with Eq. (2) and yield exponent
values

3 =12, t =4 (d=3),
which correspond to pure exponential decay of [{S;S~)],„
(Ref. 22) and lead to 6=7. We also plot experimental
results for XsA (Ref. 2) on I'/o CuMn, taking a value of
J = S.39 K to set the temperature scale. Agreemcnt
between theory and experiment is reasonable and sho~s
that a zero-temperature transition is a possible explanation
of the data. No rescaling of the field has been carried out,
which shows that RKKY spin-glasses behave ln a suI'prlslng-

ly similar way to this very short-range Ising model in spite
of Dzyloshinski-Moriya anisotropies, etc. Monte Carlo
simulations need larger fields to observe deviations from

FIG. 2. Log-log plot of YEA vs T/J for the d =3 + J-Ising spin-

glass. Crosses are Monte Carlo (MC) results (Ref. 24) and the
solid curve is a Pade analysis (Ref. 25) of the high-temperature
series (Ref. 11). The filled circle is a transfer matrix (TM) calcula-
tion (Ref. 14) and is obtained from XEA = 87T/EA with GAEA= 6+ 2.
Due to the smallness of the lattice (4X4x10) we consider this esti-
mate to be a lower bound only. An arrow marks the freezing tem-
perature observed in earlier MC work (Ref. 12) for v =10 7.0. The
open circles are data (Ref. 2) for 1'/o CuMn with the temperature
axis scaled by taking J = 8.39 K. Our XEA is (a3+ 2)/3 in the nota-
tion of Ref. 2. The "static" transition temperature of 10.03 K,
quoted by Ref. 2, is also shown. Taking "'static" to mean m = 10
Hz and assuming 7-0= 10 sec, the relaxation time must be of or-
der 10' rs at this temperature. The insert shows rEA against T/J
on a log-log plot for the d =3 Ising model, obtained by MC simula-
tion (Ref. 24).

zero-field behavior than do experiments because freezing
occurs at a higher temperature where XEA is smaller.

Interestingly, the chosen value of J also gives a ratio
between experimental' and short-time Monte Carlo" freez-
ing temperatures (shown by arrows in Fig. 2) which agrees
with the prediction abo~e that Tf (~)~ »(I/thoro).

Finally, we consider the field dependence predicted by Eq.
(5). This implies that Tf(tu, H)/Tf(tu, 0) is only a function
of H/[Tf(co, H)], so that lines of freezing temperatures in
the 0-T plane at different frequencies should all collapse on
to a single curve if plotted in this scaled form. Choosing
5=7, which is obtained from Eq. (9), recent data on
Eu04Sr06S are shown in Fig. 3. Considering the consider-
able scatter in the original data and the fact that no adju-
stable parameter is used, we consider the evidence for scal-
ing satisfactory. There are not yct any d=3 computer
simulations in a field to compare with but thc the insert to
Fig. 3 shows that simulation data for the d =2 + J model'3
does scale in the expected manner. Again, 5 (=2.8) is
taken from other exponents [t = 2, q =0.4 (Refs. 19, 21,
and 22)] so it is not an adjustable parameter.

%e note that, within their accuracy, the present estimates
of z and t, Eqs. (6), (7), and (9), for both d = 2 and 3 are
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FIG, 3. Scaling plot of the H-T lines wheie freezing occurs at a
fixed frequency for Eu04Sr06S (from Fig. 2 of Ref. 28). The insert
shows a similar scaling plot of lines of constant relaxation time for
the d=2, + J-1Sing model (from Fig. 4 of Rcf. 23). T(r,H) is thc
temperature where the relaxation time reaches a given value 7 for
the chosen field H.

consistent with the suggestion" that z —1/I = (d —1)/2,
which results from the assumption that one needs only to
reverse of order gsA' spins to go from one ordered state of a
cluster to another.

%C do not claim that the given exponent values are high-

ly accurate, partly because of errors in the data, but more
importantly because they are obtained at rather high tern-

peratures where the asymptotic critical region may not yet
have been reached. In this case the effective exponents
~ould increase further as the temperature decreases.
Perhaps this could explain the nonuniversal (and generaily
1argcI') values of zv ohscrvcd 1n RKKY systems lf, fol' some
reason, those measurements are closer to the true critical
region. Another complication is that real systems are
Heisenberg but with anisotropy which induces crossover to
Ising behavior at low temperatures. The form of this cross-
over remains to be elucidated.

In the alternative hypothesis, of a finitc-temperature tran-
sition, one expects that, asymptotically close to T„con-
ventional critical slowing down" would occur where ~, rath-
er than 1nr, scales with a power of (EA. However, if the
transition temperature is small compared with the mean-
ficld pl'cdlctlon onc would have 8 temperature I'ange above
T, where activation of walls dominates the dynamics, fol-
lowed by crossover to conventional slowing down as one ap-
proaches T,. To our knowledge, this crossover has not been
seen experimentally.

To conclude, we have proposed that spin-glasses may be
described by a T = 0 transition and given evidence in favor
of this hypothesis. It would be useful to have more accu-
rate experiments on a variety of systems to verify the
specific predictions that have been made. It would be par-
ticularly helpful to check if there are really differences
between insulators, such as Eu„Srl „S, which seem to fit
the picture very well, and RKKY systems which do not fit
quite so straightforwardly.
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