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Crystallization of the classical one-component plasma
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A theory of the crystallization of the three-dimensional classical one-component plasma is described.

The theory is based on analysis of the nonlinear equation for the inhomogeneous density distribution at

phase equilibrium. We report calculations of the plasma parameter I —= (Ze2/ks T)(4n p/3)t/3, and the en-

tropy change accompanying the transition. These values are in good agreement with those observed in

computer simulations.

A three-dimensional classical one-component plasma
(OCP), composed of charges Ze, with density p, in a rigid
neutralizing continuum background, ' undergoes a first-order
phase transition from a fluid to a body-centered-cubic (bcc)
crystal when

I' = (Ze'/ks T) (4mp/3) '/ =171 +3

(Ref. 2). Monte Carlo simulations indicate that the entropy
change per ion in this transition is 0.82k~, that the crystal
phase is mechanically stable for I ~140, and that the value
of the liquid structure factor at the first peak at crystalliza-
tion is S(q ) =3.0. Since the neutralizing background of
the OCP is rigid there can be no volume change accompany-
ing the transition.

Although there are several reports of the application of
integral equation theories to the description of the thermo-
dynamic properties of the OCP, ' we are aware of no first-
principles statistical-mechanical study of the fluid-to-crystal
transition. In this Rapid Communication we describe a
theory of the freezing of the OCP, based on analysis of the
change of solution of the equation for the inhomogeneous
density distribution at phase equilibrium. We report the
results of two related but distinct calculations. First and,

I

from our point of view, most important, the features of the
freezing transition of the OCP are predicted solely from the
analysis of the above-mentioned integral equation. This
analysis takes the form of a search for the bifurcation point
at which the uniform density distribution characteristic of
the liquid phase changes to the periodic density distribution
characteristic of the crystalline phase. The results of this
calculation are in good, but not perfect, agreement with
computer simulation data. Second, recognizing that simpli-
fications introduced to enable the bifurcation analysis to be
executed can, and do, lead to numerical inaccuracies in the
predictions of the theory, we impose the condition of equali-

ty of grand potentials of the two phases at the phase transi-
tion on an order-parameter representation of the grand po-
tentials of those phases. The order parameters used are the
same as appear in the bifurcation analysis, and refer to the
amplitudes of the spatial Fourier components of the density
distribution in the crystal. This procedure provides values
for the plasma parameter at the transition and the entropy
change on freezing which are in excellent agreement with

the computer simulation values.
Our analysis starts with the following exact expansion4 for

the singlet distribution function as a function of position,
p(Rt), of an inhomogeneous fluid:

p(Rt) 1=exp X Sk+t(Rt, . . . , Rk+t) p(R2) p(Rk+t) dR2 dRk+t
z k~i ko

=exp[F(Kt, (p(R, )})]

lim — dRp(R) = p
v

(2)

where p is the mean density of the system. The argument
of the exponential term on the right-hand side of Eq. (1),

I

where Sk~t(Rt, . . . , Rk+t) is the sum of all irreducible
Mayer cluster diagrams of order k+1. The fugacity z is
determined by

I

F(Rt, (p(R, ) }), is the generating function of the n-particle
direct correlation function c„(Rt, . . . , R„)

5" 'F(K, , }p(K-, ) })
Sp(R2) Sp(R„)

A functional Taylor expansion of this generating function
about its liquid-state value F(Rt, Ipt}), truncated after the
first three terms, leads to

r

=—'exp dK2c2(Kt2, pI) Ap(K2) +
2 dR2dR3c3(Rt, R2, R3', p() Ap(K2) Ap(K3)

z z(
2 4 (4)

where Ap(R) is the density difference p(R) —pI. In Eq. (4), pI and zl are the density and the fugacity of the liquid phase.
We now expand the singlet density distribution in a Fourier series and set p(Rt) = p, (Rt):

p, (K) = pI+~p(R) = pl(1+ho) + pI $4 o &'

G
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12$o =~ dK(o (K)B(K) ~t dRB(K)

24go =„dRgo (R)B(R) J dRB(R)

with

o = yo ~ (o (R)=pe"
a p a a

G a

(6a)

B(K) =exp[zo yo go (K) +Zo yo go (K)], (6b)
a a a

iG ~ R12c2(G, ) = „dRt2e ™ c2(R(2,p()

C3(G, 0) = „dR~2dR~3e "c3(R~,R2, R3, pl)

A, o =p, [c2(G ) +plfoc3(G 0)]

(6c)

(6d)

(6e)

where the [G] are the reciprocal-lattice vectors of the crys-
tal, the @ o are expansion coefficients, and $0 is the frac-

tional density change on freezing. go and $ o are the order
parameters for the transitions; they are zero for the liquid
phase and nonzero for the crystalline phase. At a first-order
phase transition, all or some of these order parameters will

undergo a jump discontinuity. As already remarked,
must be zero for the OCP to preserve charge neutrality.

It is worth pointing out that the order-parameter expan-
sion (5) neglects the terms corresponding to shear deforma-
tion of the solid, and the corresponding thermal fluctua-
tions. Inclusion of both categories of terms is a nontrivial
problem to which we do not have a simple solution at the
moment.

We restrict the Fourier expansion of p, (R) to the ap-

propriate set of first and second reciprocal-lattice vectors. '
The solution of Eq. (4) then reduces, for the bcc lattice, to
the problem of solving the coupled nonlinear equations

and

p [ c2(Gp) +pl Qoc3(Gp 0) ] = A. o

Ii o (p(, p,') =0 .8
ps

(7)

(8)

The consistency conditions (7) are approximate in that
Fourier components of c3 of the form c3(G, 6&) with

G&WO have been neglected. Condition (8) arises solely
from the convexity of the function XG, which is a conse-

quence of the short-range-ordered structure of the OCP
liquid for large values of I", it singles out the lowest value of
pi at which the transition occurs.

The implementation of Eqs. (7) and (8) requires detailed
information about the liquid structure factor. We have used
an analytic theory for the OCP structure factor due to Cha-
turvedi, Senatore, and Tosi; it is in excellent agreement
with the Monte Carlo results of Hansen et a/. ' The triplet
correlation function c3(G, 0) is calculated by using the rela-

where 5, the volume of the unit cell, is defined as 2p, '.
Note that a uniform singlet density is always a solution of

Eq. (6). However, Eq. (6) is nonlinear, so there can be ad-
ditional nonuniform solutions. To investigate this possibili-
ty we have solved Eq. (6) and searched for bifurcations' ' in

the pair (Xo, Xo ). At a bifurcation point the fluid
a P

phase, characterized by a uniform density, becomes unstable
relative to the crystal, characterized by a periodic density
distribution. For a two-order-parameter theory, such as we
describe, there is a line of bifurcations generated by pairs of
values of h.

'- and X'- (see Fig. 1). The construction ofG Gp
this line for the bcc lattice is described in Ref. 6. Now,
along the freezing line A. 'G and A. 'G are also related by the

a
consistency conditions '

p, [c2(G ) +pi @pc3(G,O) ] = X o

]tG =0.2 gG =O. IO
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FIG. 1. Two-order-parameter bifurcation curves for the bcc lattice for several values of A, G . The freezing line generated by the bifurca-

tion pairs (X,X ) is shown in the inset. The dashed line in the inset is the solution of the self-consistent condition (8). The intersec-
G ' Gp

tion of these two lines gives the transition point.
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TABI.E I. Comparison of predicted and observed properties of OCP crystallization.

I5'o Comment

0.2387

0.2387

Unmodified bifurcation
theory
Correction imposed by
Mguircment, that both liquid
and cfystal have equal
grand potentials
observed values

tion'o

c3(6,0) =pi c2(—6—)
/pl

Table I gives the calculated values of pI', p,
'

Rnd the cor-
responding value of I. The fractional density change OQ

frcczing is predicted to bc 0.0l which, though very sIQall,
contradicts the rigorous result that $0 must be zero for the
OCP. %'e attribute this nonzero value of Po to the approxi-
mations in the theory, especially the truncation of thc
order-parameter expansion and the neglect of c3(6,6') and
higher-order correlation functions. %c regard the very
small value predicted for qbo to be supporting evidence for
ouI' approach IQ vlcw of the approxlIYlations w'c have made.

The various approximations in this theory, such as the
neglect of higher-order direct correlation functions, higher-
order reciprocal-lattice vectors, and shear motion in the crys-
tal, ' lead to a displacement of the bifurcation point from
that at which thc approxilTlatc grand potentials of thc llqUId
and crystal arc equal. To rectify thc net effect of these ap-
proximations we can impose, Rs a condition, the equal-
ity of grand potentials. Since co ~ for the OCP
fca—= c2(6=0)], we take advantage of the fact that $0 is
zero and evaluate the limiting form for the grand potential
difference as co~ eo, @o~ 0 but capo=n, a constant. It
may be shown that

Thc change in entropy pcr ion on frcczlng is glvcn by

AS = ksi' ( 8'g —Wi)
8

We find this value to be —I.09k', to be compared with the
experimental value of —0.82k~, which we regard to be in
satisfactory agreement since the neglect of the shear motion
of the crystal Rnd of the higher-order direct correlation
functions in the description of the OCP fluid should lead to
too large a value for AS/ks.

Our analysis of the nonllncaI' integral cquatIon foI' thc
singlet density distribution successfully predicts the freezing
transition in thc OCP and pI'ovldcs valUcs for thc transition
parameters that are of modest accuracy. The theory has the
advantage of being fully microscopic, ' in the sense that if
carried out exactly equality of the grand potentials of the
liquid and crystal, which defines the freezing point, coin-
cides with the point at which the order parameters change
discontinuously and the solution of the integral equation for
the density bifurcates. However, the approximations we
have used, while preserving the qualitative prediction of 8
first-order phase transition, lead to numerical crroI's of prc-
diction. The separate imposition of equality of grand poten-
tial Is 8 convenient way to coI'I'cct thc QUITlcrlcal Inaccuracy
of our predictions, but it does represent a departure from
the purely microscopic point of view we prefer.

+=in 5/ J dRB(R)

and thc equality of grand potentials gives

(10)
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II;—Wi=0= pe+~ Xc2(6)$ + X cz(6) @ o
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With the added constrain. t of thc equality of grand poten-
tials, the predicted onset of freezing is at 1 =169.76, which
is in excellent agreement with the observed value' (Table I).
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