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Recently it has been found that for several two-dimensional classical models the amplitude of the corre-
lation length of a finite system at a critical point is universal and related to the correlation-function ex-
ponent q. Here we propose that for quantum systems the ratios of two such amplitudes are universal and
are related to the ratios of the corresponding exponents. This proposition is confirmed numerically for the

transverse Ising model for spin 5 = 2, 1, 2, and 2. It is used to calculate q in a simplified way.

For classical as well as quantum systems the thermo-
dynamic properties near a continuous phase transition can
be described in terms of scaling and universality. If thc sys-
tern is finite, of length L, L ' can be added to the parame-
ters used in thc scaling analysis. Its role is special, as onc
knows from dimensional analysis how it behaves under a
change of scale, in contrast with the other paraIneters. This
property has been widely used to estimate critical behavior
of such systems. 2' For several models, universality of the
correlation-length amplitudes have been established4~ as a
consequence of the scaling behavior of J. ' These results
appear particularly tl'Rnspalcnt ln 8 fcnormallzatlon-group
(RG) framework. " Furthermore, a simple relation con-
nects this amplitude with the correlation-function exponent

In the same spirit, q has been related to spectral proper-
ties for quantum systems. ' Finally, finite-size effects have
been studied for lattice-gauge theory. Here we investigate
the difference between classical and quantum systems. Wc
conclude that for thc quantum case, in general, amplitudc-
cxponcnt I'clatlons have 'to bc replaced by I'clatlons bctwccn
amplitude ratios (not to be confused with the universal am-
plitude ratios above and below the critical point for infinite
systems) and exponent ratios.

For a number of two-dimensional (20) classical, isotropic
systems, thc following equation has been found to hold

whcrc q ls thc ol dcr-parameter coI'1elation-function cx-
pollc11t [C(r) r ", r ~ ~], A 1s tile arnplltlldc of tllc 111-

verse correlation length (g '=A/L, L ao). The system
is finite (length L) in one direction but otherwise critical.
%e note that here the correlation length must be defined in
a precise way, unlike the usual situation ~here an all-over
factor is immaterial in a scaling analysis. Equation (1) im-

pllcs immcdlatcly that, A ls unlvcrsal. FOI' thc 2D Ising
model, this relation holds, as inspection of thc exact solu-
tion for finite I. shows. '0 Other models which have been in-
vestigated include Anderson localization4 and the JF
model. ' Numerically, Eq. (1) has been verified for percola-
tion, lattice animals, and the Potts model. 6 The Gaussian,
symmetric eight-vertex, and N-component cubic models also
satisfy thc conjecture, as Nightingale and Blote report,
combining analytical Rnd numerical arguments. In 8ddltlon,
these authors considerably generalize Eq. (1). They propose
a form that replaces it for anisotropic systems and they sug-

gest that Eq. (1) is valid for other types of operators as well.
The correlation-length amplitudes for the two special cases
of the 5=1 anisotropic Heisenberg model have been com-
pared with q." Preceding all these calculations establishing
Eq. (1), Haldane' has derived analogous relations for Lut-
tinger liquids (10) which include the spin S = —,

Heisenberg-Ising model.
Let us now consider the validity of Eq. (1) for quantum

systems. Two situations can occur, If the model is the an-
isotropic limit of an isotropic classical onc, the appropriately
chosen limiting quantum model then satisfies Eq. (1), as
thc 5 =

2 Ising model ln 8 tI'Rnsvcl'sc flcld, fol' example. IQ

general, when no such analog is known, there is an ambi-
guity in the choice of the Hamiltonian. Two Hamiltonians
differing by an all-over factor certainly do describe the same
critical behavior, but their gap (or correlation length) ampli-
tudes differ by this factor. Equation (1) then is modified to
A =fq, where f is undetermined. We now suggest that f
depends only on the choice of the all-over factor of the
Harniltonian. So, amplitude-exponent relations for different
operators O„,O» have the same factor f. From this it fol-
lows that

~x

qy Ay

where the exponents q and the amplitudes A refer to their
respective operators. In practice, this allows the determina-
tion of all correlation-function exponents from the ampli-
tude ratios, if any one of them is known.

Now let us indicate how to implement and test Eq. (2).
Suppose that a D-dimensional quantum system with the
Hamiltonian H(h) has a second-order phase transition in
the ground state at h = 5,. VA'th the aid of the phenomeno-
logical renormalization group (PRG), ' h, and the
correlation-length exponent can be estimated from
Lgt. (h) =Mgss(h'), with L &M, where gL, and gst are the
lowest energy gaps of a finite system of size I. and M,
respectively. The ground-state correlation function of the
operator O„(r) is defined by

—(D+z-2+q )
and at h, for r ~, C„(r) -r ",where zis the
dynamical critical exponent. Numerically C„(r) can be es-
timated at r =L/2, the maximum possible r for a periodic

1984 The American Physical Society



UN&ERSALITY OF CORRELATION-LENGTH AMPLITUDES. . .

TABI E I. Flnltc chalQ PRO results for thc spin-S tl'ansvcrsc Ising model. The chains of length L R1'c

compared with L, +1 and the results are linearly extrapolated in L 1 to I. ~. The correlation exponents

q, and qE are cakulated with Eq. (3). The error bars increase with growing S and typical values are shown
for S=2. Extensive calculations by the present authors support universality with S (Ref.14).
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system of size L (L even). There are usually two indepen-
dent critical exponents, one of which ( v) can be determined
by thc PRG. Thc othc1, I'clatcd to thc order paraITlctcr, c8n
be estimated with Eq. (3). The universal ratios, Eq. (2),
provide an alternative way to calculate this exponent. If OE
is the energy density operator, scaling law relates y to qE.
D +z +2 2/v =—qE From. q, /qE =A, /AE one then obtains

Ag 2B+z+2 ——
AE P

where A, Rnd AE are the amplitudes for the spin-spin and
energy-density-energy-density correlation lengths, respec-
tively. Equation (4) is to be evaluated at the fixed point of
the PRO, It =it'=/t'(L, M).

As an example, the spin-S transverse Ising chen is con-
sidered for S = 2, 1, —,and 2. Thc Hamiltonian is

polRt1GQ with thc ncw method is much morc reliable.
Furthermore, thc numerical effort is consldcl'ably reduced,
as no eigenvectors have to be calculated. Also, higher gaps
can be used to determine additional exponents. It is
straightforward to test and use the present relation in other
systems. Most of thc models studied w1th thc finite-S1zc
methods lend thcIDsclves to 8 similar analysis.

Conceptually it would be irlteresting to investigate wheth-
er there are restrictions to the validity of the amplitude-
cxpoQcnt relations, clRsslcally of quantum mechanically.
Higher-D pose additional problems, as the finite geometry,
important for the validity of these relations, can be chosen
in d1ffci'cnt ways,

whcfc 8( Rrc spin-5 operators and SL, +1 =Si. Thc Hamil"
tonian has been chosen such that for S=—it corresponds

to thc correct 8nisotl'op1c limit of thc 20 class1cal Ising
model. For S ~, L ~, (/t/J), approaches its mean-
field value (h/I)MF=2. " For S & —, this model is not ex-

actly soluble Rnd 1ts class1cal analog docs not have 8 simple
form as for S = 2. However, universality arguments'3 and

high-temperature expansions'2 support the belief that the
critical behavior is unchanged for all firlitc S. Finite lattice
calculRtions clcRI'ly confii'm this hypothesis. In Table I-
some relevant datR Rrc CGBcctcd. Thc dynamic cxponcnt z
is equai to I for all S considered. '5 For Eq. (2) to hold it is
necessary that A, (S)/AE(S) =q,/ps = —, independently of S.
In Fig. I we show A, (S,L)/A@(S,L) vs I/L For all S con-
sidered it tends towards the universal value —, (q, =0.25,
'0E 2) ~

I.et us now turn to the calculation of q, . %c have calcu-
lated this exponent both directly [Eq. (3)] and through the
amplitude ratios [Eq. (4)]. Figures 2 and 3 show the
results. Thc dl1'cct determination h8S strong cvcQ-odd oscil-
lations with I.. In contrast, thc 1Tlcthod using thc amplitude
ratios gives results which are quite smooth, For spin 5 =2,
for example, where only four points arc availabl, the extra-

/~"

FIG. 1. The amplitude ratio A, /AE g, /gE for the spin-S
transverse Ising model. The energy gaps g, aud gE (g -g ') are
energy differences between the first excited states in the subspace of
sp1Q" and energy-dcnsltys 1'cspcct1vcly, and thc ground stRtc. For all
values of 5 the values of the ratios extrapolate to the universal

value —for L, ~. Thc 1'at1os werc obtained Rt thc f1xcd po1nts of8
the PRG comparing sizes I with I.+1.
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FIG. 3. Estimates of rt, using Eq. (4) and the amplitude ratios

A, /AE, Fig. 1. A much better determination is possible than from

Fig. 2, especially for higher S.

FIG. 2. Estimates of the critical exponent q, from the correlation
function [Eq. (3)] of a finite chain of length L. rt, is defined by

rt, =In[C„(L/2)/C„(L'/2)]/In(L'/L)

(with L'=L +2) taken at the PRG fixed point. For full account of
these calculations see Ref. 14.

The authors thank J. M. Luck, %. Kinzel, T. Schneider,
E. P. Stoll, and U. Glaus for stimulating discussions and
P. M. Nightingale for correspondence. This work has been
supported by the Deutsche Forschungsgemeinschaft.

'H. W. J. BIOte and M. P. Nightingale, Physica A 112, 405 (1982).
2M. P. Nightingale, J. Appl. Phys. 53, 7927 (1982).
M. N. Barber, in Phase Transitions and Critical Phenomena, edited by

C. Domb and J. L. Lebowitz (Academic, New York, 1984), Vol. 7.
4J. L. Pichard and G. Sarma, J. Phys. C 14, L127, (1981); 14, L617

(1981).
5J. M. Luck, J. Phys. A 15, L169 (1982); Nucl. Phys. B210 [FS6],

111 (1982); J. Phys. (Paris) 42, L275 (1982).
6B. Derrida and L. de Seze, J. Phys. (Paris) 43, 475 (1982).
7M. P. Nightingale and H. W. J. Bldte, J. Phys. A 16, L657 (1983).
sF. D. M. Haldane, Phys. Rev. Lett. 45, 1358 (1980); Phys. Lett.

81A, 153 (1981).
M. LQscher, in proceedings of the Cargese Summer School, 1983

(unpublished).
' M. P. Nightingale, Physica A 83, 561 (1976).
'iT. Schneider, U. Glaus, and E. P. Stoll (unpublished). One of the

cases investigated satisfies Eq. (1), the other does not; see also
Ref. 16.
J. Oitmaa and G. J. Coombs, J. Phys. C 14, 143 (1981).

'sA. P. Young, J. Phys. C 8, L309 (1975).
~4K. A. Penson and M. Kolb (unpublished).
~5It must be pointed out that the convergence of the PRG implies

z =1, thus no separated analysis is necessary if the PRG is credi-
ble.
One of us (M.K.) has looked at the S =1 anisotropic Heisenberg
chain [as defined by R. Botet, R. Jullien, and M. Kolb, Phys.
Rev. B 29, 3914 (1983)] and estimated the exponent q from am-

plitude ratios. The result holds for all values of the anisotropy, in

contrast with Ref. 11, where the conclusion depends on the
choice of the Hamiltonian (the correct all-over factor needs to be
chosen).


