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Recently it has been found that for several two-dimensional classical models the amplitude of the corre-
lation length of a finite system at a critical point is universal and related to the correlation-function ex-
ponent 7. Here we propose that for quantum systems the ratios of two such amplitudes are universal and
are related to the ratios of the corresponding exponents. This proposition is confirmed numerically for the
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transverse Ising model for spin S = L

For classical as well as quantum systems the thermo-
dynamic properties near a continuous phase transition can
be described in terms of scaling and universality. If the sys-
tem is finite, of length L, L ! can be added to the parame-
ters used in the scaling analysis.! Its role is special, as one
knows from dimensional analysis how it behaves under a
change of scale, in contrast with the other parameters. This
property has been widely used to estimate critical behavior
of such systems.”? For several models, universality of the
correlation-length amplitudes have been established*- as a
consequence of the scaling behavior of L~!. These results
appear particularly transparent in a renormalization-group
(RG) framework.!”” Furthermore, a simple relation con-
nects this amplitude with the correlation-function exponent
n. In the same spirit,  has been related to spectral proper-
ties for quantum systems.? Finally, finite-size effects have
been studied for lattice-gauge theory.” Here we investigate
the difference between classical and quantum systems. We
conclude that for the quantum case, in general, amplitude-
exponent relations have to be replaced by relations between
amplitude ratios (not to be confused with the universal am-
plitude ratios above and below the critical point for infinite
systems) and exponent ratios.

For a number of two-dimensional (2D) classical, isotropic
systems, the following equation has been found to hold
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where m is the order-parameter correlation-function ex-
ponent [C(r) ~r~", r— oo], A is the amplitude of the in-
verse correlation length (¢ '=4/L, L — «). The system
is finite (length L) in one direction but otherwise critical.
We note that here the correlation length must be defined in
a precise way, unlike the usual situation where an all-over
factor is immaterial in a scaling analysis. Equation (1) im-
plies immediately that 4 is universal. For the 2D Ising
model, this relation holds, as inspection of the exact solu-
tion for finite L shows.!® Other models which have been in-
vestigated include Anderson localization* and the XY
model.’ Numerically, Eq. (1) has been verified for percola-
tion, lattice animals, and the Potts model.® The Gaussian,
symmetric eight-vertex, and N-component cubic models also
satisfy the conjecture, as Nightingale and Bléte report,’
combining analytical and numerical arguments. In addition,
these authors considerably generalize Eq. (1). They propose
a form that replaces it for anisotropic systems and they sug-
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1, —;—, and 2. It is used to calculate n in a simplified way.

gest that Eq. (1) is valid for other types of operators as well.
The correlation-length amplitudes for the two special cases
of the S =1 anisotropic Heisenberg model have been com-
pared with ».!! Preceding all these calculations establishing
Eq. (1), Haldane® has derived analogous relations for Lut-
tinger liquids (1D) which include the spin § =%
Heisenberg-Ising model.

Let us now consider the validity of Eq. (1) for quantum
systems. Two situations can occur. If the model is the an-
isotropic limit of an isotropic classical one, the appropriately
chosen limiting quantum model then satisfies Eq. (1), as
the S = % Ising model in a transverse field, for example. In

general, when no such analog is known, there is an ambi-
guity in the choice of the Hamiltonian. Two Hamiltonians
differing by an all-over factor certainly do describe the same
critical behavior, but their gap (or correlation length) ampli-
tudes differ by this factor. Equation (1) then is modified to
A = fn, where fis undetermined. We now suggest that f
depends only on the choice of the all-over factor of the
Hamiltonian. So, amplitude-exponent relations for different
operators (f'x,Oy have the same factor f. From this it fol-
lows that
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where the exponents m and the amplitudes A refer to their
respective operators. In practice, this allows the determina-
tion of all correlation-function exponents from the ampli-
tude ratios, if any one of them is known.

Now let us indicate how to implement and test Eq. (2).
Suppose that a D-dimensional quantum system with the
Hamiltonian H(#) has a second-order phase transition in
the ground state at # = h,. With the aid of the phenomeno-
logical renormalization group (PRG),** h, and the
correlation-length exponent can be estimated from
Lg; (h) = Mgy (h'), with L > M, where g; and g are the
lowest energy gaps of a finite system of size L and M,
respectively. The ground-state correlation function of the
operator O,(r) is defined by

Ce() = (0104(1 0,(0)[0) —[(0l04(®0)1> ,  (3)
and at A, for r — oo, C,(7) -~-r_(D+z_2 +1"‘), where z is the
dynamical critical exponent. Numerically C,(r) can be es-
timated at r =L/2, the maximum possible r for a periodic
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TABLE 1. Finite chain PRG results for the spin-S transverse Ising model. The chains of length L are
compared with L +1 and the results are linearly extrapolated in L~! to L — co. The correlation exponents
ms and 7 are calculated with Eq. (3). The error bars increase with growing S and typical values are shown
for S=2. Extensive calculations by the present authors support universality with S (Ref.14).

Spin S=% S=1 S=7 S=2 Exact
(h1d), 1.000 1.325 1.476 1.655(005) 1.0 (S=-;—)
v 0.997 1.008 1.015 1.010(05) 1.0
Mg 0.249 0.255 0.258 0.26(03) 0.25
ng 1.96 1.95 1.99 1.75(40) 2.0

system of size L (L even). There are usually two indepen-
dent critical exponents, one of which (v) can be determined
by the PRG. The other, related to the order parameter, can
be estimated with Eq. (3). The universal ratios, Eq. (2),
provide an alternative way to calculate this exponent. If O
is the energy density operator, scaling law relates v to mg:
D +z+2-2/v=mg. From m,/ng=A;/Ar one then obtains
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where A4, and Ag are the amplitudes for the spin-spin and
energy-density—energy-density correlation lengths, respec-
tively. Equation (4) is to be evaluated at the fixed point of
the PRG, h=h"=h*(L,M).

As an example, the spin-S transverse Ising chain is con-

sidered for S = -%-, 1, —;—, and 2. The Hamiltonian is

L
hos s, )

where S; are spin-S operators and Sz 4+;=9;. The Hamil-
tonian has been chosen such that for § =—;— it corresponds
to the correct anisotropic limit of the 2D classical Ising
model. For § — oo, L — oo, (h/J), approaches its mean-
field value (#/Nmp=2.2 For S > % this model is not ex-

actly soluble and its classical analog does not have a simple

1 . )
form as for §==. However, universality arguments'* and

high-temperature expansions!? support the belief that the
critical behavior is unchanged for all finite S. Finite lattice
calculations!* clearly confirm this hypothesis. In Table I
some relevant data are collected. The dynamic exponent z
is equal to 1 for all S considered.’* For Eq. (2) to hold it is
necessary that 4;(S)/Az(S) =n/meg= % independently of S.
In Fig. 1 we show A4,(S,L)/Az(S,L) vs 1/L. For all S con-
sidered it tends towards the universal value %— (9y=0.25,
ne=2).

Let us now turn to the calculation of ;. We have calcu-
lated this exponent both directly [Eq. (3)] and through the
amplitude ratios [Eq. (4)]. Figures 2 and 3 show the
results. The direct determination has strong even-odd oscil-
lations with L. In contrast, the method using the amplitude
ratios gives results which are quite smooth. For spin § =2,
for example, where only four points are available, the extra-

polation with the new method is much more reliable.
Furthermore, the numerical effort is considerably reduced,
as no eigenvectors have to be calculated. Also, higher gaps
can be used to determine additional exponents. It is
straightforward to test and use the present relation in other
systems.!® Most of the models studied with the finite-size
methods lend themselves to a similar analysis.??

Conceptually it would be interesting to investigate wheth-
er there are restrictions to the validity of the amplitude-
exponent relations, classically or quantum mechanically.
Higher-D pose additional problems, as the finite geometry,
important for the validity of these relations, can be chosen
in different ways.
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FIG. 1. The amplitude ratio A4;/Ap=g,/gx for the spin-S
transverse Ising model. The energy gaps g, and gz (g ~¢ 1) are
energy differences between the first excited states in the subspace of
spin- and energy-density, respectively, and the ground state. For all
values of S the values of the ratios extrapolate to the universal
value % for L — o. The ratios were obtained at the fixed points of
the PRG comparing sizes L with L +1.
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FIG. 2. Estimates of the critical exponent n from the correlation
function [Eq. (3)] of a finite chain of length L. = is defined by

my =Inl Cy(L/2)/C(L'/) 1 in(L'/L)

(with L'=L +2) taken at the PRG fixed point. For full account of
these calculations see Ref. 14.
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FIG. 3. Estimates of 7 using Eq. (4) and the amplitude ratios
Ag/Ag, Fig. 1. A much better determination is possible than from
Fig. 2, especially for higher S.
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