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Ab initio calculation of indirect multipolar interactions in DyZn
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We present the results of a calculation of the indirect bilinear and quadrupolar couplings between mag-

netic ions in the rare-earth intermetallic compound DyZn. We have taken into account the complete rare-

earth-conduction-electron (k-f) interaction and wc use conduction-electron wave functions and energy
bands obtained by a self-consistent augmented-plane-wave calculation. Our results are able to describe

reasonably well the extant data on these couplings.

The origin of the coupling between magnetic ions is of
fundamental importance in magnetic materials. In metallic
systems, it is well known that conduction electrons play an
essential role in this coupling by propagating the local in-

teraction between them and the localized magnetic elec-
trons. ' This indirect exchange mechanism has been widely
evoked in rare-earth metals and intermetallic compounds,
i.e., the Ruder man-Klttel-Kasuya- Yoslda (RKKY) interac-
tion. Although this theory has had great success in
describing the magnetic properties of many systems, it is in-

complete in conventional use by an essential aspect, namely,
orbital effects are neglected. The main evidence for such
effects is the existence of large quadrupolar interactions in

some rare-earth compounds which are able to produce quad-
rupolar phase transitions, e,g. , in TmZn and TmCd. "

To take into account these orbital effects in an ab initio

calculation of indirect interactions requires (i) that one does
not restrict oneself to gadolinium, an S ion with a spherical
symmetry, and (ii) that one considers conduction-electron
states which arc more realistic than plane waves, foi in-

stance, states coming from a band-structure calculation. Up
to now, these two conditions have never been taken into
consideration together: either a free-electron model was as-
sumed for the conduction band and one took into account
orbital effects, ' or a band model was taken but orbital ef-
fects were neglected. '

Here we present the results of the evaluation of the in-
direct multipolar (bilinear and quadrupolar) interactions in
the cubic (CsCl-type structure) ferromagnetic compound
DyZn, starting from the energy-band structure and wave
functions obtained by a self-consistent augmented-planc-
wave (APW) calculation. 'o We emphasize that we have
considered the complete k fCoulomb interaction b-etween

the conduction electrons and the 4f shell; therefore we find
orbital contributions to the conventional isotropic Heisen-
berg exchange interaction and the quadrupolar pair interac-
tions that are used to interpret the magnetic properties of
the cubic rare-earth compounds in the mean-field approxi-
mation. "

The formalism used for calculating indirect multipolar in-
teractions was previously described. " The k fmatrix ele--
rnents of the direct and exchange Coulomb interactions are
evaluated as a function of the coefficients of fractional

parentage of the 4f" electrons by using irreducible tensor
algebra, and AP% wave functions are used for the conduc-
tion electrons. By applying second-order perturbation
theory we find the effects of the k finteraction -on the elec-
tron gas lead to the following effective multipolar Hamil-
tonian:

J»q» 0
(~v')Og~(v)O», (v'), (1)

vv AQE Q

where J (vv') couples the multipolar operators 00 of
the vth and v'th ions. The Fourier transform of the in-
terionic multipolar coefficients may be expressed asJ, , (q) = $ X~J„" ", , (k, k+ q) ('

nn'

f-„„(l-f-„,, „,)

E,(k+ q) —E„(k)

where f-„„is the Fermi occupation factor of the conduction
state with wave vector k, band index n, and energy E„(k).

Calculations were performed by taking into account the
first seven energy bands of DyZn and for eight q points
1n the cubic Brlllouin zone (BZ), namely, 1 = (000),
X = (400), M = (440), A i (111), A2 = (333), Q i = (331),
and 02= (311) in units of m/4a. The last four points were
used to evaluate the self-energy terms corresponding to the
average values of the J(q)'s over the whole BZ;" this
self-energy must be subtracted in order to obtain the
Fourier transforms of the pair interactions. The summa-
tion over k in Eq. (2) was made by using the tetrahedron
method" for q = I and 8, with a total of 13 824 k points in
the whole BZ. For the other q points, a discrete summation
was made because the preceding method could not be
directly applied. This is justified by the fact that an ela-
borate method is needed only when the denominator is
small in Eq. (2)." This occurs mainly for q=l" and
n = n'=2 and 3, i.e., the bands crossing the Fermi energy.
Finally the three Fourier transforms given in this paper are
0'(q), E~(q), and E2(q), which are proportional, respec-
tively, to Jioto(q), J2o20(q), and J»2T(q). This allows us

to directly compare our calculations with experimental
values given in the literature, namely, the isotropic bilinear
exchange parameter 0 =0 (1 ) and the tetragonal and trig-
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their orbital character is the origin of the strong tetragonal
quadrupolar interactions observed in these rare-earth CsCl-
type intermetallic compounds. The dependence of the vari-
ous interactions on the electron concentration has been cal-
culated. For the bilinear coupling, it is in better agreement
with the magnetic structures observed in these compounds
than previous RKKY calculations based upon a free-electron
model. Finally, the quadrupolar parameters are predicted to
follow an o.J' law, favoring both extremities of the rare-earth

series, i.e., Ce, Pr, and Tm ions, which is what has been ob-
served experimentally.
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