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Ab initio calculation of indirect multipolar interactions in DyZn
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We present the results of a calculation of the indirect bilinear and quadrupolar couplings between mag-
netic ions in the rare-earth intermetallic compound DyZn. We have taken into account the complete rare-
earth—conduction-electron (k-f) interaction and we use conduction-electron wave functions and energy
bands obtained by a self-consistent augmented-plane-wave calculation. Our results are able to describe

reasonably well the extant data on these couplings.

The origin of the coupling between magnetic ions is of
fundamental importance in magnetic materials. In metallic
systems, it is well known that conduction electrons play an
essential role in this coupling by propagating the local in-
teraction between them and the localized magnetic elec-
trons.! This indirect exchange mechanism has been widely
evoked in rare-earth metals and intermetallic compounds,
i.e., the Ruderman-Kittel-Kasuya-Yosida (RKKY) interac-
tion.?® Although this theory has had great success in
describing the magnetic properties of many systems, it is in-
complete in conventional use by an essential aspect, namely,
orbital effects are neglected. The main evidence for such
effects is the existence of large quadrupolar interactions in
some rare-earth compounds which are able to produce quad-
rupolar phase transitions, e.g., in TmZn and TmCd.*-$

To take into account these orbital effects in an ab initio
calculation of indirect interactions requires (i) that one does
not restrict oneself to gadolinium, an S ion with a spherical
symmetry, and (ii) that one considers conduction-electron
states which are more realistic than plane waves, for in-
stance, states coming from a band-structure calculation. Up
to now, these two conditions have never been taken into
consideration together: either a free-electron model was as-
sumed for the conduction band and one took into account
orbital effects,” or a band model was taken but orbital ef-
fects were neglected.®®

Here we present the results of the evaluation of the in-
direct multipolar (bilinear and quadrupolar) interactions in
the cubic (CsCl-type structure) ferromagnetic compound
DyZn, starting from the energy-band structure and wave
functions obtained by a self-consistent augmented-plane-
wave (APW) calculation.!® We emphasize that we have
considered the complete k-f Coulomb interaction between
the conduction electrons and the 4 f shell; therefore we find
orbital contributions to the conventional isotropic Heisen-
berg exchange interaction and the quadrupolar pair interac-
tions that are used to interpret the magnetic properties of
the cubic rare-earth compounds in the mean-field approxi-
mation.!!

The formalism used for calculating indirect multipolar in-
teractions was previously described.!? The k-f matrix ele-
ments of the direct and exchange Coulomb interactions are
evaluated as a function of the coefficients of fractional
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parentage of the 4" electrons by using irreducible tensor
algebra, and APW wave functions are used for the conduc-
tion electrons. By applying second-order perturbation
theory we find the effects of the k-f interaction on the elec-
tron gas lead to the following effective multipolar Hamil-
tonian: 1
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where JKQK,Q,(W') couples the multipolar operators Of of
the vth and »'th ions. The Fourier transform of the in-
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where f1 , is the Fermi occupation factor of the conduction
state with wave vector kK, band index n, and energy E, (k).
Calculations were performed by taking into account the
first seven energy bands of DyZn and for eight @ points
in the cubic Brillouin zone (BZ), namely, I'=(000),
X =(400), M=(440), A,(111), A,=(333), Q,=(331),
and Q,= (311) in units of w/4a. The last four points were
used to evaluate the self-energy terms corresponding to the
average values of the J(@)’s over the whole BZ;!® this
self-energy must be subtracted in order to obtain the
Fourier tra_gsforms of the pair interactions.!* The summa-
tion over k in Eq. (2) was made by using the tetrahedron
method!® for §=T and R, with a total of 13824 k points in
the whole BZ. For the other @ points, a discrete summation
was made because the preceding method could not be
directly applied. This is justified by the fact that an ela-
borate method is needed only when the denominator is
small in Eq. (2)."® This occurs mainly for §=T and
n=n'=2 and 3, i.e., the bands crossing the Fermi energy.
Finally the three Fourier transforms given in this paper are
0*(q), K1(g), and K,(g), which are proportional, respec-
tively, to J1010(@), J2020(q), and J,,7(q). This allows us
to directly compare our calculations with experimental
values given in the literature, namely, the isotropic bilinear
exchange parameter ®*=0*(I") and the tetragonal and trig-
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onal quadrupolar parameters K;=K{(I') and K,=K,(T),
which are involved in the molecular-field Hamiltonian

Hur= — 55075 (1) - T-Ki((08) 0§ +3¢04)01)
— K({Py) Py + cyclic) . 3)

The calculated values of ©*(q) are given in Fig. 1 for
DyZn, together with the experimental ones for the neigh-
boring compound HoZn, as determined from inelastic neu-
tron scattering experiments;!’ these data do not exist for
DyZn. The overall agreement of the form of the curve
®*(q) is quite satisfactory, except the small trough around
I' (see below). In particular, the calculated value of
®*=0*(I') for DyZn is 153 K, close to the experimental
one ©%,=140 K."® In order to obtain an idea of the curve
®*(q) we made a least-squares fit of the eight calculated
points to the Fourier series,

0" (@)= 30 Se' T @
n J

where the summation over j corresponds to all the vectors
R,; equivalent by the cubic symmetry operations. In this
series we kept only the first four terms n» <4. Aside from
providing a four-parameter fit to our data, these O,
represent the interionic isotropic bilinear coupling coeffi-
cients for the first-four-nearest neighbors.

As for the relative contribution of the different bands, it
turns out that, without self-energy correction, the main con-
tribution for § around I' arises from the third band, which
is principally responsible for the Fermi surface. For q
values far from I', all energy bands must be taken into con-
sideration. However, after correction for the self-energy,
both intra- and interband contribution become comparable
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FIG. 1. (a) Fourier transform ®*(q) of isotropic bilinear interac-
tions in DyZn. Points are calculated, line is a least-squares fit with
the coefficient O, [see Eq. (4)]: 0]=445K, 05=34K, ©5=1.9
K, ®5= —27.5 K. (b) The experimentally determined variation of
©*(q) for HoZn (see Ref. 17) is given for comparison.

in size, and generally of opposite sign. For example, the in-
traband contribution to ®*(I") is 643 K, and the interband
one —490 K, for ®*(M) we find —294 and 42 K, respec-
tively. This cancellation explains the trough of ©*(g) in
the vicinity of I' by a difference of curvature in this region
of the inter- and intraband contributions. It could be one
possible explanation for the existence of incommensurate
magnetic structures in such metallic systems.!®

The conduction electrons with d character make the dom-
inant contribution to ®*(q), in particular those of eg-type
symmetry contribute roughly five times more than the #z,-
type electrons. The p electrons account for about 2% of
©*(q) and the s electrons for less than 0.5%. The remain-
ing contributions to the total ®*(q) arise from mixed e;-t5,
terms. This result is readily explained by the predominance
of d electrons in the vicinity of the Fermi level.!%20

In Fig. 2 we show the dependence of ®*(q) on the Fermi
energy Er for §=TI, X, M, and R, without self-energy
correction. This correction is not necessary for studying the
evolution of the magnetic structure as a function of Er,
since the propagation vector (_j of the actual magnetic struc-
ture corresponds to the maximum of ®*(q), for each given
Er. We see that the ferromagnetic structure is the most
stable for the number of conduction electrons N, between
4.7 and 5.46 and below 4.6; DyZn with N,=235 is situated
near the peak of ®*(I'). On each side of this region an an-
tiferromagnetic (700)-type structure, Q=X, would be
favored, as is the case for light rare-earth-zinc compounds.”!
A (ww0)-type structure, Q= M, would be stable at higher
concentration, while the (www)-type structure, Q=R, is
never favored. These predictions are very different from a
free-electron theory?? but closer to the experimental situa-
tion in these CsCl-type compounds.'®>?® It is worth noting
that the peak of ®*(I') for Er=0.424 Ry is connected with
the peak in the partial density of states of d-e, electrons,
since it originates mainly from the intraband (#n =3) contri-
bution, and the intraband contribution at ¢=0 is directly
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FIG. 2. Dependence of ®*(q) on the Fermi energy for =T, X,
M, and R, including self-energy. The vertical dotted line corre-
sponds to DyZn with N, =5 conduction electrons per unit cell.
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related to the part of the density of states which corresponds
to those conduction electrons around the magnetic ions.?’

The Fourier transforms of the indirect quadrupolar in-
teractions K,(§) and K,(q) are given in Fig. 3. The
tetragonal quadrupolar interaction K,(q) has a @ depen-
dence similar to ©*(q), with very negative values for
K|(M) and K,(R). The only difference is that K;(X) is
larger than K (I"), therefore favoring an ‘‘antiferroquadru-
polar’ arrangement of the quadrupoles.

It turns out that all bands contribute to K(§), even at
q=TI. After correction for the self-energy, the intra- and
interband contributions are comparable in size but opposite
in sign, as for ®*(q). Similarly the contribution from the
d-e; electron is the dominant one; it is about five times
larger than the contribution from the d-t,, electrons. The p
electrons contribute roughly 2% of K(q) and s electrons
do not contribute at all, since they have no orbital moment.
Finally, while the isotropic bilinear interactions involve only
an exchange mechanism, there are both direct and exchange
contributions to K;(q): the total exchange contributions
coming from all electrons amount to about —33% of the
direct contribution, the p, d-¢,, and d-t,, electron exchange
contributions are, respectively, —25%, —45%, and —38% of
their direct contributions.

The trigonal quadrupolar interactions, K,(q), have a very
different behavior from ©*(§) or K,(q); see Fig. 3.
K,(X) and K,(M) are positive, and K,(I') and K,(R)
strongly negative. As for K;(qd), all bands contribute to
K,(Q) but the interband contributions are the largest. The
d-ty electrons make the dominant contribution to K,(q)
while the d-e, electrons contribute only indirectly via the
mixed ez-t5; part because by symmetry they have no trigo-
nal quadrupolar matrix elements.

10_ DylZn |
5 NANVAYERIA
X B i
N
zé 50
~ b y .
N AN
1’0:- i i
< 5o} ; \

X " MR X MTIR

FIG. 3. Fourier transforms K{(q) and K,(q) of the tetragonal
and trigonal quadrupolar interactions in DyZn. Points are calculat-
ed, lines are least-squares fits with the coefficient of a Fourier series
similar to Eq. (4), with K{;=14 mK, K;;=—0.3 mK, K;3=—04
mK, K14= -04 mK, and K21= -1.3 mK, K22= —54 mK,
K23=0, K24=0.6 mK.

In Fig. 4 we show the dependence of K;(q) and K,(q)
on the Fermi energy, where the self-energy has not been
subtracted. While K(I') is not the largest for Ng =35, it is
strongly favored as soon as the electron concentration N
decreases. This is mainly due to the interband contribution
between second and third bands, which becomes important
when Ey is located in between them; indeed the quadrupolar
matrix elements 122630(?, k) are very large, both corre-
sponding electron states having primarily e, character. At
higher concentrations . (N~ 5.4) the dispersion of K(q)
is very weak and concomitantly the K;(q) after correction
for the self-energy will be small. On the contrary, the
trigonal quadrupolar interactions K,(§) have an
‘“antiferroquadrupolar” character for the entire range of
electron concentrations.

A final remark concerns the systematic variation of the
indirect multipolar interactions across the rare-earth series.
While there are orbital contributions to the isotropic bilinear
exchange interactions,? our calculations show that the spin
contribution, i.e., the one that follows the de Gennes factor
(g/— 1) (J+1), dominates. Similarly, K,(q) and K,(T)
vary essentially as the square of the Stevens factor «;. This
observation allows us to extrapolate the quadrupolar param-
eters for DyZn from TmZn. For this compound, various
experiments give the values K;=20 mK and K,;=-90
mK.? By scaling these values to dysprosium by the ratio of
the af's we find K; (DyZn) ~8 mK and
K,(DyZn) ~ —36 mK. Although we calculate a slightly
negative K1(§) at §=0, it comes from the same type of
cancellation noted above for ®*(I'). Therefore, if we look
around the point I' we see from Fig. 3 that the calculated
values for K| (G~ 0) are comparable to albeit smaller than
the extrapolate value. For K,(I' ) we find —66 mK which is
in good agreement with the value quoted above.

In summary this ab initio calculation of the indirect bilin-
ear and quadrupolar pair interactions in DyZn yields a good
overall agreement with the experimental data available on
DyZn or isomorphous compounds. The dominant role
played by the matrix elements in Eq. (2) is obvious here
since they explain the differences between ©*(q), K(q),
and K,(q). Our results underscore the predominant effect
of the d electrons in the conduction band. In particular,
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FIG. 4. Dependence of K;(q) and K,(q) on the Fermi energy
for =T, X, M, and R, including self-energy. The vertical dotted
lines correspond to DyZn with N =S5 conduction electrons per unit
cell.
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their orbital character is the origin of the strong tetragonal
quadrupolar interactions observed in these rare-earth CsCl-
type intermetallic compounds. The dependence of the vari-
ous interactions on the electron concentration has been cal-
culated. For the bilinear coupling, it is in better agreement
with the magnetic structures observed in these compounds
than previous RKKY calculations based upon a free-electron
model. Finally, the quadrupolar parameters are predicted to
follow an o} law, favoring both extremities of the rare-earth

series, i.e., Ce, Pr, and Tm ions, which is what has been ob-
served experimentally.
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