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EFFECT OF ZERO-POINT FLUCTUATIONS ON THE LONG-. . .

above results mean that as we increase the charging energy,
i.e., when the grains decrease in size, the critical tempera-
ture decreases. At the same time, the phase coherent state
is rendered unstable at lower temperature due to the quan-
tum fluctuations of the phase that increase the vortex pairs
density. As x grows the intermediate temperature range in
which phase coherence is stable shrinks until it dissappears
completely and only the normal phase is stable at all tem-
peratures. Another consequence from Eq. (3) is that
the exponent rt remains universal at ExT(x ), i.e.,

1
v) [KxT(x ) ] = —,.

Before I discuss the possible consequences of these
results to experiments I will present the logic that leads to
Eq. (3).

The basic idea is to do an expansion in f around the clas-
sical KT solution. This procedure and, in fact, the general
form of the answer was first discussed by %igner in 1932."
Here I shall follow a more convenient route using
Feynman's path integrals. " The quantum partition function
related to Eq. (I) is Zg=Tre s . Here the trace is under-
stood in the usual quantum-mechanical sense. To calculate
Zo we first go to the imaginary time representation and
then in terms of sums over histories we have

]
Zg = d [P(r) ] exp —— I. (P)dr

& periodic g ~o

with

answer for Z~ to order t'.
Zg-= (4vrPu)

x Jtd [P] exp —XIt (1 —Kx) cos(P; —P,+, )

(7)

Here I have left out an irrelevant constant in the ex-
ponent. The partition function given in Eq. (7) is identical
in form to that of the planar model including the fact that
f & [ —m, n ] except that the coupling constant has been re-
normalized by the charging energy term in an important
way. It is now easy to find the corresponding RG recursion
formulas and then study their consquences. The resulting
equations are those given in Eq. (3) and their implications
were discussed above. These results have been obtained
from considering the lowest-order correction due to the
ZPF. The decrease of TxT(x) should remain valid after in-
cluding higher-order corrections in Z0. However, the reen-
trance phenomena could be an artifact of the lowest-order
correction. The next nontrivial correction is of order t .
The four-loop calculation of Z~ has essentially been done
by Wigner as well. "' In our case it gives

E x
Zg = (4nPu) '~

J d[g]e ~
—,OE4x Hj HJ—

r

d Pi( )r
2u dr i

(8)

where I used explicitly the fact that HJ is periodic. If we
were to add to the exponential the last term, the RG equa-
tion would be such that the reentrant temperature would be
lower and thus one would surmise that the higher-order
loops would kill the reentrance. However, the last two
terms are of the same order and they cannot be simply ad-
ded to the exponential. Because the reentrance occurs at
low temperatures and the averages in Eq. (8) are taken with
respect to the classical planar model, we can use known
spin-wave results to estimate ZQ" . From a straightforward
analysis I find that the spin-wave perturbation analysis
breaks down when Ex =1, signaling that an instability
seems to exist at low temperatures to this order as well, and
that Zg —+ (Ex) . The sign here is all important to
guarantee reentrance. Notice that Ex —u/ks T gives a
measure of the relevance of the charging energy with
respect to thermal fluctuations. This perturbative analysis
gives further credence to the fact that a reentrant transition
exists in this model within the semiclassical approximation
up to four loops. ' As Doniach has pointed out, at T=0
exactly, the model should behave more like a 3D x-y model
and it should present its critical properties. However, the
crossover from the quasi 2D model considered here to the
3D behavior cannot be ascertained by a semiclassical
analysis alone.

In the experiment by Hebard and Vanderberg it was
found that the decrease of TKT as a function of normal-
sheet resistance, was much faster than the prediction from
the classica14 KT theory analysis. Simanek has suggested
that the decrease should be due to charging energy effects. '

He studied the model given in Eq. (1) within a MF and a
self-consistent-harmonic approximation calculation that
shows that TKT does decrease as x increases. The decrease
was found to be exponential in x and apparently closer to

+ EJ (I —cos [p;+ t(r ) —g;(r ) ]]

The path integral is carried out over the classical fields

P,(r) C [ —n, w] that satisfy the quantum-mechanical
periodicity condition p;(r +Pf ) = p;(r ) and 0 ~ r ~ pk. It
is easy to see that the classical planar model limit is recov-
ered when u =0, and the extreme quantum limit corre-
sponds to u » 1. An appropriate way to evaluate Eq. (5)
is to use the variational principle calculation discussed by
Feynman. ' In the semiclassical or high-temperature limit
the 7 range is small. It is convenient to consider a Taylor
expansion around the average field

~pt

J y;(r)d~ .

This constraint is easily added to Eq. (5) by

Zg= . d[Q(r)] J dig]8[& —0]4 periodic

pPA'

x exp L ( if/ )d r
h

Next, the exponential can be expanded around p; giving as
a result

+ 0 (u')

in which primes mean derivatives with respect to the argu-
ment, and HJ is equal to 0 but with u =0. Because of the
periodicity property of HJ we can immediately write the final

2
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the experiment. The decrease found from Eq. (4) is, how-
ever, much slower. Hebard, ' on the other hand, noticed
that when the normal-sheet resistance is of the order of 10
to 30 kQ, the resistance measured in his films instead of
going to zero, flattened and possibly could increase at lower
temperatures. This reentrant-type behavior has been seen
by Kobayashi, Tada, and Sasaki, in granulated Sn films. '6

Both Hebar and Kobayashi et al. argued for a reentrant-type
explanation to understand their experimental results.
Simanek has noticed that because the resistance becomes
flat without reaching zero, a percolative model would be
more appropriate. " The generality of this suggestion has
been questioned, however, by Kobayashi et al. ' Here I
have found what seems to be evidence that the model given
by Eq. (1) has a reentrant transiton in the semiclassical lim-
it. The special nature of the RG flo~s in the figure could
conceivably accommodate the almost zero resistance state
corresponding to a flow line that tends to the y = 0 line but
does not quite reach it. Although a realistic model for
granular materials is hard to study, it seems that the qualita-
tive trends of the quantities measured experimentally seem

to follow the trends of the results found here.
In conclusion, I have studied for the first time the effect

of zero-point fluctuations in the KTB scenario within a sem-
iclassical approximation and RG analysis. The RG flows in-
dicate the existence of a reentrant transition as well as a de-
crease of TKT with x. Although a four-loop contribution
was analyzed at low temperatures, nonperturbative studies
are needed to ascertain conclusively the existence of the
reentrant transition in this model.

ACKNOWLEDGMENTS

I wish to thank L. Jacobs for many important discussions
related to this problem. Very useful conversations with W.
Mclean, Y. Imry, and B. Halperin are acknowledged. I
thank S. Doniach, A. Hebard, and E. Simanek for very use-
ful comments to a preliminary version of this work and for
timely reports of their work prior to publication. This work
has been partially supported by NSF Grant No. DMR-
8114848.

'B. Abeles, Phys. Rev. B 15, 2828 (1977); P. W. Anderson, in Lec-
tures on the Many Body Problem II, edited by E. R. Caianello
(Academic, New York 1964).

P. A. Bancel and K. E. Gray, Phys. Rev. Lett. 46, 148 (1981);
S. A. Wolf, D. U. Gubser, W. W. Fuller, J. C. Garland, and R. S.
Newrock, ibid. 47, 1071 {1981);A. F. Hebard, and J. M. Van-
denberg, ibid. 44, 50 (1980); A. F. Hebard and A. T. Fiory, ibid.

44, 291 (1980); 50, 1603 (1983); R. Voss and R. Webbs, Phys.
Rev. B 25, 3446 (1983).

3J. M. Kosterlitz and D. J. Thouless, J. Phys. C 6, 1181 (1983);
J. M. Kosterlitz, ibid. 7, 1046 (1974); V. L. Berezinskii, Zh. Eksp.
Teor. Fiz. 59, 907 (1970) [Sov. Phys. JETP 34, 610 (1971)];J. V.
Jose, L. P. Kadanoff, S. Kirkpatrick, and D. R. Nelson, Phys.
Rev. B 16, 1217 (1977).

4M. R. Beasley, J. E. Mooji, and T. D. Orlando, Phys. Rev. Lett.
42, 1165 (1979); B. I. Halperin and D. R. Nelson, J. Low. Temp.
Phys. 36, 599 (1979};S. Doniach and B. Huberman, Phys. Rev.
Lett. 42, 1169 (1979); L. A, Turkevich, J, Y. E. Lozovik, and
S. G. Akoyou, J. Phys. C 14 (1981).

5(a) E. Simanek, Solid State Commun. 31, 419 (1979); (b) Phys.
Rev. B 23, 5762 (1981).

K. B. Efetov, Zh. Eksp. Teor. Fiz. 78, 2017 (1979) [Sov. Phys.
JETP 51, 1015 (1980)); P. Faekas, Z. Phys. II 45, 215 (1982).

~S. Doniach, Phys. Rev. B 24, 5063 (1981); see also his review in
Percolation, Localization and Superconductivity, NATO Ad-
vanced Studies Insitute Series B, Physics, 1983 (unpublished).

sL. Jacobs, J. V. Jose, and M. Novotny (unpublished); J. V. Jose
(unpublished) .

Here I am only considering the diagonal charging energy term in

0, which is, in general, larger than the off-diagonal contribution.
I take the Josephson coupling constant EJ independent of tem-
perature which is a good approximation below TET. Ways of in-

corporating the T dependence have been discussed by C. J. Lobb,
D. W. Abraham, and M. Tinkham, Phys. Rev. 8 27, 150 (1983).

teY. Imry and M. Strongin, Phys. Rev. 8 24, 6353 (1981);
D. M. Wood and D. Stround ibid. 25, 1600 (1982).

~'E. Wigner, Phys. Rev. 40, 749 (1932).
~2R. P. Feynman, Statistical Mechanics (Benjamin, New York, 1972),

Chap. 3.
~3A reentrant transition has been found in MF calculations when

adding the off-diagonal term in the charging energy (Refs. 5 and
6). This type of reentrant transition is restrictive and fundamen-
tally of a different nature than the one described in this paper.

&4E. Simanek, Phys. Rev. Lett. 45, 1442 (1980).
~5A. F. Hebard, in lnhomogeneous Superconductors —1979, edited by

D. U. Gubser, T. L. Francavilla, S. A, Wolf, and J. R. Leibowitz,
AIP Conf. Proc. No. 58 (AIP, New York, 1979), p. 129.

~6S. Kobayashi, Y. Tada, and W. Sasaki, J. Phys. Soc. Jpn. 49, 2075
(1980); S. Maekawa, H. Fukuyama, and S. Kobayashi ISolid State
Commun. 37, 45 (1981)],have used a MF analysis equal to that
of Ref. 5(a) to explain the reentrance phenomena. However, as
mentioned in Ref. 5{b) a reentrant transition is not present in this

type of MF analysis (see Refs. 6, 7, and 10).
~7E. Simanek, Phys. Rev. B 25, 237 (1982).
~SS. Kobayashi, Y. Tada, and W. Sasaki, Physica 107B+C, 129

(1981).


