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The quantum Hamiltonian H = H + H;, with H; the Josephson and H the charging energy between
grains, is studied. Renormalization-group equations are derived within a semiclassical approximation that
show that there is a reentrant normal phase for nonzero H; phase coherence is stable in a region of tem-
perature that shrinks to zero as the quantum fluctuations grow, up to a critical value. The possible connec-

tion of these results to recent experiments is discussed.

Several years ago Abeles pointed out that the charging en-
ergy between grains could destroy the long-range phase
coherence in granular materials.! Recently, several experi-
ments have been carried out in granular films,? with the aim
at testing the vortex-unbinding picture of Kosterlitz, Thou-
less, and Berezinskii (KTB)? to explain their resistive transi-
tion.* Recently different authors have incorporated the
charging energy fluctuations into the KTB picture, most of
them within a mean-field (MF) or a self-consistent-
harmonic approximation.>® Doniach, on the other hand,
has estimated the effect of quantum fluctuations on the re-
normalized superfluid density by using a three-dimensional
(3D) scaling argument.” It is known, however, that the de-
tailed properties of the KTB transition itself cannot be
predicted from a standard MF approach. In this Rapid
Communication I present the results of a renormalization-
group (RG) analysis of the effects of zero-point fluctuations
(ZPF) on the KTB scenario, within a semiclassical approxi-
mation, i.e., in terms of an expansion in #. I shall begin
presenting the main results of this paper, then giving the
highlights of the calculation, and at the end I will compare
the results, where appropriate, with those of other authors
as well as their possible connection to recent experimental
results. Other results pertaining to this problem will be
given elsewhere.®

A regular array of grains can be described by the Hamil-
tonian®-’

H=% S+ S E;[1—cos(i41—y)] . 6))
i

The first term corresponds to the charging energy, whereas
the second to the Josephson energy between grains. Here
y; is the phase difference of the superconducting order
parameter between grains and #; is the electron number
operator that measures the deviation from the average
number of electrons in the ith grain. The operators ¢; and
n; are conjugate canonical variables,! i.e., n;=—id/9y;; E;
is the Josephson coupling constant and u =e?/2C, with C
the average local capacitance between a pair of grains and e
the electric charge.’ The limit ¥ = 0 corresponds to the clas-
sical KTB problem, whereas for » # 0 the quantum effects
become relevant. To find the leading corrections to the
classical limit I shall consider an expansion for u small. For
u large the grains are small and localization effects become
dominant.!0

The results of this paper can be expressed in terms of the
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- natural dimensionless parameter appearing in the theory

x=uf24E,; . 2
The RG recursion formulas read
id’l(—=4n31<2)72(1—1<x)/(21<x—1) , (3a)

%=[2—wK(l-—Kx)]ji , (3b)
where § —expl — (#¥2)K (1—Kx)] and K = E;/kgT, with
ks representing Boltzmann’s constant and 7T the tempera-
ture. These equations are valid for yj small and reduce, as
they should, to the Kosterlitz RG equations for x =0.> The
RG flow diagram resulting from Eq. (3) has two hyperbolic
points (5 =0) at K,(x) and Kx7(x) and an elliptic point at
Ki(x). Also the line K ~!=x represents an asymtote below
of which the flow is unstable (see Fig. 1). From the solu-
tion to Eq. (3) I find that

Kt =2x/(1—v1-8x/w) . )

The elliptic point is given by K;=1/2x and K,(x) by the
same formula as Eq. (4) except that the sign before the rad-
ical is plus instead of minus. As x grows from zero the
three especial points K, K, and Kt approach each other
until, at the critical value, x.=m/8, they coalesce into one.
Above x, all the RG flow lines are unstable. Physically the
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FIG. 1. Qualitative renormalization-group flow diagram resulting
from Eq. (3). The quantities marked in the axis are defined in the
text.

2836 ©1984 The American Physical Society



29 EFFECT OF ZERO-POINT FLUCTUATIONS ON THE LONG- . .. 2837

above results mean that as we increase the charging energy,
i.e., when the grains decrease in size, the critical tempera-
ture decreases. At the same time, the phase coherent state
is rendered unstable at lower temperature due to the quan-
tum fluctuations of the phase that increase the vortex pairs
density. As x grows the intermediate temperature range in
which phase coherence is stable shrinks until it dissappears
completely and only the normal phase is stable at all tem-
peratures. Another consequence from Eq. (3) is that
the exponent % remains universal at Kgr(x), i.e.,
nlKxr(x)]= 7.

Before 1 discuss the possible consequences of these
results to experiments I will present the logic that leads to
Eq. (3).

The basic idea is to do an expansion in # around the clas-
sical KT solution. This procedure and, in fact, the general
form of the answer was first discussed by Wigner in 1932.1!
Here 1 shall follow a more convenient route using
Feynman’s path integrals.!? The quantum partition function
related to Eq. (1) is Zo="Tre “#4. Here the trace is under-
stood in the usual quantum-mechanical sense. To calculate
Zy we first go to the imaginary time representation and
then in terms of sums over histories we have

BK
Zg=fperiodicd[¢(-r)]exp[—%fo L(p)dr| , 6)
with
i [dw(n) |
L= ,2{3; Tar

+ E4{1 —COS[lII1+1(T)—lIJi(T)]]] .

The path integral is carried out over the classical fields
g,(r) €[—m,w] that satisfy the quantum-mechanical
periodicity condition ¢;(7+ k) =y,;(7) and O0<7<gr. It
is easy to see that the classical planar model limit is recov-
ered when 4 =0, and the extreme quantum limit corre-
sponds to ¥ >> 1. An appropriate way to evaluate Eq. (5)
is to use the variational principle calculation discussed by
Feynman.!? In the semiclassical or high-temperature limit
the 7 range is small. It is convenient to consider a Taylor
expansion around the average field

- 1 sx
wl=ﬁ—ﬁ-.‘:} lIJI(T)dT .
This constraint is easily added to Eq. (5) by

Zo= dly(0)1 [atg1sly— 31

periodic

8
xexp[——% fo L)dr

Next, the exponential can be expanded around ; giving as
a result

— 2 —
Zo= (4mBu) =12 fdw]exp[—BHJ[zp]—%ij'[tp]]

+0u?) ,

in which primes mean derivatives with respect to the argu-
ment, and H; is equal to H but with ¥ =0. Because of the
periodicity property of H; we can immediately write the final

answer for Z, to order & %
Zo= (4mwBu)~1?

x fd[_xﬁ]exp[— 2K(1—Kx)cos($,—$,+1) .

)

Here I have left out an irrelevant constant in the ex-
ponent. The partition function given in Eq. (7) is identical
in form to that of the planar model including the fact that
W € [—m, w] except that the coupling constant has been re-
normalized by the charging energy term in an important
way. It is now easy to find the corresponding RG recursion
formulas and then study their consquences. The resulting
equations are those given in Eq. (3) and their implications
were discussed above. These results have been obtained
from considering the lowest-order correction due to the
ZPF. The decrease of Txy(x) should remain valid after in-
cluding higher-order corrections in Zy. However, the reen-
trance phenomena could be an artifact of the lowest-order
correction. The next nontrivial correction is of order #*.
The four-loop calculation of Z, has essentially been done
by Wigner as well.!'!2 In our case it gives

—. - 3.2
ZQ(4)=(4”Bu)—1/2fd[w]e BH"[‘%K"szf— sz Hj ,

(®)

where I used explicitly the fact that H; is periodic. If we
were to add to the exponential the last term, the RG equa-
tion would be such that the reentrant temperature would be
lower and thus one would surmise that the higher-order
loops would kill the reentrance. However, the last two
terms are of the same order and they cannot be simply ad-
ded to the exponential. Because the reentrance occurs at
low temperatures and the averages in Eq. (8) are taken with
respect to the classical planar model, we can use known
spin-wave results to estimate ZQ(‘”. From a straightforward
analysis I find that the spin-wave perturbation analysis
breaks down when Kx =1, signaling that an instability
seems to exist at low temperatures to this order as well, and
that ZQ(‘”-v + (Kx)2 The sign here is all important to
guarantee reentrance. Notice that Kx ~—u/kzT gives a
measure of the relevance of the charging energy with
respect to thermal fluctuations. This perturbative analysis
gives further credence to the fact that a reentrant transition
exists in this model within the semiclassical approximation
up to four loops.!> As Doniach has pointed out, at 7=0
exactly, the model should behave more like a 3D x-y model
and it should present its critical properties. However, the
crossover from the quasi 2D model considered here to the
3D behavior cannot be ascertained by a semiclassical
analysis alone.

In the experiment by Hebard and Vanderberg? it was
found that the decrease of Tkt as a function of normal-
sheet resistance, was much faster than the prediction from
the classical* KT theory analysis. Simanek has suggested
that the decrease should be due to charging energy effects.!*
He studied the model given in Eq. (1) within a MF and a
self-consistent-harmonic approximation calculation that
shows that Tkt does decrease as x increases. The decrease
was found to be exponential in x and apparently closer to
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the experiment. The decrease found from Eq. (4) is, how-
ever, much slower. Hebard,'* on the other hand, noticed
that when the normal-sheet resistance is of the order of 10
to 30 kQ, the resistance measured in his films instead of
going to zero, flattened and possibly could increase at lower
temperatures. This reentrant-type behavior has been seen
by Kobayashi, Tada, and Sasaki, in granulated Sn films.!6
Both Hebar and Kobayashi et al. argued for a reentrant-type
explanation to wunderstand their experimental results.
Simanek has noticed that because the resistance becomes
flat without reaching zero, a percolative model would be
more appropriate.!” The generality of this suggestion has
been questioned, however, by Kobayashi et al'®* Here I
have found what seems to be evidence that the model given
by Eq. (1) has a reentrant transiton in the semiclassical lim-
it. The special nature of the RG flows in the figure could
conceivably accommodate the almost zero resistance state
corresponding to a flow line that tends to the j =0 line but
does not quite reach it. Although a realistic model for
granular materials is hard to study, it seems that the qualita-
tive trends of the quantities measured experimentally seem

to follow the trends of the results found here.

In conclusion, I have studied for the first time the effect
of zero-point fluctuations in the KTB scenario within a sem-
iclassical approximation and RG analysis. The RG flows in-
dicate the existence of a reentrant transition as well as a de-
crease of Txr with x. Although a four-loop contribution
was analyzed at low temperatures, nonperturbative studies
are needed to ascertain conclusively the existence of the
reentrant transition in this model.
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