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Mechanical detectors of second sound
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The detection sensitivity of porous microphones is investigated theoretically. The superfluid enhance-
ment of the membrane's spring constant is found to be the effect that limits the sensitivity. Ways to
minimize or circumvent it are proposed and compared with each other. Under favorable circumstances, an

increase in the signal by three orders of magnitude is possible.

Second sound exists in superfluids as a direct conse-
quence of the spontaneously broken gauge symmetry. It
takes the form of a propagating temeprature wave' in 4He

II, of a concentration wave in 'He- He mixtures in the mK
regime, and of a spin wave' in 'He-A~. It can be detected
by either measuring the respective propagating density, us-
ing for instance a thermometer in the first and a pickup coil4
in the last case, or more universally, by measuring the fluc-
tuating counterflow velocity which is always present in
second sound. Two appropriate mechanical devices have
been designed to date, the widely employed oscillating su-
perleak transducer5 (OST), which is a microphone with a
porous diaphragm, and the Peshkov transducer6 (PT),
which is an ordinary microphone with a massive diaphragm,
but positioned behind a rigid superleak. The latter seems
out of fashion nowadays, but nevertheless provides a useful
alternative both as a generator7 and as a detector. The
detecting sensitivity of the OST has been studied recently by
Saslow, ' with special attention paid to the membrane's mass
enhanced by the motion of the superfluid. Because detec-
tors usually work far below their resonance frequency, it is
really the superfluid enhancement of the membrane's stiff-
ness constant (and, if it is lacking, that of the damping con-
stant) which determines the detector's response. In this
work, these effects are calculated both for the OST and PT,
and ways to maximize their sensitivity discussed. In addi-
tion, the possibility of detecting second sound in the A and
8 phases of superfluid 'He is investigated.

Throughout this paper, the propagating density has been
indentified with So/o. , where o. denotes entropy per mass.
This is correct for He II, and 'He-A and -8 at low fields. '
The formulas, however, can be easily rendered more gen-
erally valid. As was shown in Ref. 10, substituting Sx~ for
So./o. yields the corresponding equations for the 3He-Ai
phase. Similarly, So-/a becomes

(X, 'SC/C+X 'Sa/a+X& '5(/g)/(X, '+X. '+X& ')

in the 'He-~He mixture, where c and ( denote the concen-
tration and the relative magnetization (polarization), respec-
tively. The three susceptibilities are X„'=K'5'e/Sir', where
n is the energy per mass and rr stands for c, o., and (. The
second-sound velocity assumes the appropriate expression
for the system under consideration. It is, e.g. , c$ = p,/X p„
in ~He II and 'He-B, and c2 =p, (X, '+X '+X~ ')/p, in
the mixture. At low temperatures and small magnetic
fields, the latter reduces to c2 = p, /X, p„.

We start by examining the response of the OST in its
detecting mode. The force A(/t P —SP) on the membrane,
exerted by the incoming wave, is given by its area 3 and the

where vo and ~0, respectively, denote the barycentric ve-
locity (p, v, +p„v„)/p and the counterflow velocity
p, (v„—u, )/p, both at the membrane. If the volume Vof
the internal cavity does not display one-dimensional
geometry, the distance L between the backplate and the
membrane has to be generalized to V/A. The first of Eqs.
(I) can be proven by integrating the continuity equation
a/a+0 v7 =0. over the volume V, yielding

„(o./o. ) dV= —() w d s

With q2 being much larger than any logitudinal dimension
of the internal cavity, 0- and o- are spatially uniform quanti-
ties; in addition, we have ~=~0 at the membrane and
~ =0 elsewhere at the surface of the volume V. Therefore

iQJ(ka/0 ) V = wpA, or the first of Eqs. (I). The
second equation can be similarly derived by starting from
p/p+ 9 ~ v =0.

(iii) The hydrodynamic variables right outside the mem-
brane are as given by

Sa/a = ( wp —2w;„)/c2, Sp/p = (vp —2v;„)/ci (2)

The subscript "in" refers to the incoming waves, and "re"
below refers to the reflected ones. With Sx=hx;„+5x„,
where x stands for p, o-, e, and v, and with the eigenvec-
tors of first and second sound being Sp;„/p = —u;„/ci,
Spre/p = ure/ci~ and Sain/a = win/C2r Sare/rT = wre/c2r

respectively, Eqs. (2) are easily derived.
The evaluated pressure difference is

A (AP —SP) =q( —SL/L +2w;„/c2+2v;„/ci), (3)

where q=Ap/(ci '+p, c2 '/p„). For small enough dis-
placernents, the dynamics of the oscillating porous mem-
brane is described by a pendulum equation,

ML +yL +KSL =f
for which Eq. (3) yields the force f and the effective spring

difference between the pressure on its internal side (facing
the back plate) /rrP and the external side (facing the incom-
ing wave) SP. The pressure difference is to be evaluated
under three conditions:

(i) The chemical potential is equal'p" on both sides of
the membrane, or Ap, =by, .

(ii) The hydrodynamic variables of the internal cavity are
as given by

b a/o. = wp/icuL, Ap/p = up/i ppL
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SL/L = 2( w;„/c2+ u;„/cl) (1 +Eo/&E) (6)

It is maximal for maximal AE and hence minimal L Equa-
tion (6) changes the "reciprocity relation" of Saslow8 to
wju;„=cI/cl. The liquid's correction to the stiffness con-
stant, hE, varies over a wide range of values. %ith the
upper limit of A = 10 cm2 and the lower limit of L = Sp, , it
goes up to DE =10'0, 4X 10', and 10' dyn/cm for 4He II

d 3Hc-A1, 3HC-4HC mixture at low temperatures, and
3Hc-2 and -8 phases, respectively. The vacuum stiffness
constant Eo is typically 107 dyn/cm for thc usual way of
mounting. 5 If measures are taken to avoid tightness at
room temperatures, one should be able to reduce Eo signifi-
cantly, though probably not much below 104 dyn/cm, where
thc sBgglng dUc to gIBV1tatlon 1s of thc order of 8 mlcroIne-
ter. Nevertheless, Ep/AK &( 1 can be achieved for any of
thc above systems, yielding an optimized signal strength of
second sound,

SL/L =2w;„/cI

charactc11st1c of nearly rig1d wall rcflcct1on, whcI'c thc in-
coming fountain pressure —So/a =—2w;„/c2 is compensated
by the internal pressure —her/a = —SL/L.

If one increases L by moving the backplate, and inserts a
wire net between the backplate and the diaphragm at the
distance d from the latter, to serve as the second electrode,
the signal strength, now SL/d, is amplified by a factor L/d.
Maximal signal strength is achieved for maximal L (which
of course is still subject to the constraint q2L (&1). For
4He at m=102 sec ', one can take J =1 cm and d=5 p,m,
yielding an amplification of 2 &103. The transparency of the
meshed electrode must be such that v„can flow freely;
hence, thc linear dimensions of the holes must be larger
than the viscous penetration depth.

constant E =Eo+AE, with Lo being the vacuum one:

f=2g( w;„/cl + v;„/cl), AE = ri/L

This is a plausible result. Following Sherlock and Edwards, 5

one can obtain its low-temperature limit by resorting to the
phonon gas model: For a massive microphone detecting
first sound, the corresponding formula is bE =A pc12/L In
Hc, second sound can bc 1ntcrpI'ctcd as f11'st soUnd 1n the

phonon gas, of density p„', hence one may take hE
=A p„c2 /L, II1 good agl'cclllcnt wl'tll tllc allovc cquatloll fof
Ps P

The enhancement of the mass M is discussed in detail by
Saslows and need not be repeated here. It modifies the
working range of the detector, oI &( E/M, and can be ef-
fectively limited by employing a more porous membrane.
Note that the diffusive currents across the pores that have
such devastating effects in the generating mode and severe-
ly restrict the porocity there' are quite harmless here. For
instance, the difference in the fountain pressure on both
sides of the membrane is identically zero in the limit of van-
ishing Ep and at most (pp„/p, )cjSo/Ir for infinite Ep.
This is smaller by a factor q2J.G than the pressure difference
at the generator G. Because the OST has an enhanced stiff-
ness constant, the effect of damping, y =yo+4y, with 8
usually small' intrinsic yo and the tiny enhancement of or-
der hy = 0((q2L)', (qlL)I) will be negligible. In addition,
depending on the experimental situation, there will be elec-
tromagnetic corrections to the enhancement of M, y, and
E, not considered here. So we may take thc signal, SL/L
for the working range Ip' « K/M, as

Another variant of the OST is given by moving the back-
plate still further away, to the limit qqL ))1. (Thc inter-
mediate range, Lq2=1, leads to undesirable resonances. )
The mesh is left where it is. If Eo is sufficiently small, the
membrane can freely folio~ the counterflow velocity,
behaving essentially Bs a free surface, not reflecting any por-
tion of the incoming wave. This yields the biggest possible
signal. The pressure difference has to be reevaluated for
this case. The conditions (i) and (iii) remain unchanged,
while Eqs. (1) of (ii) become

Air/o= —. wo/c2, Ap/p = —I p/cl

for L,q2, Lql &&1. If instead q2
' && J && ql

' is satis-
flcd, t11c sccolld of Eqs. (g) rcIIlallls ~p/p = &o/I p)L. Thc
resulting expression is

2 (hP —SP) = Ay( w;„+xv;„—vM)

where Ay = 2A p(cl ' + p, c2 '/p„) ', x = 1 for the first and
hy =2p„cI/p„x = —iqIL for thc second case. With
vM= J., this expression yields an enhancement, Ay, of the
damping rather than the stiffness coefficient, cf. Eq. (4).
Detecting second sound, the signal is

SL/d = ( w;„/d) (Ko/ay —i~) -'

Fo1 Eo 44 mAy, wc have vM = tv;„, and thc ampliflcat1on, Bs
compared to Eq. (7), is (2q2d) '. This is larger still than
in the previous case, where we had L/d with q1L &(1.
The price to be paid here is thc ~aves reflected from thc
backplate. Onc can, however, partly fill the space behind the
membrane with sinter, and connect it to the cooling source.
If the heat exchange can be made fast enough, such that the
temperature of the liquid in this cavity is approximately con-
stant, we can take ha. /o-=0 instead of the first of Eq. (8).
Then Eqs. (9) and (10) (for the second case) are correct
even for q2J. &(1, and there will be no reflections.

In He II, taking E0=10 dyn/cm and so=10 sec ', we
have 500Kp & Iuh7, and the amplification (2q2d )=—104/5 is large. Note, however, that the value of qI

" =2
cm must be much smaller than L, if the rate of heat ex-
change cannot be sufficiently increased. In the A and 8
phases of superfluid 3HC, circumstances are not as favor-
able. Because of the tiny second-sound velocity, one is con-
fined to very low frequencies to minimize damping. IQ this
limit, Eo usually dominates whatever superfluid enhance-
ment there is. Taking E0=104 dyn/cm and ~=20 sec
we have

SL/d =(Agcy/Epd)(wi„/cI)

yielding a tenfold amplification over Eq. (7).
Depending on the system and the temperature range, thc

PT can provide a useful alternative. In addition, the fact
that onc is employing a massive membrane here means
thc1c 1s 8 wldcl cholcc of material with poss1bly morc com-
pliant ones among them. Instead of the pressure difference,
one now has to calculate hP, the pressure change in the
cavity enclosed by the rigid supcrleak and the membrane. It
alone drives the membrane. (Assuming there is no liquid
or vapor behind the membrane, I have taken the pressure
thcrc to bc constant. Its var1atlon 1s of course caslly includ-
ed if the assumption is incorrect. ) The pressure hP has to
be evaluated, again under condition (i) and (iii), where Up

and eo now denote the respective velocities at the super-
leak, with vo+~o=0. In addition, wc have'3 instead of
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condltlon (ii), of Eqs. (1),

~cr/o = wo/iL /J p/p = (vo —PvM)/icoL {i2)

2 (v;„/ci (—wi, /c2) /d P
dP (1 —L v) Ko/rtP v/g— (14)

where v=iq2(+iqi for the first, and v=iqi for the second
case. The signal strengths, Eqs. (13) and (14), are compar-
able to that of the OST. But for special parameter ranges,
an additional amplification of the order of p ' may be
achieved.

Now we turn to thc problem of estimating the possibility
of detecting second sound in 'He-A or -8. First we need to
reinvestigate the generation of second sound and shall, in
the following, examine the case where the chamber in
which the wave propagates is of length D, with

ql
' »D » q2 '. In contrast, the geometry assumed pre-

viously was D »ql &&q2 . The reason for this
modification lies in the strong damping of second sound,
which restricts the distance that a temperature pulse can
propagate to a length a fcw times larger than the second-
sound wavelength, i.e., D & q2 '. (With the strong damp-
ing, however, the system displays the same behavior as in
thc limit D && q2 . This condltlon thclcfol'c nccd Qot bc
changed. ) The dimension of D and the vast difference

for L = p/AsL &(qi, q2 ', AsL and AM afe the areas of
the superleak and the membrane, respectively, while

p AM/ASL, Taking 'ri pASLp„c2/ps& ( pqc2/pscfi arid d
as thc distance between thc membrane and the other elec-
trode plate, the signal, now proportional to S V/dA M
= SL/dP is given by

2L ( v;„/cia —w;, /c2) /dP
d p 1 +KoL/rip —iqiL/f

If the PT is bigger, such that q2
' && I && ql ', we have

to substitute ho./o = —wo/c2 for the first of Eqs. (12). Or
if thc cavity is partly filled with sinter, as discussed for the
OST, the constraint becomes 4tr/o =0. Then we have

between q2 and ql necessarily implies D && ql '. In other
words, instead of a propagating first-sound pulse, there is
instantaneous relaxation of the density fluctuation within
D. Wc therefore nccd to calculate thc dl'lvlng efficiency
under the altered condition: With b, p, = Sp„Eqs. (1),
and Sa/o. = wo/c2 and Sp/p = —vo/i toD we obtain
vo/wo=p„cj/p cj, valid also for the strictly semi-infinite
geometry, but the ratio

(Sp!p)/(Sir/tr) = (p„c2/p, ci') i/q2D

(with q2D or order unity) is now much larger than in the
previous case." Nevertheless, the formula for the second-
sound driving efficiency' Sa./tr = vM/c2 remains, especially
in the two superfluid phases of 'He under consideration, an
extremely good approximation. This has two consequences:
First, the discussion of the nuisance effects in Rcf. 5
remains valid. Second, with Eq. (11) in mind, we find that
an optimally designed DST would, in the absence of sound
damping, have its membrane displaced by SI.D
= SLG( —i to/J7r/Ko), where D and G refer to detector and
generator, respectively. The reduction factor is 30 for
Lo = 10 dyn/clYl, (0 =20 scc . And thc rcmalnlng ques-
tion is how strong a signal can be generated: The superfluid
velocity in the pores of thc generator's membrane has to be
subcI'itlcal, v, 4 v, . IQ addition, wc have thc contlnulty
equation of the superfluid in the vicinity of the membrane
of porocity o;, v, —vM ——a(vr —vM). Together, these lead to
thc final formula fol thc signal stI'cngth

SL /d & v, (p/p, ~ 1) -'(~y-/K, d) e «,-(iS)
where g describes the bulk damping in between, 4

g =1 cm
for 3 Hz, and q2

' =0.5 cm. Although with p, p, n~ 1

the signal could in theory be made arbitrarily strong, the
value of o. is restricted by nuisance effects, especially ther-
mal diffusion across the pores, in. complete analogy to thc
discussion about the Al phase in Ref. 10.

Helpful discussions with R. Muller are gratefully ac-
knowledged.

ii. M. Khalatnikov, An Introduction to the Theory of Superfiuidity

(Benjamin, New York, 1965).
2E. P. Bashkin and A. E. Meyerovich, Adv. Phys. 30, 1 (1981}.
3M. Liu, Phys. Rev. Lett. 43, 1740 {1979};Physica 1094110B+C,

1615 (1982).
4L. R. Corruccini and D. D. Osheroff, Phys. Rev. Lett. 45, 2029

{1980}.
5R. A. Sherlock and D. O. Edwards, Rev. Sci. Instrum, 41, 1603

(1970}.
6V. P. Peshkov, Zh. Eksp. Teor. Fiz. 18, 867 (1948).

7M. R. Stern and M. Liu, Phys. Rev. B 28, 415 (1983}.
sW. M. Saslow, Phys. Rev. B 27, 588 (1983).
9P. Wolfle, Phys. Rev. Lett. 31, 1437 (1973); R. Graham, ibid 33, .

1431 (1974};R. Graham and H. Plriner, J. Phys. C 9, 279 {1976).
'oM. Liu and M. R. Stern, Phys. Rev. Lett. 48, 1842 (1982).
"D. L. Johnson, Phys. Rev. Lett. 49, 1361 (1982).
i2M. Liu and M. R. Stern, Phys. Rev. Lett. 49, 1362 (1982}.
13For derivation see Eqs. (13) of Ref. 7. The sign mistakes have

been corrected.


