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Alloy-analogy approximation of the degenerate Hubbard model
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In a recent paper [J. van der Rest and F. Brouers, Phys. Rev. B 24, 450 (1983)] it has been claimed that

the ground state of the doubly degenerate Hubbard model is always paramagnetic in the alloy-analogy ap-

proximation. Here we show that this conclusion was based on an incorrect expression of the spin suscepti-

bility. We give the correct method for calculating the spin susceptibility in the alloy-analogy approximation.

In some limiting cases we calculate this susceptibility and show that a ferromagnetic instability can occur.
Finally we make some general comments on the applicability and the limitations of the alloy-analogy ap-

proximation.

I. INTRODUCTION

Recently van der Rest and Brouers' calculated the spin
susceptibility of the doubly degenerate Hubbard model in

the alloy-analogy approximation. In order to obtain the ex-
pression for the susceptibility they used a method intro-
duced by Brouers and Ducastelle' for the simple Hubbard
model. This calculation does not give any ferromagnetic
instability: This result contradicts the results obtained in a
preceding paper by Lacroix Lyon-Caen and Cyrot, ' who
found that the ground state is ferromagnetic for all values
of the band filling between 1 and 2 electrons per atom, in

the limit of infinite Coulomb interactions. This result was

in agreement with the exact results obtained by the same
authors. 4

But as was pointed out by van der Rest and Brouers, '

there is not a unique definition of the energy in the alloy-

analogy approximation of the Hubbard model. To avoid
this problem we present in this paper a calculation of the
spin susceptibility which is exact within the alloy analogy.
Thus the results presented in this paper are exact results for
the degenerate Hubbard model in the alloy analogy.

In Sec. II we show that the spin susceptibility calculated in
Ref. I (see also Ref. 5) was not correct and we give the
correct method for calculating the susceptibility. In Sec. III
we show that in the limit of infinite Coulomb interaction a
ferromagnetic instability can be obtained. In Sec. IV we

give some further results in other limiting cases where it is

possible to directly calculate the susceptibility. Finally in

Sec. V we give some general conclusions on the alloy-

analogy approximation.
First we give some definitions and notations which will be

used in the following: The doubly degenerate Hubbard
model can be written as

H=Hp+Ht= Utgnt~tn;~t +U2xn tnt' 2+in ntt12t
/, m

+(U2 —J) Xn;t ng~+ XtsC; C;
le

m, o.

where m =1,2 for the two orbital states. Ho is the atomic
part of Hand H~ describes the conduction band.

In the alloy analogy the motion of the (m, a) electrons is

described by the Hamiltonian

H..= gt„c...+ gF.; n... ,

where the energy E™~depends on the configuration of site
i. There are eight possible values of E;, and the correspond-
ing p'robabilities P; depend on the electron numbers
(n ) and on the different correlation functions

(n n ), etc. The expressions of EI and P; can be found

in Ref. 3 where self-consistent calculation of the correlation
functions is also explained. The main approximation is that
the motion of the (m, o.) electrons is studied by supposing
that the other (I', o.') electrons are fixed on some given
sites which are randomly distributed; thus dynamical corre-
lations are not well described in this approximation.

II. SPIN SUSCEPTIBILITY IN THE
ALLOY-ANALOGY APPROXIMATION

with

en] t en2t en] tQ~= 02=
'Bn] ) en2 ) en2 t

(4)

However, (ntl) depends not only on the other (n ) but

also on the other correlation functions such as (nt tn2t),
etc. Thus, in (4) other terms must be added of the type

8(ntl) d(nt tn t)2
8 ( n nt2 tI ) dh

etc. Then similar expressions can be obtained for
d(nt I n2t)/dh and there are three independent "susceptibil-

In this section we show how to obtain the exact expres-
sion for the spin susceptibility. Our result differs from the
expression given by van der Rest and Brouers in Ref. 1 be-
cause some terms were neglected in Ref. 1.

In Refs. 1 and 2 the following formula has been used for
the calculation of the susceptibility:

d(nt I) 8(nt I) d(nt I) d(n2I ) d(n21)
dh Bh dh dh dh
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ities": B. 1&n&2

((nl f ) + (n2f ) (nit) (n2t) )d
dh

Y= ((nit n2f ) —(nl f n2 f ) )= d
dh

d ( (nl f nl I n2 f ) + (nl f n2 f n2 f ) (nl f nl f n2j )
dh

(Ill f n2f nit ) )

(The other derivatives vanish in zero field as, for example,
(n 1 f n 1 f ) must vary as h for small fields. )

We have not calculated X, Y, and Z in the general case
because the general expression is rather complicated, but
simply in some limiting cases where the calculation can be
done very easily, starting directly from the self-consistency
equations for (n ) (n n, ,), etc. Thus in this way we

can be sure that all terms are taken into account.
In Secs. III and IV a semielliptic density of states is con-

sidered, as in Refs. 1 and 3, in order to obtain analytical ex-
pressions.

In this case, only the correlation functions (nl n2 ) must
be considered because the doubly occupied sites must be in
the lower-energy state. Thus there are two susceptibilities
to calculate: X and Y [Eq. (5)]. The self-consistency equa-
tions for this case can be written as

r EF
(n )= X P" J p" (o)) dol,

Z-1, 2

r EF "F
2(nl n2 )

2
Pl pl () d+P2 g p2 () d01

(7)

(8)

where

Plf I (nil) (n2f) (n2f +(nltn2f)

Pl'f =(n2f)
p' and p' are the density of states of the lowest two sub-
bands in the presence of an applied field h:

III. SUSCEPTIBILITY IN THE CASE
U1, U2, AND U2 —J

A. n(1

If n ( I only the lower subband (fl. = 1) is filled and the
susceptibility can be obtained easily:

p(EF)
1 —b

(6)

where

1 EF n-
b = —arcsin +-

W'(1 —3n/4) '

The susceptibility remains finite for all values of n as in the
nondegenerate case.

In this case, the eight subbands corresponding to the eight
values of the energy level E; are well separated and the den-
sity of states in each subband is semielliptic and contains p&
states A. = 1, . . . , 8) (Ref. 3).

p" ( )=,[P W (z —E +—o.h) ]'

Differentiating directly Eqs. (7) and (8) with respect to h

gives, in principle, the susceptibilities X and Y. However,
the two Eqs. (7) and (8) lead exactly to the same equation
relating Land Y:

EF —U2+ J
arcsin +-

2m Wn4
' 1f2

+——W —(EF—U2+ J)4 n 2

4

Thus we cannot calculate the susceptibility using this
method. This result can be related to the fact that Eqs. (7)
and (8) are equivalent, i.e., there is a solution for each
value of the magnetization M

In order to obtain another relation between Sand Ywe
have considered the case of finite J (Ul U2~ co) and we
have performed a development in powers of 1/J. Up to
second order in 1/J the Green's function in the X=2 sub-
band is given by

G (01 + U2 —J) = co + o.h ——— o) + o h +——P2 W2 Cl o. 2

8'2 4 4

1/2

1

I z+ h2(o)+o.h) + [(co+o.h) —P2 W ]'i +
z +ah —P2

where

I' P
J Ul —U2+ J X=

EF —U2+ J (12)

tinct relations and it is possible to calculate the susceptibili-
ty. For infinite Jwe obtain the simple result

J2 ( Ul —U2 +J)2

The differentiation of Eqs. (7) and (8) now gives two dis-

Thus, the susceptibility is negative for EF ( U2 —J, i.e.,
1 ( n ( —, and positive for 3 ( n (2 [Eq. (7) shows that

EF= U2 —Jif n = —,].
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The same expression can be obtained if we make the fol-
lowing assumption, which seems physically reasonable, on
the number of sites with up and down spin, respectively.
%e call x the fraction of sites with cr spin electrons and we
suppose that x is proportional to the total number of o-

spin electrons: x = (nt +nq )/n. The fraction of sites oc-
cupied by two a. spin electrons is xq = (n~ nq~) and the
fraction of sites occupied by one a- spin electron is then
x~ =x —xq . The total number of cr spin electrons is
n~ +nq =x~ +2x~ . Differentiating this equation gives
another relation between Xand Y:

the susceptibility:

x= p(z, ) 2+n
4( n —1) —b (7n —10)

where

1 . 2(Ep U—)
b = —arcsin +

7r 44 —n W 2

X ' do not vanish for 1 & n &2: If J=O there is no fer-
romagnetic instability.

Y= X(n —1)/n (13)

Inserting Eq. (13) in Eq. (10) gives the same expression for
X [Eq. (12)]. In fact, this result was not obvious since the
above expression for x is not trivial, but the physical
meaning is clear: The fraction of doubly occupied sites is
the same in the up-spin and down-spin regions (at least to
first order in h), xpt/x f xpt/xt.

Mizia7 calculated the susceptibility in the same limiting
case, and found that X ' =0 for 1 & n & 2. But his starting
formula is not correct as he also neglected some terms of
the type B(n )/8(n n ).

Thus we have shown that the susceptibility may be nega-
tive. Our calculation has been done directly from the self-
consistency equations instead of starting from a more gen-
eral formula as in Refs. 1 and 7. The direct calculation is
difficult to do in the general case but our result can be used
to test the various expressions which have been proposed.

B. Ug- J-O, U) and Up

p (o)) = ——ImG (o))

we can write easily the self-consistency equations:

PEF
(n .) =„p (~) d~,

p a REFE =- '
p ((o)do) .

(20)

(21)

In this case, the two subbands A, =1 and 2 are at the same
energy. As Ut and Uq are infinite, (n tn ) =0. Them m

Green's function in the lower subband is given by

po' +pcT
=1

1+X G

and the density of states in this subband is

IV. GROUND STATE IN OTHER
LIMITING CASES

A. J=0, Ug Up

Equation (21) gives

(n )'
1 —2n +E (22)

If n & 1 the ground state is the same as in the preceding
case as there is still no doubly occupied sites.

On the other hand, for 1 & n & 2 the result must be dif-
ferent: The total number of doubly occupied sites is still
equal to n —1 but the correlation functions (n in t) no
longer vanish. We put L = (n tn ) (independent of m

and m') and E = (nt nq ).
The three subbands A. =2, 3, and 4 are centered around

the energy U and we have for these subbands

GGf =G3 =G
1+(X —U) G

Equation (22) is valid for all values of n between 1 and 2.
In the paramagnetic state we have

i/z

E = ———1+1—n+1 n n

2 2 2

(1 —n +n /2)'~~ —1+n& —P«F j
(1 —n +n /2) ~ —1 + n —nb

f

where

(23)

and in the ferromagnetic state n t =n/2, Et =n'/4 We.
can obtain the susceptibility in the paramagnetic state:

Ga

p +p +p (14) 1 . EF
b = —arcsin +-

WJP
%'e can deduce the expressions of n, E, and L:

t EF
(n ) =Pt +„p (o)) do),

1 per3 REFL=- p Ql 1QI
2 pa' +Pa' +Pa'

p 0' r EF
E p (Cd) dOl

Pg +P3 +Pf"

(15)

(16)

(17)

where p (co) is the density of states in the subband located
at energy U.

Differentiating Eqs. (15), (16), and (17) we can obtain

P = —[1 —n/2 + ( I —n + n /2) '~ ]

The susceptibility does not diverge for any value of the
electron number between 0 and 2.

The same case was studied by Dowson' who found that
the ground state is ferromagnetic for n & 0.45. However, in
this work the chemical potential was not the same in the up-
and down-spin bands. In fact, when looking at the self-
consistency equations (20) and (21) we can see that the
only solution is the paramagnetic solution. %e have p]
+Pf =1 —n +E; the width of the o- spin band is given

by (Pt +Pf ) W. Thus if nt & nt, we must also have
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Kt & E~ and this implies that Pit +Pq& & Pi& +P2l and n~
cannot bc larger than n ~. Thus, in order to obtain a fer-
romagnetic solution, Dowson had to shift the f and J spin
bands by taking different chemical potentials.

Wc have also calculated the energy of thc paramagnetic
solution and compared with the energy of the ferromagnetic
state with maximum magnetization: As we have sho~n,
this state cannot be 8 solution of the self-consistency equa-
tion but it is a solution of the Hubbard model. Thc compar-
ison shows that thc ferromagnetic state has a lower energy
above the concentration no =0,5 close to the value obtained
by Dowson.

Now if U2 —J is small but nonzcro, to the first order in
U2 —J the increase in energy is given by AE
= (UI —J)g (nl nI ). In the ferromagnetic state the
number of doubly occupied sites is always larger than in the
pafaIYlagllctlc ollc [Ecl. (22)] because lll tllc pafanlagllctlc
state (nl nI ) is reduced by the correlations; thus the criti-
cal value no should increase with U2 —J. In fact, no is equal
to 1 if U2 —J~ ~.

V, CONCLUSIONS

In this p8pcI' wc have obtained thc exact spin susceptibili-
ty in the alloy-analogy approximation for the degenerate
Hubbard model. We have calculated the susceptibility in
some limiting cases and wc h8vc shown that 8 ferromagnetic
instability can be obtained.

HowcvcI', foi infinite Coulomb intclaction wc have ob-

tained a ferromagnetic instability only for 1 & n & 3,
~hereas the exact results show that thc ground state is fer-
romagnetic for 1 & n &2. This discrepancy can bc duc to
thc appr oxIITlation inti'oduccd by thc 8110y analogy Gr' it
could reflect the fact that the magnetic-nonmagnetic transi-
tion is 8 first-order tiansitiorl foi

3
& n & 2.

In fact, the analogy with a disordered alloy is correct in
the degenerate case for the description of the spin disorder
(for 1 & n & 2), whereas this analogy is difficult to justify in
thc Qondcgcncratc Hubbard model. Indeed in thc alloy
analogy the (nI, o.) electrons are moving in a potential due
to the other (nI'o. ') electrons which are supposed to be
fixed Gn soIYlc given sites. In thc dcgcncIatc case, in thc
lllfllt of Ul, U2 ~ ( UI I bclng flllltc of Ilot) lt, ls possi-
ble to separate up- and down-spin regions4 for 1 & n & 2,
because it is possible to fix thc spin of any given site. 9 This
site will have either one or two electrons but always with the
same spin. Thus for the up-spin electrons, the down-spin
sites are forbidden, and if the down-spin sites are randomly
distributed in thc ciystal, wc h8vc I'cally an alloy with infin-
ite cncfgy scp818tion. Thc alloy analogy is correct fol' thc
spin disorder, but not for the orbital disorder because in
each of thc regions thc two orbitals 8I'c mixed.

However, as in -the nondegencrate case there are some
limitations to this approximation: The strongest onc, con-
cerning the magnetic ordering, is that there is no antifer-
romagnetic instability in this alloy analogy, ' whereas the
exact ground state is known to be antiferromagnetic for
half-filled bands.
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