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Chaotic renormalization approach to electronic systems

Paulo Murilo Oliveira, Mucio A. Continentino, and Enrique V. Anda
Instituto de Fisica, Uni versidade Federal Flurninense, Caixa Postal 296,

Witeroi 24 210, Bio de Janeiro, Brazil
(Received 12 August 1983)

%e have proved the equivalence between the density of electronic states of a linear tight-binding chain

and the density of chaotic visits along the energy axis for the map 0)n =run
~
—2, using a renorrnalization-

group approach. Our results are generalized for other systems and for higher dimensions, providing a new,
simple method for computing the density of states of any translationally invariant system with a known
dispersion relation.

The local density of states for a linear chain of one-orbital
identical atoms can be obtained ' for a tight-binding first-
neighbor hopping Harniltonian by a real-space renormaliza-
tion of the diagonal term of the Green's function and the
hopping integral value. The method used in Refs. 1 and 2
consists in solving exactly the set of Eqs. (I),

Eqs. (4) and (5) can be rewritten as

E„=E„ i
—2

En —1
2

gn —1

(7)

(E —e)G;0=5;0+ VG;+i 0+ VG; i, e,

where e is the one-orbital energy (hereafter considered
zero); V is the hopping integral, and G;e is the Green's
function between sites 0 and i of the numbered chain. The
quantIty E is defined ln thc usual way as E = ~ —i q, whcrc
~ is the frequency and q is a positive infinitesimal quantity
included in order to guarantee the analytical properties of
the retarded Green's functions. The diagonal Green's func-
tion rclatcd to thc density of states can bc obtained ln an
iterative process by eliminating the odd-numbered (odd i, )
equations from the system (I). After each complete elim-
ination, the new system has the same form as the old one,
with rcnormallzcd values for g and x defined by

While the energy E is rcnormalized through Eq. (7), g is a
captive variable renormalized through a cascade of multipli-
cative factors depending only on E. Equation (7) has two
fixed points E =m'=2 and 8"=—1. %C will pay atten-
tion to the former. It divides the real axis into two distinct
regions: lcol & 2, the chaotic band, and i&el ) 2, the non
choo«'c region. In this last case, renormalization (7) be-
comes monotonic and the ~hole region is attracted by

These two regions are completely independent in
the sense that Eq. (7) does not transform points from one
region into the other. If we explicitly consider that Eo has
an infinitesimal imaginary part (it is a quasi «a/ quantity),
the iterative process produces a renormalization of the real
and the imaginary parts of E such that

The renormalization equations are

2
Xn —1

Xn =
1 2Xn —I

1
gn =

2 gn —1
1 —2xn

(2)
Let us start with an energy coo (0 & level & 2) and follow the
sequence Ee,Ei,E2, etc. Equations (7) and (9) imply that
E„ i»«'ll q&ri» «&l &p « ir«ri«&« =X f«which
& lnwl 0. In other words, the phase of the complex

number E„ is near to 0 or m up to n = X, when there is a
nonvanishing phase, n(ruo, qa). Figure I shows the se-
quence E~=—0, E~+I:——2, Elv+2 =~ =2. Ew+3 =~ =2
in a schematic view. In this sequence, E~ is arbitrarily close
to 0, E~+ j to —2, E~+2 and E~+3 to ~"= 2. The Jacobian

where n indicates the number of successive renormaliza-
tions. For each fixed value of the energy E which defines
ge through Eq. (2), subsequent iterations of Eqs. (4) and
(5) define two sequences that converge rapidly to the fixed
point x'=0 and g'= r (cu) +i 7rp(co), where p(co) is the ex-
act local density of states.

Let us now consider the chaotic behavior' of the rcnor-
rnalization process. Instead of renormalizing the hopping V

(through x), Eq. (4) can be interpreted as an energy renor-
malization. Fixing V=1 and defining

FIG. l. Schematic view of the renormalized complex values
(6) E~,E~+t,E~+2,E~+3 under Eq. (7), after E~ ——au~ —i Yi~, where
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matrix of (7) in the complex plane, calculated at c»'= 2,

Thc valUc 8 = 0 ls obtained starting frofD zero cAcrgy
(c»0=0). As E„and g„acquire nonvanishing imaginary
parts orlly for ll ~ N fof w11lch (c»g~ ( ('g1v(, 8 sllllplc ltcra-
tion of Eq. (8) repeated X —1 times allows establishment of
a relation between p (c»0) and p(0) given by

(12)

The factorial-like Eq. (12) represents a new method for
calculating p(c»0). Using (7) without imaginary part, one
gcncratcs thc chaotic scqUcAcc ~0, ~1, ao2, ctc. Up to 8 ccrtaiA
QJ g close to zero with ln 8 prcdctcrlTl lncd tolcl ance. Equa-
tion (12) then determines p(c»0). The value p(0) can be
calculated 8 posteflofl by 11Tlposlng thc AorAlallzatlon condl-
tloll Jdc» p(c») = 1.

Furthermore, if we restrict Eq. (12) to just one iteration,

P(c»n-I) = c»n IP(c»n)- (13)

and take c»„1=2—8 close to c»'= 2, the Hnearization (10)
shows that c»„=2—45. Equation (13) becomes

p(2 —8) =2p(2 —48)

EqUatloll (14) lfnpllcs tllat p(c»} dlvcrgcs Rs (2 c») Rt

co=~"=2, where
2

is a critical exponent. Using the fact
that p(c») is an even function, and so there is another
divergence at c»= —2, we obtain p(c»)nc (4 —c»') 'i' near
thc baAd cdgcs which in this case tUIAs oUt to bc thc exact
analytical form for thc density of states in thc whole band.

The new method to obtain p(c») introduced by the
factorial-like Eq. (12) is computationally simpler than the
previous onc' because it requires only real numbers, but it
does not introduce ncw qualitative features to the problem,
%C will now give a proof of a result which allows a ncw in-
terpretation for the density of states. %C define the derisory
of vlslrs IP(c») through W'»(c»)dc», tile 11UIIlbcr of vlslts to
the interval (c», c»+dc») after N ~ iterations of Eq. (7).
Tllc staftlllg polIlt c»0 Is 8 ranclolll Ical valUc ( ic»oi ( 2).
Figurc 2 shows a small interval 5„around ~„and two small
intervals 5„1 around ~„1and —m„ l. By construction,
thc AUIYlbcr of visits to 8„ is thc saInc as thc AUInber of
vlslts to both 5z 1, bccaUsc cvcry visit to 8& 1 corrcspoAds

is degenerate (proportional to the unity matrix). This im-

plies that all directions 8 (see Fig. 1) are equivalent in the
neighborhood of ~"=2, This is the central fact of our fol-
lowing argument. The value of 8 is obviously related to o.

through the relation 8= 2n —m. It is clear then that 8 can
take valUcs arbltf8rlly close to zero, si1Tlply by t8klng n 8rbi-
trarily close to —n/2 choosing convenient values for N and

It is possible to obtain the electronic density of states by
relating it to the Green's function defined previously:

p(c»0) =—lmg (c»0)
1

FIG. 2. Plot of Eq. (7) for relating v(a)„) and v(~„ 1).

to a subsequent visit to 8„,

ll(c» )8„=V(c»„ 1)8„1+lJ( —c»„1)5„

Assuming that u(c») is an even function, we obtain

& ( I» n )8 n 21 ( I» n —I )8 n —I

Returning to Fig. 2, we can relate S„and 5„1through the
derivative of (7), at c»„1, and rewrite (16) as

&(C»n I) = C»n I&(-C»n)-

Comparing (13) and (17) we obtain

u(c»)=p(c ) .

Equation (18) first presented by Jose is now proved for
tllc Illap (7). Tllc salllc proof call bc Illadc, fol' 111siallcc,
UslAg thc map && =(0& —1

—3'& 1 obtained by Using length
scale 3 (instead of 2 as used before) in solving the system
(1). Actually, Eq. (18} is valid for other maps obtained by
using different length scales.

%C will now show how to obtain the density of states
through thc density of chaotic visits for other systems and
for higher dimensions. The dispersion relation for the
linc8r ch.81A

c» = 2COS(2Irk)

together with thc transformation k„=2k„ 1 in the reciprocal
space (corresponding to length scale 2) yields directly Eq.
(7). Since the value of k can be restricted to the interval
[0,1), we obtain

where frac(x) is the fractionary part of x. This map togeth-
er with the dispersion relation Eq. (19) generates a chaotic
scqucncc for thc cncrgy which caA also bc obtalncd directly
from the map (7). This allows us to conclude the following:

(i) Transformation (20) is mixing and ergodic (for
apcrlocllc orbits) .

(ii) The density of visits for the map (20) is uniform
along the interval [0,1), i.e., every finite interval in this
range is visited with the same frequency in an infinite
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number of iterations.
(iii) The excluded periodic orbits of (7) or (20) corre-

sponds to rational values of the seed ko as well as to period-
ic (in real space) Bioch functions.

Let us now consider the linear Heisenberg ferromagnetic
chain for which the dispersion relation is I« = 2[1

cos (27r k ) ]. Using (20) we get
-0.2

«I„=«)„ I(4 —«I„ I) (21)

and from this map we can get, using (18), the magnon den-
sity of states. In the case of phonons in a chain we have
t«1= 2[1—COS(27rk) ] and the denSity Of StateS fOr theSe eX-
citations can be obtained by constructing a sequence
t«a, t«I, «II, . . . through (21), extracting the square root of
each element, and then computing the density of visits
along the interval [0,2]. For the first- and second-neighbor
hopping tight-binding linear chain, ' the dispersion relation is

a = 2 COS(2Irk ) + @2COS(4Irk )

~ a

~ ~ ~ ~
~ ~ ~ ~ ~ ~ ~ ~

~ ~ ~ ~ ~
~ ~ ~

FIG. 3. Histogram of the density of states for a tight-binding fcc
lattice obtained by our method with 10000 interactions and 40 inter-
val divisions of the energy axis.

~here y is the ratio between hoppings. Using a basic se-
quence c«a, t«t, t«2, . . . obtained by (7), we can construct a
secondary sequence ~„=m„+ geo„+1 from which we get
directly the density of states.

Let us now consider higher-dimensional systems. For the
tight-binding square lattice we have

a = 2 COS(2mk„) + 2 COS(2Ir k~)

Using Avo ItldepeNdeflt bas1c sequences m0, m1, ~2, . . . an
t«a, Ql I, t«2, . . . («I„=C«„—I

—2) aflslIlg ffolll two lrldcpcll-
dent sequences in reciprocal space, one for each direction,
we can construct another sequence' e„=ro„"+~„which
yields the density of states for the system. For three-
dimensional systems, we use three independent basic se-
qucnccs ~„, m„, and ~„. Fol' thc slnlplc cub1c lattlcc, thc
secondary sequence ~„=~„"+co~+~„'gives the density of
states, while for the bcc and fcc lattices the corresponding
sequences are e„=~,"co~co„' and e„=co„"~~+co„"eo„' +co~~„',
respectively. For illustration, Fig. 3 shows the density of
states obta1ncd fol thc fcc latt1cc us1ng only 10000 ltcrat1ons
and 40 interval divisions of the energy axis.

Note that the map (7) as well as the maps corresponding
to other length scales (to„=t«3 I

—3I0„ I, for example) are

in the critical situation of a boundary crisis. %c intend to
investigate the scaling laws associated with that critical situa-
tion for applying the present method to disordered systems.

Altl1ougll tllc map (7) could 11avc bccII obtained IIldlfcctly
from the map (20) using its properties, we believe that
our proof for the equivalence between the density of states
and the density of visits in the energy axis without resorting
to the k space allo~s for the possibility of extending our
results for disordered systems where k is no longer a good
quantum number. In fact, this is currently being done for a
disordered linear chain.

Note added. %e have recently learned about the work by
Jose" and that J. I.anglois, A. Tremblay, and B. %. South-
ern as well as S. Alexander, D. Bensimon, E. Domany, and
L. Kadanoff have also obtained similar results for the
linear-chain case.
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