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Chaotic renormalization approach to electronic systems
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We have proved the equivalence between the density of electronic states of a linear tight-binding chain
and the density of chaotic visits along the energy axis for the map o, =w,2,_l —2, using a renormalization-
group approach. Our results are generalized for other systems and for higher dimensions, providing a new,
simple method for computing the density of states of any translationally invariant system with a known

dispersion relation.

The local density of states for a linear chain of one-orbital
identical atoms can be obtained"? for a tight-binding first-
neighbor hopping Hamiltonian by a real-space renormaliza-
tion of the diagonal term of the Green’s function and the
hopping integral value. The method used in Refs. 1 and 2
consists in solving exactly the set of Egs. (1),

(E—=€)Gio=3;0+ VGi+1,0+ VGi—1,0 , (1

where € is the one-orbital energy (hereafter considered
zero); V is the hopping integral, and G;y is the Green’s
function between sites 0 and / of the numbered chain. The
quantity E is defined in the usual way as £ =w — im, where
w is the frequency and n is a positive infinitesimal quantity
included in order to guarantee the analytical properties of
the retarded Green’s functions. The diagonal Green’s func-
tion related to the density of states can be obtained in an
iterative process by eliminating the odd-numbered (odd i5)
equations from the system (1). After each complete elim-
ination, the new system has the same form as the old one,
with renormalized values for g and x defined by

gEE%% , @)
x=gV . 3)

The renormalization equations are

2
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where n indicates the number of successive renormaliza-
tions. For each fixed value of the energy E which defines
go through Eq. (2), subsequent iterations of Egs. (4) and
(5) define two sequences that converge rapidly to the fixed
point x*=0 and g*=r(w) +imp(w), where p(w) is the ex-
act local density of states.

Let us now consider the chaotic behavior® of the renor-
malization process. Instead of renormalizing the hopping V
(through x), Eq. (4) can be interpreted as an energy renor-
malization. Fixing ¥V =1 and defining

=L, 6)

Xn

Egs. (4) and (5) can be rewritten as

E,=EX> -2, (7)
E2
&n= gnlgn—l . (8)

While the energy E is renormalized through Eq. (7), gis a
captive variable renormalized through a cascade of multipli-
cative factors depending only on E. Equation (7) has two
fixed points E¥*=w"=2 and W*= —1. We will pay atten-
tion to the former. It divides the real axis into two distinct
regions: |w| < 2, the chaotic band, and |w| > 2, the non-
chaotic region. In this last case, renormalization (7) be-
comes monotonic and the whole region is attracted by
w=o0. These two regions are completely independent in
the sense that Eq. (7) does not transform points from one
region into the other. If we explicitly consider that £ has
an infinitesimal imaginary part (it is a quasi real quantity),
the iterative process produces a renormalization of the real
and the imaginary parts of E such that

E,=w,—in, . 9

Let us start with an energy wo (0 < |wo| < 2) and follow the
sequence EE |, E,, etc. Equations (7) and (9) imply that
E, is still quasi real up to iteration n=N for which |wy|
< |nyl— 0. In other words, the phase of the complex
number E, is near to 0 or = up to n =N, when there is a
nonvanishing phase, a(wg no). Figure 1 shows the se-
quence ENEO, Eyi = -2, EN+2EOJ*=2, EN+3E(U*=2
in a schematic view. In this sequence, Ey is arbitrarily close
to 0, En+1to —2, Ey+2 and Ey+3 to *=2. The Jacobian
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FIG. 1. Schematic view of the renormalized complex values
En,En +1.EN +2.En +3 under Eq. (7), after Exy=wy—iny, where
oyl < lnyl— 0.
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matrix of (7) in the complex plane, calculated at v* =2,

dwy dw,
dwu—1 OMp-1 4 0
= , (10)
3Mn 3y 04
dwp—1 SMp-1

is degenerate (proportional to the unity matrix). This im-
plies that all directions 8 (see Fig. 1) are equivalent in the
neighborhood of w*=2. This is the central fact of our fol-
lowing argument. The value of 6 is obviously related to «
through the relation §=2a — . It is clear then that 8 can
take values arbitrarily close to zero, simply by taking « arbi-
trarily close to —a/2 choosing convenient values for N and
mno. It is possible to obtain the electronic density of states by
relating it to the Green’s function defined previously:

p(wo)=;17—lmg*(wo) . amn
The value =0 is obtained starting from zero energy
(wo=0). As E, and g, acquire nonvanishing imaginary
parts only for n = N for which |ox| < x|, a simple itera-
tion of Eq. (8) repeated N — 1 times allows establishment of
a relation between p(wo) and p(0) given by

N-1

p(w)=p(0) J] wn .

n=0

(12)

The factorial-like Eq. (12) represents a new method for
calculating p(wo). Using (7) without imaginary part, one
generates the chaotic sequence wg, w}, w3, €tc. up to a certain
wy close to zero within a predetermined tolerance. Equa-
tion (12) then determines p(wo). The value p(0) can be
calculated a posteriori by imposing the normalization condi-
tion fdwp(w) =1.

Furthermore, if we restrict Eq. (12) to just one iteration,

plog-1)=0,-1p(w,) , (13)

and take w,—1=2—238 close to w*=2, the linearization (10)
shows that w,=2—48. Equation (13) becomes
p(2—8)=2p(2-45) . (14)
Equation (14) implies that p(w) diverges as (2—w) Y2 at
w=w"*=2, where % is a critical exponent. Using the fact
that p(w) is an even function, and so there is another
divergence at w= —2, we obtain p(w)x (4—w?) ~Y? near
the band edges which in this case turns out to be the exact
analytical form for the density of states in the whole band.
The new method to obtain p(w) introduced by the
factorial-like Eq. (12) is computationally simpler than the
previous onel? because it requires only real numbers, but it
does not introduce new qualitative features to the problem.
We will now give a proof of a result* which allows a new in-
terpretation for the density of states. We define the density
of visits v(w) through Nv(w)dw, the number of visits to
the interval (w, w +dw) after N — oo iterations of Eq. (7).
The starting point wo is a random real value (Jwol < 2).°
Figure 2 shows a small interval 8, around w, and two small
intervals 8,-; around w,-; and —w,—-;. By construction,
the number of visits to 8, is the same as the number of
visits to both §,-;, because every visit to §,-; corresponds
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FIG. 2. Plot of Eq. (7) for relating v(w,) and v(w,_).

to a subsequent visit to §,,

v(wn)8n=v(wn—l)8n—1+v(_wn—l)sn-—l . (15)
Assuming that v(w) is an even function,® we obtain
v(wp)8,=2v(wy-1)8,-1 . (16)

Returning to Fig. 2, we can relate 8, and 8,- through the
derivative of (7), at w, -1, and rewrite (16) as

v(op-1)=ws-1v(w,) . an
Comparing (13) and (17) we obtain
vio)=p(w) . (18)

Equation (18) first presented by José* is now proved for
the map (7). The same proof can be made, for instance,
using the map w,=w;-;— 3w,—; obtained by using length
scale 3 (instead of 2 as used before) in solving the system
(1). Actually, Eq. (18) is valid for other maps obtained by
using different length scales.

We will now show how to obtain the density of states
through the density of chaotic visits for other systems and
for higher dimensions. The dispersion relation for the
linear chain

w=2cos(27k) (19)

together with the transformation k, =2k, - in the reciprocal
space (corresponding to length scale 2) yields directly Eq.
(7). Since the value of k can be restricted to the interval
[0,1), we obtain

kp="frac(2k,-1) , (20)

where frac(x) is the fractionary part of x. This map togeth-
er with the dispersion relation Eq. (19) generates a chaotic
sequence for the energy which can also be obtained directly
from the map (7). This allows us to conclude the following:

(i) Transformation (20) is mixing and ergodic (for
aperiodic orbits).

(ii) The density of visits for the map (20) is uniform
along the interval [0,1), i.e., every finite interval in this
range is visited with the same frequency in an infinite
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number of iterations.

(iii) The excluded periodic orbits of (7) or (20) corre-
sponds to rational values of the seed kg, as well as to period-
ic (in real space) Bloch functions.

Let us now consider the linear Heisenberg ferromagnetic

chain for which the dispersion relation is w=2[1
—cos(2wk)]. Using (20) we get
wp=w,-1(4—w,_1) , 2n

and from this map we can get, using (18), the magnon den-
sity of states. In the case of phonons in a chain we have
w?=2[1—cos(27k)] and the density of states for these ex-
citations can be obtained by constructing a sequence
wq, @1, 3, ... through (21), extracting the square root of
each element, and then computing the density of visits
along the interval [0,2]. For the first- and second-neighbor
hopping tight-binding linear chain,? the dispersion relation is

e=2cos(2mwk)+y2cos(4mk) ,

where y is the ratio between hoppings. Using a basic se-
quence wg, w1, wy, ... obtained by (7), we can construct a
secondary sequence €,=w,+7yw,+; from which we get
directly the density of states.

Let us now consider higher-dimensional systems. For the
tight-binding square lattice we have

e=2cos(2mk,) +2cos(27mk,) .

Using two independent basic sequences §, o}, 3, ... and
ol o}, 0 ... (0’=w?}—2) arising from two indepen-
dent sequences in reciprocal space, one for each direction,
we can construct another sequence’ e,=w}+w] which
yields the density of states for the system. For three-
dimensional systems, we use three independent basic se-
quences o, oy, and ;. For the simple cubic lattice, the
secondary sequence e€,=w,+w)+w? gives the density of
states, while for the bcc and fcc lattices the corresponding
sequences are €,=w,wiw; and e,=wjwltwiw; +tolowi,
respectively. For illustration, Fig. 3 shows the density of
states obtained for the fcc lattice using only 10000 iterations
and 40 interval divisions of the energy axis.

Note that the map (7) as well as the maps corresponding
to other length scales (w,=w2_;—3w,_1, for example) are
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FIG. 3. Histogram of the density of states for a tight-binding fcc
lattice obtained by our method with 10000 interactions and 40 inter-
val divisions of the energy axis.

in the critical situation of a boundary crisis.® We intend to
investigate the scaling laws associated with that critical situa-
tion for applying the present method to disordered systems.

Although the map (7) could have been obtained indirectly
from the map (20) using its properties,*® we believe that
our proof for the equivalence between the density of states
and the density of visits in the energy axis without resorting
to the k space allows for the possibility of extending our
results for disordered systems where k is no longer a good
quantum number. In fact, this is currently being done for a
disordered linear chain.

Note added. We have recently learned about the work by
José* and that J. Langlois, A. Tremblay, and B. W. South-
ern as well as S. Alexander, D. Bensimon, E. Domany, and
L. Kadanoff have also obtained similar results for the
linear-chain case.
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