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Derivations of the axial- and planar-channeling continuum models from the perfect-string and perfect-

plane models by the Krylov-Bogoliubov method of averaging are discussed, For the first time, error

bounds are obtained relating the perfect crystal trajectories to the continuum-model trajectories. Details

are presented for the axial case, because this case is easier to treat and the generalization to planes is

straightforw ard.

A commonly used approximation in particle channeling
calculations is called the continuum model. ' In this model,
the strings or planes of atoms of a perfect crystal are re-
placed by continuum strings of planes. ContlnUUIH ldcas
werc discussed early by Lehmann and Leibfried, ' Lindhard, '
and Nelson and Thompson. The validity of the
contlAUUm-string IHodcl, Rs an appI'oxlIHRtlon to thc
perfect-string model, has been discussed ' by comparing it

with the impulse-momentum approximation to the perfect-
string model. It is typically argued that the continuum
model is a good approximation if a certain combination of
physical parameters is small. However, no explicit error
bounds on trajectories have been obtained, although
Lindhard has shown that the trajectories in the impulse-
momentum approximation approximately conserve trans-
verse energy. Because the impulse-momentum argument
does not work in the case of planes, the relationship
between the planar-continuum model and the associated
perfect-plane model has not been adequately assessed.

In this papcI', thc I'elation bctwccn thc solUtlons of thc
continuum-model equations of motion and the correspond-
ing solutions of the perfect crystal equations are discussed.
Error bounds relating trajectories of the two models, in the
string case, are obtained under the assumption that the
perfect-string trajectory has a positive minimum distance 8
of approach to the string. The technique for finding the
bounds can be generalized to planes and this is briefly dis-

cussed. An important complementary problem, which is of
particular importance in the planar case, is to characterize
those perfect-crystal trajectories that have R positive
minimum distance of approach to strings or planes. Some
ploIIllslng wofk ln this dlI'cctloA is bclng done by Sacnz and
Nagel.

A standard approach to difficult problems in classical
mechanics is to transform the differential equations into a
sct of equivalent equations with simpler structure. In thc
present context, the ideal would be to find an explicit
transformation which transforms the perfect-crystal equa-

tions into the continuum-model equations, but this is prob-
ably not possible. Here, a transformation is presented
which transforms the perfect-crystal equations into the con-
tinuum equations with higher-ordcr corrections. The
traAsformation is found by the method of averaging of
Krylov and Bogoliubov. This method has three important
features: (1) The averaging transformation essentiaHy aver-
ages out the lattice periodicities by putting them into the
higher-order terms of the transformed equations, and the
contlnuUITl IYlodcl ls obtalncd by ncglcctlng these hlghcf-
order terms. (2) Knowiedge of this transformation and the
solutions of the continuum equations allows short-term
pcllodicltlcs to bc pUt back ln, thUs 1IYlpI'ovlng oA thc con-
tlllullln appfoxllllatloll. (3) Bounds oil tile cf1'ofs afc caslip
obtained under the a priori assumption that a particle in
the perfect-crystal IHodel does not approach a string or plane
too closely.

Consider a charged particle with speed v moving at an an-

gle Q with respect to an infinite string of atoms of spacing d
along thc z axis„as 111UstfRtcd ln Fig. 1. Thc cquatlons of
motion are

and the associated energy is

—,'rn(x'+z')+ V(x,z) =E .

Here, V(x,z) is the sum of the particle-atom potentials

FIG. 1. Geometry of the perfect-string model.
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V(r ) = Z izze2$(r/a )/r over all atoms in the string, where

Zl and Z2 are the atomic numbers of the projectile and lat-
tice atoms, respectively, e is the electronic charge, a is the
Thomas-Fermi screening radius, and @ is a screening func-
tion. For the infinite string V is periodic in z, i.c.,
V(xz+d) = V(xz). Only those trajectories with initial
conditions (x,x,z,z) = (xo, —v sini(i, zo, i~ cosi(i) such that

minx(r) = 5 & 0 (3)
r WO

will be considered here.
Under channeling conditions, it is expected that i(i is

small, that
z

mz =
2m (ecosoc) = E anti that the energies

—,mx' and V(x,z ) are roughly the same size. Let
E = 2ZiZ2e'/d, which is related to the size of the potential.
Then the above suggests introducing the dimensionless
quantities

X= /d, Z=./d, W(X»=«x, .)/~,
@=x/(M'/m)"', @=z/(~cosp), r=(~cosp/d)r .
Note that i(i cannot equal n/2 and that, for z constant, r
changes by one unit as the particle travels one lattice spac-
ing. If Eqs. (1) are written as a first-order system, then the
nondimensionalization (4) leads to

dX X(0) =Xo,

d%' 8W(X,Z) ( ) tang
dr ' BX

d4 i 28W(XZ) @(0)
d'r tlz

dZ =c, z(0)=z, ,
dT

where the perturbation parameter

Ai = (2ziz2e'/((md/2) (i~ cosp)') I'"
is equal to (2zizze /dE)'i for small i(i. This is the angle
introduced by Lindhard, ' and it contains the main parameter
dependencies of the channeling critical angle, namely, ener-

gy, atomic number, and lattice spacing. The perfect-string
equations (5) have a periodic right-hand side with period 1

and are now written in a standard form for the method of
averaging. ' There is an unusual feature of (5) in that the
perturbation parameter enters the initial data in a singular
way. However, this is easily understood, since it is expected
that Q=0(i(ii). For bounded W derivatives and i(ii small,
X, F, 8nd 4 arc slow variables, l.c., slowly varying with 7',

and Z ls 8 fast varlablc.
Thc associated cqURtlons for thc continuum-string model

are given by the averaged equations

dX
y @4 d P I

~ Wl (X+)
dv

' dv.
6(

d4 0 dZ
dv dv

~here the starred variables denote approximations to the
corresponding unstarred variables in (5). The approximate
equations (6) are obtained by the method of averaging, as
discussed below. In (6),

W(X) = Ji W(X,Z)dZ (7)

is a normalized continuum potential, and W'(X) ap-

proaches infinity as X approaches zero for screening func-
tions $ of channeling interest. Thus there is an obvious
qualitative difference in the properties of certain solutions
of Eqs. (5) and (6); namely, some solutions of Eq. (5) can
penetrate the string, but no solutions of Eq. (6) can do this.
Th1s furtllel' poifits out tlM Iieed for the u priori bound (3)
in order for (6) to be a good approximation to (5). Notice
that since 4(0) =1, Eq. (6) reduces to

d X'
„, + —,'y', W'(X )=0 . (g)

In Lindhard's derivation of the channeling critical angle
i(i„he assumed the validity of the continuum model (6) and
then showed that i' ~ i(i, if, and only if, a continuum-model
trajectory passes at least two lattice atoms in a collision with
a continuum string. Here i(i, is defined implicitly by the
unique solution of Ei(i,'= U(ijI,d), where U=EW is the
continuum potential for a string. He then showed, using
the standard potential, that for large energies, the solution
of this equation is approximately given by Q, = cubi, where
i(ii is the above perturbation parameter and 1 & c & 3. This
quantity has turned out to be a basic experimental parame-
ter for axial channneling and characterizes, for example,
wide-angle scattering through several orders of magnitude in
the incident energy.

The basic idea involved in using the Krylov-Bogoliubov
method of averaging' to derive the continuum approxima-
tion (6) from the perfect-string model (5) is the following.
Since the rate of change of the slow variable W depends on
Z in a periodic manner, intuition suggests that, over a long
iriterval in the scaled time 7, the Z average over one period
of t) W/BX with the slow variable X held fixed, should deter-
mine most of the long-term change in W, while the effect of
the small oscillations about the average should be less im-
portant. Explicitly, the method of averaging can be used to
construct a transformation of variables of the form

X = ui, 4 = uz+ tgiP(ui, u3, w)

4=@3, Z=S'
which transforms the perfect-crystal equations (5) into the
simpler system

dQ1 = Qiu2+ QiP, ui(0) =Xo,

' = ——,
'

i(ii W'(ui)+ i(iiG, u2(0) = Iro —i(iiP(Xo, l,zo),
(10)

ui(0) =1,
=@3,

z8W(ui, w)

w(0) = Zo,

with

G = —uzP„, —QiPPg, + 2P„Wj,

These arc clearly perturbed continuum equations, and if thc
O(gi) terms are small, the solutions of (10) should be m
good agreement with solutions of the continuum equations
(6).

Under the a priori assumption (3), ui5 & 0, where
5=8/d, and for this range of ui, P is a bounded function
which ls Unlqucly dcflncd by thc cquatlon

8P 1 8 [ W(ui, w) —W(ui) ) (11)
%V 2@3 BQ1
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and the conditions that I' be periodic in ~ of period 1 with
zero mean. Two infinite series representations for I' have
been derived and are being analyzed. Also, for u1~5) 0,
the function 6 in Eq. (10) is bounded. Therefore Eqs. (5)
and (10) are equivalent for all P~ and X = u~ ~ 8 & 0.

The problem of finding the best possible error bounds is
difficult, and a detailed discussion of error bounds will be
presented elsewhere. Here a technique for obtaining crude
bounds is briefly discussed. Subtraction of the continuum
equations (6) from the perturbed continuum equations (10)
yields

d(ut-X') = Qt(u2 —qI ) + QUIP.

d(u2-+') = ——q, [ W'(u, ) —W'(X')]+y', G,
dv

=
2

d(u3 —e')

d(w —Z')
=u3 —4

For a given set of initial conditions, the a priori bound (3)
assures that M1 stays away from the string, and the infinite
foI cc 1n thc continuum 1Tlodcl kccps X away. Lct
denote the minimum distance of approach for u1 and X;
then for all u1and X'»5;„

lw(»)- w(x )I~ w-(5. ,„)l»-x I,
and there exist constants g~, g2, and g3 such that IPI ~gq,
IGI ~g2, and IBW/Bwl ~g3. By integrating Eqs. (12) and
using standard methods of differential equations (e.g. , the
Gronwall inequality) it is easy to obtain crude bounds on
Ill] X I IB 2 p I IB3—4 "I, and lw —Z'I. It is interest-
ing that these bounds can be shown to depend on
P f W"(g;„), which is essentially the quantity d'U"/E,
where U(x)=EW(X), derived by Lindhard, ' who has
shown it plays a crucial role in establishing the validity of
the continuum-string model at halfway planes. The
transformation (9) can then be used to show that solutions
of the perfect-string model (5) and the continuum model
(6), with the initial conditions of Eq. (5), satisfy

for all r, 0» r « I/Qt, where Ct and C2 depend on gt, g2,
g3, and W"(g;„). Thus the continuum model gives a good
approximation for trajectories which stay away from the
strings when Qt is small.

A better approximation to the solutions of Eq. (5) for all

r, 0 ~~r ~~I/Qt, is obtained by solving tlM continuum equa-
tions (6) with the initial conditions of Eq. (10) and then ap-
proximating X by X' and 0 by 'P" +P~P(X', O', Z'). This
has the effect of putting the short-term lattice periodicities,
wh1ch have bccn avcragcd out, back lIlto thc approximation.
The infinite series representations for I' are currently being
studied so that practical use of this approximation can be
made.

%C have shown that the continuuum model emerges as
the first term in a systematic perturbation procedure which
also allo~s the computation of error bounds. %C have con-
sldcl'cd partlclc motion with zclo Rngular momentum with
respect to a string, which is the least favorable case for the
validity of the continuum model. The extension of our
results to the case of nonzero angular momentum is trivial,
which is not the case for the impulse-momentum procedure.

As mentioned in the introduction, the extension to planes
is straightforward and has been discussed in a preliminary
way in Ref. 11. The perfect-plane equations are similar to
Eq. (5), except there are six equations rather than four.
The averaging transformation is also similar to (9), but it is
more difficult to determine an explicit representation for the
function P, and the error bound calculations are similar but
more complex. Details will be presented else~here.

The averaging-perturbation technique should be useful in
a number of other channeling problems of which the follow-
ing are exemplary. The axial to planar channeling transition
problem' "can be viewed in terms of "strings of strings, "
so that the method of averaging is R natural way to study
this transition and the associated phenomenon of resonance
dechanneling. ' The continuum model has been used to
study channeling in bent crystals, ' and averaging may be
helpful in studying the limitations of this assumption. The
averaging technique provides a systematic way to incor-
porate lattice periodicities into the continuum model, and
therefore it is an alternate way to study the effect of crystal
lattice periodicity on channeling radiation.
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