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We make a general study of symmetry and stability of the fixed points of the quartic Hamiltonian

of an n-component field (or order parameter} for n&4. Simple proofs of known results are given.

Among new results, we shou that when it exists the stable fixed point is unique; we give some pre-
cision on its symmetry and on its attractor basin.

P( f ) = u ( P ) PP, tx &0——
12 2

where P P is an O(n)-invariant orthogonal scalar product
oil N g alld u($) ls a lloniogelleolls, I -111varlaIlt, positive
quartIc polynomial

u(D(h) P )=u (P ), Vh E-I,
u(A, P )=A, u((() ), /&0 =-u(P) &0 .

(3)

The coefficient a is temperature dependent and vanishes at

Nearly half a century ago, Landau introduced a model
for second-order phase transitions. ' It is a mean-field
theory, and it yields fairly good predictions for the nature
of the symmetry changes between the two phases, but it
naturally fails to predict the critical exponents. The
renormalization-group method of Wilson and its applica-
tion to quartic Hamiltonian made in Refs. 3—5 can be
used to improve Landau theory, as was suggested in Refs.
6—8. For the last seven years many examples of actual
second-order phase transitions have been studied by this
method. However, for this type of Hamiltonian, a general
study of the existence and stability of the re-
normalization-group fixed points is lacking. The aim of
this paper is to explain what is known on this topic and
give new results; e.g., when it exists, the stable fixed point
is unique and all other fixed points are (to the lowest order
in the e expansion) on the boundary of its attractor basin.
In addition, the "intriguing conjecture" on the critical ex-
ponents made at the end of the paper' by Brezin, Le Guil-
lou, and Zinn-Justin is proven.

We consider a physical system in thermodynamical
equilibrium (e.g., a crystal) with its symmetry group I
(e.g., one of the 230 three-dimensional crystallographic
space groups). At the phase transition the system state is
described by a vector P belonging to an n-dimensional
real vector space 8'„, which carries an irreducible orthog-
onal representation of I":

I &h~D(h)EO(n)

acting on O'„. The value of the n-dimensional order pa-
rameter P representing the equilibrium state minimizes
the free-energy thermodynamic potential, whose most
simple form assumed by Landau is

the critical temperature.
We recall that the image of D is the set of matrices

ID(h), h El j. It is a subgroup of the orthogonal group
O(n). We denote by 6 its topological closure (while ImD
is finite for a transition from crystal to crystal, it is not
closed for a transition to an incommensurate phase). The
I -invariant polynomials on 8'„are determined only by G.
We denote by W the vector space of degree in homo-
geneous polynomials on O'„. Note that

d ~.= +" 1 (4)

pg tg'+ tg'tg'+8tgtg'
ge6

+3(trg ) +6 trg ]

(sm, e.g., Ref. 9). When 6 is finite (this is a particular
case of compact) the integral over the normalized Haar
measure p 1s simp ygEG

where
~

6
~

is the number of elements of G. So, in the
Landau model u is generally taken as an expansion on a
basis of W4, i.e.,

1

u= gXu' '.

Including the positivity condition, we conclude that the
set of polynomials that satisfy (3) forms a convex cone
4'+(M4) in the 1-dimensional vector space W&. More-
over, / & 1, and Ã+(W4 ) is not empty since it always con-
tains

s(P)=(P P) (6)

With the introduction of the symmetric operator on

We denote by W», the subset of 6-invariant quartic poly-
nomials

1=dimW, =— dp(g) det(p —tg)
d'

4I dt4 sEG
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T = 1 dT„(P)=,u(P ),
12 dp

and so

T„(—it!) aI —$ =0 .
dP

This extremum is a minimum when

d P aT„(—P ) —aI )0 .Q (9)

The isotropy group I'-= [D(h) P =P, h E I I of the

minimum P is the symmetry group of the corresponding
phase. Its nature depends on the choice of u in C+(W4).
This cone is divided into a disjoint union of subdomains
corresponding to a phase diagram for the different possi-
bile phases with lower symmetry.

The vector P E- 8'„can be the value of an n-component
field P defined on our d=3 dimensional space, and the
Landau model becomes a dynamical theory with the
Hamiltonian density

~(n)= —,
'

Q iI} P+P(P) . (10)
BX BX

Introducing the scaling variable A, , the re-
normalization-group equations are of the form

1 d
u (A, ) =P(u (A, )),

where P is an O(n)-covariant vector field on the vector
space W4. The relevant Hamiltonian of the transition is

(10), but with the quartic polynomial u(P ) in (2) replaced

by an infrared stable fixed point u*(P) of the renormaliza-
tion equation. These stable fixed points are the solutions
o

P(u') =0,

(7)

(it is represented by the n Xn matrix 8 u/BP;Bgj and it
depends quadratically on P), one writes the condition that

P is an extremum of P(it!) as

dP(u)
dQ Q=Q ~G

4

&0, (12b)

where
~

G means the restriction of the operator on its

proper subspace. Indeed, if we consider a uo(A, ,P)EW4,
because of the O(n) covariance of p, the trajectory of Eqs.
(11) going through uo(A, ,P) stays in W4. It will contain,
in general, several fixed points. A solution u" of (11) is
physically acceptable if u~(P) )0 [as we will see, this is
implied by (12)], and if uo is in the attractor basin of u,
i.e., there are no other fixed points between u* and uo on
the trajectory of uo. In addition, for every admissible
stable fixed point one can compute the critical exponents
g(u*) and v(u~) [see Eqs. (40) and (41)].

Our results are obtained from a study of some proper-
ties of the vector space W4 of quartic polynomials on 8'„.
We refer to Ref. 10 for more details. Since a homogene-
ous quartic polynomial can be written

i,j,k, l=I
u jkiA4jdkiti (13)

W4 is also the space of completely symmetrical rank-4
tensors on 8'„, whose components are the coefficients of
u(P). To help readers more accustomed to the latter point
of view, we will write the next few equations under the
two forms corresponding to the two meanings of the W4
space. We use 6 uniquely for the Laplacian on 8'„,

lf g2a=v. v—= g (14)
, , ay',

(15)

We will use also the O(n) equivariant algebra on ~4 (see
Ref. 10)

We define a natural O(n)-invariant scalar product on
W4, ~

(u, V) = Q uijk!Vijkl
i,j,k, l

=2 3 [6 uv —6(b, u)h u] —4tr[(AT„ )(QT„)] .

u „u=tr(T„T,)

1

v )ijkl 6 ~ uijpq pqkl + klpq upqij + uikpqvpqjl + ujlpq vpqik + uilpq pqkj + kjpq upki!

(16)

(16')

&gu=uvu (17)

This nonassociative symmetric algebra is similar to alge-
bras already used in physics, e.g., Gell-Mann d algebra for
SU(3) (Ref. 11) and the Jordan algebra on the adjoint rep-
resentation of U(n) (Ref. 12). Radicati and I have studied
several similar examples, ' ' and we have emphasized the
role in physics of the idempotent of these algebras [see Eq.
(39)]. For a fixed u, we can define a linear operator
&„HW(M4), the algebra of linear operators on W4, by

t

and N„depends linearly on u; in fact, (17) defines a
O(n)-convariant linear map

W4~ W(W4) . (17')

We make the assumption that the set of matrices
ImI =G is irreducible, i.e., actually G does not leave any
(nontrivial) subspace of 8'„ invariant. If this were not the
case, the Hamiltonian density (10) could be split into a
direct sum of G-irreducible Hamiltonians and the problem
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would be transformed into a set of similar problems with
the smaller n .As a consequence of this hypothesis any
quadratic form in P that can be made from the 6-
invariant quartic polynomial u is proportional to P P.
FOI' instance~

with the linear form y( ) on W4 given by

y(u)= —(s,u)= b, u .l n

n 24

i'2 ~u =y(u)0'0 ===- g u ki=y(u+ki (18) Similarly,

V

—,', g'uU ——,'(bu)52u ——,'(beau)bu —(Vbu) Vbu ——,'tr(T„bT„+T„hT„)=—(u, u)P. P
n

X uipqi "jpqr = (u»)5ij ~ (2O')
Pl

In a morc pfcc1sc group-theoretical dcscfipt1on %'c can
say that W4 is the sum of three O(n)-irreducible spaces

of respective dimensions

n+3 (n+2+

+(n +6)(n +1)n (n —1)
(21')

This corresponding decomposition for the quartic polyno-
mial u is

u'"= y" sn+2'
y.y~(y), ~~=o, ~u'"=o.

2(n +4)

(21")

We denote by [O(n}]„ the isotropy group (equal to little
group) of u, i.e., the largest subgroup of O(n} that leaves u

invariant (6 & [O(n)]„,u EW&). Finally, it is interesting
to consider N(6), the largest O(n) subgroup, which con-
tains 6 as an 1nvaIMnt subgfoup. Hcncc,

NG &X(6) .

The quadratic form q(P) is hu —(12/n )y(u)P P.]
I ash to emphasize another nonrelated group-

theoretical remark (independent from the irreducibility of
6). Let us denote

6 =centralizer(W4),

XG ——normalizer(W&),

i.e., 6 is the larger subgroup of O(n), which leaves fixed
every element of M4 fixed, and XG is the largest subgroup
of O(n), which transforms M4 into itself. Note that
6 &6, but the equality may not hold. One easily proves
that the centralizer is an invariant subgroup of the nor-
malizer. %e denote the quotient by

l

if there is a u such that 6=[0(n)]„. For any case, and as
was noted in Ref. 15, if one finds a (stable) fixed point u'
by the action of QG (since NG acts on W& only through
this quotient), one can form a QG orbit of (stable) fixed
points [this is due to the O(n) covariance of P]. Let us il-
lustrate these different remarks by examples. It is tradi-
tional to denote by e,

(25)

where the xP's are O(n)-covariant polynomial vector
fields on W4. It is convenient to write explicitly the x P as
a sum of homogeneous polynomials of degree M,

KP g XPM ~ EPM +~M(~4) (28)

where ~M(~4) is the vecto«pace of homogeneous poly-
nomials of degree M on W4. The fixed points defined by
(12a) are also functions of e, and physically they must go
to zero with e, so they are of the form

this invariant of the symmetry group B„of the n-
dimensional (hyper) cube. Up to conjugation by O(n), for
n =2 the only irreducible strict O(2) subgroup is

C4„6=82 ——C4„——6 and 1=2; indeed any u 6W4 " is of the
form u =as+Pc. For n =3, while there are five possible
conjugated classes of groups 6, namely T, Ti„Td, 0, and
OI„ they correspond to a unique 6=OI, ——83 and again
1=2 and u =as+Pc. There are many more possible 6 for
O(n), but as shown in Ref. 16 there are only 21 conjuga-
tion classes of centralizers 6 and only 13 conjugation
classes of isotropy groups [O(4)]„. For n =3, NG ——6, but
for n =2, NG Cs„, and so ——QG is a two-element group,
which naturally leaves s invariant but changes the sign of
the orthogonal (harmonic) polynomial

w =4c 3s =Pi 6$i$—2+$2 . —4 2 2 4

The renormalization equation cannot be computed ex-
actly; Wilson showed how to compute it as a power ex-
paiisioii iii e =4—d, so'

» Ref. 1O it is proved that the equality holds if and only u'(e)=e u(e), a&0. (29)
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Here, as we will see below, we can take a=1; then the
fixed-point equation (12a) becomes

00

g @' «pM(u)=0==-e ' g PS"'(u)=0, (30)

«pM
K+M =L+Lp

Assuming a power-series expansion,

(30')

K,M L=0 e'us . (31)

where we have grouped together the terms with the same
power in e, factorized the lowest e power, and used the
short notation

The equation for a fixed point u' =eu reduces to a system
of equations

g"(up) =0, (32a)

dP' '(u)

Q=Qp
u, +p'"(up) =o, (32b)

dQ
Q2+

u =up du

dP' '(u)
dQ

Q
dP'"(u)

Q)+
Q =Q) dQ Q=Qp

ui+p' '(ui)=0, (32c)

We recall that

Q =Qp
us+p( pu, ui, . . . , us i)=0 . (32d)

dP' '(u)

Q =Qp
4

is inversible (33)

we can solve the linear equation system (32b) and succes-
sively all equations (32) up to the required order in the e
expansion (31). The validity and the convergence of the e
expansion (31}are a difficult and unsolved problem. We
assume here that (31) makes sense and defines u as an ana-
lytic function in e If the inver. tible operator (33) is posi-
tive, then for some range in e, Eq. (12b) is satisfied and
the corresponding fixed point is stable. Hence with the
optimist assumptions on the e expansion we have obtained
the following result

Theorem 1. Solutions of Eq. (32a) that satisfy (33) yield
expansion (31) by solving successively the linear systems
of equations (32b)—(32d). These expansions are fixed-
point solutions of the renormalization-group equation
(12a). We will call them regular fixed points. For them,
the stability condition (12b) reduces to

dP'0'(u }
(34)

dQ
&O.

Q =Qp
4

When condition (33) is not satisfied, one must apply the
bifurcation theory (see, e.g., Ref. 17 for a recent review);
this will not be done here.

The e expansion of the renormalization equation has
been computed for the isotropic (u =s) and cubic (u =c)

dP(u)
v = lim8 [p(u+Ov) —p(u)] .

du 8~0

We have already pointed out that u CW4. Therefore for
any solution of the nonlinear equation (32a} such that the
operator [(restriction of dp' '/du(up) to the eigenspace

4)]

dP
dQ

0= —i 6u, u)+ —,(1+ , e)(u „u—,u) —,(1———e)=(u)

+ (1+—,e)(u, u)',1

48n

where

(35)

:"(u)=
i,j,k, l,p, q, r, s

Qijpq pqkl ikrs Qrsj l ~ (36)

(1+—,
'

e)(u, u) ——,', (u „u,u),
24n

(37)

——2= ——,(1+—,e)y(u)+ —„(1—e)(u, u) .
V

(38)

Since the elements of W4 are rank-4 tensors on g„, by
contraction of indices it is simple to count the number of
linearly independent homogeneous polynomials in
M (M4) that one can form from a given u EW4, which
are O(n) invariants or components of O(n)-covariant vec-
tor field on M4. Using S as the number of O(n) invari-
ants and V as the number of O(n)-covariant vector
fields, we find the following for m & 5:

symmetry in Refs. 3 and 4, respectively. For the case of a
general quartic polynomial Q with irreducible isotropy
group [O(n)]„ the computation of p up to second order in
e [i.e., P' ',P'",P' '] has been made by Brezin, Le Guillou,
and Zinn-Justin. As was noted by Wallace and Zia', up
to this order, p is a gradient. The notations introduced
here and Eq. (20) (not used in Ref. 5) yield the following
expressions for p and the critical exponents g and v com-
puted in Ref. 5:
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S
~m

dP' '(u)
du

dP'o'(u)

cfQ

u =s& +0)
4

(46a)

(46b)

uo+ 2 uov &0 =O

We obtain for the lowest order in e of the critical coeffi-
Clent

rI(euo) = (uo, uo),
24n

v(duo)-' —2= ——,
' ey(uo),

d'y"'(u)
du

(41)

=3&'„—I (42)

[where &„- has been defined in (17)].
Theorem 1 and (39) show that the regular fixed points

duo are given by idempotents of the O(n)-covariant alge-
bra v defined in (16). Since (39) is a second-degree equa-
tion, either the set of regular fixed points is an algebraic
manifold [e.g., orbits of QG defined in (23)] or it is a
discrete set of at most 2 points.

The number of discrete regular fixed points is & 2',

1= ldms g (43)

Since for m =1,2, 3 V =S~+i, this proves the follow-
1ng.

Lemma 1. Any O(n)-covariant vector field on Wq that
is an inhomogeneous polynomial of degree &3 is a gra-
dient vector field.

The remark made in Ref. 18 that P is a gradient was
trivial, since Ref. 5 gives p as a third-degree inhomogene-
ous polynomial, but the conclusion was interesting (e.g. ,
absence of strange attractors). However, we will give
stronger results here. It is not known if higher-order
terms in the c expansion of p are still gradients, which is
not likely, but this is irrelevant for the application of
Theorem 1,

The application of the procedure defined in (30) and
(31}to Eqs. (34) and (35) yields Lo ——2 and

dit' '(u) go)( )
Q 9=QO

4

Equation (46a) shows that when I=dime ——1 [e.g.,
6 =0(n)] s given by (44) is the only fixed point and is
stable for all n E. quation (46b) shows that s is a regular
fixed point for n+4. Both equations show that s is a
stable fixed poiilt foi ii (4.

Regular stable fixed points correspond to minima of the
polynomial

f (u) ~~G (47)

g(A, )=P [(1—A, )uo+Auo]

=
6 I [(uo~uo) —(uo~uo)]A (2A —3)—(uo~uo) ) (49)

When uo and uz have different length, g(A, ) has two
extrema —one for A, =O (point uo) and one for A, = 1 (point
i7o). If the polynomial g has a higher value at the shor-
test extremum, then P(A, ) is concave and this extremum is
unstable. Therefore the longest extrema are the only can-
didates for regular stable fixed points. Assume that we
have two of them u o and Uo of the same length
(uo, uo)=(Uo, uz)=C; then f(A, )=—C/6. The two Hes-
81ans

d P(u)
8Q

dP'o'(u)

du

at Qo and Uo have zero expectatlon value OQ the vector
uo —Uo. But this vector uo —Uo is not an eigenvector with
zero eigenvalue of either Hessian; indeed,

with

g =—,
' [(u „u,u )—(u, u )] .

At an extremum uo [solution of (39)] the value of this po-
lynomial is

it (uo)= ——,'(uo, uo) .

We can now prove the following.
Theorem 2. If it exists, the stable regular fixed point is

unique. Proof: Consider two extrema of it, labeled u, and
Uo. We study the restriction of f on the straight line de-
flllCd by uo aild Uo'.

One fixed point is proportional to s; it is given by esz with

6$0= n+8
For u G N4 'e&4 ', one obtains (see, e.g., Ref. 10)

&v, u =
3 [)'(u)$+2u)] .

dP '(u)

Q
(uo —Uo) =uo+oo+3uo oo

Q =f70
V

(uo —Uo) .

(50)

T»s shows that ~q ', A4 ', and therefore W4 ' are cigcn-
spaces of &„ it also allows computation of the corre-
sponding eigenvalue:

If we assume this vector vanishes and if we take its scalar
Plodllct wl'th u o aild Uo, wc obtaill ( uo, u o }
=(Uo, uo)=(uo, uo), which is impossible since uo&Uo. It
is easy to prove that if a symmetric operator, e.g.,
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d211,(o)(u)

dQ

d 1l (u) &0

d 1( (u)
Qo —Uo,

du
(uo —Uo) =(uo, uo) —(Uo, uo) .

This verifies again that at the longest extrema uo (which
is unique) the expectation value of the Hessian

is positive in the (at most 2) direction uo —Uo of the
1-dimensional space W4. This does not ensure that

has zem expectation value for a vector, which is not an
eigenvector, then it has both positive and negative eigen-
values. This remark shows that uo and v& are not stable
[condition (33) is not satisfied]. This concludes the pmof
of the theorem Note that the isotro y group of the stable
point is &KG, the normalizer of

Is this stable fixed point physically acceptable' We
note incidentally that for every fixed point

uo ———,uo„uo ———', trr'„P 0 when /&0, since it is the

trace of a positive matrix (here the square of a real sym-
metric matrix).

The renormalization-group trajectories are lines of
greatest slope [orthogonal to the level lines 11 (u) =const].
Those trajectories passing through a local maximum and a
saddle point belong to the boundary of an attractor basin.
The origin 0 is the only local maximum of P, hence the
corollary.

Corollary. For the nonstable fixed points euo&0, the
half rays IA,uo j, A, ~O belong to the boundary of the at-
tractor basin (up to lowest order in e). This boundary is a
convex cone of vertex 0.

For n (3, the isotropic fixed points are stable (46), so it
is the only stable point for n (3. This was proven in Ref.
5. Since the stable point has greatest length, Eq. (40)
shows that it has the largest critical exponent g; this
proves the intriguing conjecture of Ref. 5.

Given two fixed points uo, uo from Eq. (50) we obtain

and that uo is a local minimum. For years no stable fixed
points were known when 1&3. This led Dzyaloshinsku'
to acquire the conviction tbat this was due to a general
consequence of some kind of topological property of the
renormalization group. Counterexamples to this conjec-
tuI'c have been g1vcn independently by Grinstcin and Mu-
kamel and by the author' for arbitrary large n (for
phase transitions in crystals n divides 48 and for n =48,
l =6 in the given counterexamples).

Finally we give a proof of some results established in
Ref. 5 for regular fixed points. The relation
(u „u,tu) =(u, u „iu) applied to the triple (s,uo, uo) yields

—(uo, uo) =y(uo)[2 —y(uo)) .
Pl

If uo+s,

(uo, uo ))0- - 0(y(uo)(y(s)= . (52)
2(n +2)
n+8

Equation (51) gives a relation between the lowest approxi-
mation of the critical exponents:

12'(duo)=[2 —v(duo) '][a—2+v(cup) '] .

Equations (52) and (41) show that @so is the fixed point
with the lowest value of v
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