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Dilute Ising ferromagnet: Its physical properties
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Within the new type of correlated effective-field theory, which substantially improves the
molecular-field approximation, we calculate the transition temperature, the critical concentration
for site percolation, magnetization, correlated effective parameter, and initial susceptibility associat-
ed with the dilute ferromagnetic Ising system on a square lattice. The results are qualitatively satis-

factory; the critical concentration I', is determined as P, =0.564. The effect, on initial susceptibili-

ty, of the (eventually) coexisting finite and infinite clusters is exhibited. It is shown that the corre-
lated effective parameter exhibits some interesting behavior as a function of temperature for select-
ed values of concentration of magnetic atoms.

I. INTRODUCTION

There is a long history of research on the dilution prob-
lem by nonmagnetic atoms in a ferromagnet. It is now
well known that the critical temperature for a phase tran-
sition decreases monotonically as the concentration of
nonmagnetic impurities increases, and that the transition
temperature vanishes at some nonzero value of the con-
centration, which depends on the topology of the lattice
structure. ' Since the pioneering work of Sato et al. ,
much work has been done concerning the behavior of the
transition temperature as a function of nonmagnetic im-
purities. The problem is studied by using a variety of ap-
proximations and mathematical techniques. Nevertheless,
the physical properties, such as magnetization, susceptibil-
ity, specific heat, and short-range order, as functions of
concentration and temperature have not been studied ex-
tensively in the dilute Ising ferromagnet.

Recently, Kaneyoshi et al. ' have developed for the
spin- —, pure Ising model a new type of correlated
effective-field theory. The theory yields values for the
critical temperature and other thermodynamic properties
that are identical to those of the Bethe-Peierls approxima-
tion, although the approach is completely different in its
formulation from the Bethe-Peierls method. The ap-
proach has already been applitxi to a variety of physical
problems, such as pure anisotropic systems, dilute fer-
romagnets, and surface magnetism. In particular, most
of these works have proved that the correlated effective
parameter introduced in the theory (originally due to
Lines ), which is basically a measure of the short-range or-
der, shows some interesting behavior in each problem.

In the present stork we study the dilute spin- —, Ising
ferromagnet on a square lattice and calculate the most
rclcvallt thcH110dynamical quanti ties (tl ailsltloil tcnlpcl'R-
ture, magnetization, correlated effective parameter, and
zero-field magnetic susceptibility) within the correlated
effective-field theory. This approach is in much the same
spirit as the early works based on the effective-field con-
cept. While wc do llot cxpcct tllc effective-field Rppl'oxl-
mation to yield accurate values in the critical region, due

to the absence of long-range fluctuations, we do expect to
obtain reasonable values for the critical concentration and
the expression for the phase boundary over the entire tem-
perature and concentration range. In fact, we can obtain
results that are a significant improvement on other
effective-field approximations; for instance, the critical
concentration P, is given by P, =0.564, which is near to
the best value P, =0.590 obtained froln the series-
expansion method. For other thermodynamical proper-
ties we find some interesting behavior characteristic of the
dilute Ising system.

In the next section we introduce the new type of corre-
lated effective-field theory for the dilute Ising model. In
Sec. III the framework is applied to the dilute ferromagnet
in a square lattice. The analytical forms of the relevant
thermodynamical quantities are obtained. In Sec. IV the
numerical results of such quantities are studied and dis-
cussed.

In a dilute ferromagnet magnetic and nonmagnetic
atoms are randomly assigned to the sites of a lattice
without site correlation, as if an alloy had been quenched
from a perfectly disordered configuration at high tem-
perature to a condition in which all atoms are immobile.
The Hamiltonian of the dilute Ising model is given by

where p; =+1 is the usual Ising variable, and JJ is the ex-
change interaction between spins occupied at sites i and j.
H is the external field, and g; is a random variable equal
to 1 if the site is occupied or to zero if it is empty.

Formal identities for the correlation functions of the
Ising model have appeared in the literature for some
time. The starting point for the statistics of our spin sys-
tem is the exact relation due to Callen'

(p; fi)) =([i)tsnh sz J~jpitj+%I ),
1
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where the angular bracket indicates the usual ensemble
RVCI'RgC

nique proposed by Honmura and Kaneyoshi"; upon set-
ting I i j = 1,

( )=Tr[exp( —PP') . j/Tr exp( —PP') (y;)= (cxp D '+1cytt t tanh{Px+h)
J

and p=(kIIT) '. Ii j refers to any function of the vari-
ables pt as long as l&i H. ere, in order to write the identi-

ty (2) in a form that is particularly amenable to appro»-
mation, let us introduce the differential operator tech-

where D=B/Bx is a differential operator, and ii =pH.
For a system with nearest-neighbor interaction J, Eq. (3)
can be written as follows, by using the facts that P=g,.

and exp(ap;) =cosh(a)+p;sinh(a):

(y;)=(iift; [cosh(DJ)+y; sinh{D1)]+((—I; )f)[tslth(Pa+It)],
r

5

g4+s
5=1

(1—I; ) 11 [ cosh(DJ)+ y; sich(DJ)])[tach(Px+h)]„
5'=v+1 5=1

where 5 runs over the z nearest-neighbor displacements from a central site i.
For the random configurational average, let us assume that the nonmagnetic and magnetic atoms are randomly distri-

buted in the z nearest-neighbor sites about the central site i and ignore important effects due to the environment in which

we place the cluster. Then Eq. (4) can be written as

tt=((;y;)), = g „P"(1 P)* " 11—[cosh(DJ)+y;rssinh(D/)]))„[tach(Px+h}],
n=1 5= 1

with (g;),=I', where ( )„expresses the random average.
P is the concentration of magnetic atoms. This equation
is essentially equivalent to that used by Matsudaira ini-

tially and later by other authors. "3 In other words, Eq.
(5) is an approximation for the random configurational
Rvcl'Rgc. PI'cclscly speaking, t4c random avcI'Rgc on thc
right-hand side of Eq. (5) must be a conditional average,
depending on the configuration of the magnetic atoms in
the cluster taken. At the present time, however, it is diffi-
cult to evaluate the conditional average, so that a number
of authors have replaced the conditional average with the
usual random average. In the following, we will use the
same notation Rs thc UsURl thermal RvcI'Rgc~ nRHlcly

o;= (p; ) = ((p; )),. Then the random configurational
average is always taken after the thermal average, since we
Rrc dealing %'ith 8 quenched system.

In order to evaluate Eq. (5) many authors' ' have in-
troduced Rn RppI'oxlIIlRtlon; 4y assuming thc statlstlcal in-
dependence of lattice sites,

(p;pf . pt)=-(p;)(pj) . (pt) .

This approxiination led, in spite of its simplicity, to quite
satisfactory results. In fact, the approximation essentially
corresponds to the Zernike approximation in the pure
(P= I) system. For the dilute Ising system with a square
lattice, for instance, the critical concentration I', is given
by P, =0.428, a value which is relatively close to the best
value of 0.590 obtained by the series-expansion (SE)
method. ' The approximation is also applied to other di-
luted magnetic systems, such as diluted thin films' and
diluted surfRcc.

On the other hand, Kaneyoshi et al. i have refined the
approximation based on (6) by introducing a nearest-

I

neighbor correlation parameter A, for the pure Ising model.
This is done by correlating the nearest-neighbor site (i +b)
with the central site (i) of the cluster via

pt+s=(pt'+5) +~(pt (pt) ) .

Substituting this expression into Eq. (5) yields an equation
for the averaged magnetization o as a function of the
single-site average (o), the correlated effective parameter
(A, ), the concentration (P), and the reduced temperature
(t), where t is defined by

In, order to determine I(, uniquely, another equatioii is
n.ceded. In Ref. 16, Honmura very recently has found that
the parameter l], can be determ»ed»aiytically by solving
the higher-oider correlation function, Iiamely the three-
site correlation function (p;p;+s p;+s ) In a square lattice,
instead of the pair-correlation function (p~p;+s) Intro-
duced in Refs. 3 and 4, aild that the thermodynamlcai
properties of the pure Ising model obtained are completely
equivalent to those of the B«he-pei«ls method.

No%, ln order to evaluate thc thrcc-sltc corrclatlon
function in the dilute square Ising model discussed in the
following section, let us assume that the central site i is
again occUpled RII that Rt least two nearest-neighbor sltcs
are occupied eath the probability P. Consequently, the
remaining z —2 sltcs M'c then occupied randomly. Thc
RvcI'aged cxprcsslon can bc %'rlttcn Rs~ Upon scttlng
Ii j =p;+s p;+s in Eq. (2) and following the same process
as that derived in Eq. (5),



29 DILUTE ISING FERROMAGNET: ITS PHYSICAL PROPERTIES 2771

z —2 n

((s(sss)sss ) = g „P"(( P)*— " )s+s)s;+s Ii [cosh(t)J)~)s;+s sich(D/)])[tsnh(Px ~h )],
n=0 5"(~5,5')

(9)

Substituting (7) into Eq. (9), we can obtain another expres-
sion including o., A, , P, and t. Thus we can determine the
parameter A, analytically by means of Eqs. (5), (7), and (9),
as will be shown in the next section.

In this section, we have briefly reviewed the correlated
effective-field theory in the dilute Ising ferromagnet. In
the following sections, we shall study the physical proper-
ties of the dilute ferromagnetic square lattice with the use
of these formulas. On the other hand, Taggart also has
applied the correlated effective-field theory to the dilute
Ising systems and has discussed the critical concentration
and transition temperature. However, in order to deter-
mine the parameter A, , an inverse function, instead of (9),
was then introduced:

z —1 n+1)= g „P"+'(1 P)' ' "—(s;cath t g)s;s) ),n=1 f=1

which can be obtained by substituting [i ]=coth(P + .JJ][4' ) into Eq. (2). From the beginning,
this equation neglects the possible spin configurations that
result in g.Ji][cjgj=0, for which the equation cannot be
defined. Accordingly, it does not seem reasonable to use
the inverse function.

III. DILUTE FERROMAGNET
IN A SQUARE LATTICE

In this section let us study the dilute Ising ferromagnet
in a square lattice by using the formulas given in Sec. II.
For the case of four nearest neighbors, Eq. (5) can be ex-

panded, i.e.,

O=O;

= K]~+K2&I'+]P +2u +3&'
+h (K3 +K4 & ][41 + ]p i +2 ~ +K 5 &PI+ ]Pi +2'ic i +3 Pi +4 ~ ) s

I

following, by following the same procedure as that which
led from Eq. (5) to Eq. (10):

0=(B'cr A—')o+hC'

with

(15)

A'=1 —E1 —E2+8',
8'=K,'(1—A, )2(1+2k) —(1—A, )2,

C'=K3+K4[o +A, (1—o )]

+K5[o +6o (1—cr )A, —gcT (1—o )&

+X4(1+2o2 —3o')],

(17)

where the coefficients K/ (i =1—5) are also given in the
Appendix. From Eqs. (11) and (15) we can evaluate some
thermodynamical quantities of the dilute Ising ferromag-
net in a square lattice.

2
1 —E1—E20. ———1+8 8

or from Eq. (15)

(19)

0 =,=1+A' 1 —E1 —E2
(20)

Inspecting the coefficients Ki and K2, or K 1 and K'2 given
in the Appendix, one can easily prove that the magnetiza-
tion for the pure system is well defined at T=0, namely,
o = 1 at T=0 for each case.

B. Correlated effective parameter

A. Magnetization

For h =0, the averaged magnetization cr is given by,
from Eq. (11),

where the coefficients K; (i = 1—5) are given in Appendix.
Equation (10) was then derived by expanding tanh(Px+ h )
in Eq. (5) with h and retaining the terms linear to h.

Applying the correlated approximation (7) to the spin-
correlation functions in Eq. (10), we obtain

0= (Bcr A)o +hC—
1 —E1—E2

B
1 —E1 —E2

Solving the equation, we can easily prove that the parame-
ter A, is given by

Upon setting Eq. (19) equal to Eq. (20), the correlated
effective parameter can be determined as a function of P
and t:

with

A =1—E1—E2+B,
8=K,(1—A, )2(1+2K,),
C = K3+K4[o +A, (1—o )]

+K5[cr +6o (1—o )A, —So (1—cr2))][3

(12)

(13) with

1 1 —E,'+aE,
2 E2 —aE2

1 —E1 —E2a=
1 —E1—E2

(21)

(22)

+A, (1+2o —3cr )] . (14)

On the other hand, from Eq. (9) we can also obtain the

However, the parameter (21) is only valid below a transi-
tion temperature T, (P), since in order to determine g we
used the averaged magnetizations. For temperatures
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above T, (P), another equation will be obtained later.
For the pure system, Eqs. (21) and (22) reduce to the

following by the use of the coefficients (Ei, K2, Ki, and
K2) given in the Appendix:

1 1 —tanh(2t)
for P=l

2 tanh(2t)

C'= (A' 3—B'o )

+o(1—cr)
BB'

Bh a=0
(30)

a =1 for P= 1 . (24)

Therefore the inverse initial susceptibility is given by

(A 3Bo—)+D(A' 3B'—cr )

r(C DC—') (31)

The result (23) is nothing but that of the special case
(Ji ——J2) discussed in Ref. 16.

C. Transition temperature

3E2kD=
3K2A, —1

(32)

At the transition temperature T=T, (P), the magnetiza-
tion reduces to zero; the critical line as a function of con-
centration is given by A =0. Consequently, we have

1 —Ki K2+K—2(1 —A,, ) (I+2K,, )=0, (25)

where A,, is the value at T=T,(P). By solving the cou-
pled equations (25) and (21), the transition temperature

T, (P) can be determined as a function of P.
For the special case of P= 1, Eq. (25) can be rewritten

as the following, with the use of the coefficients (Ki, K2,
K i, and K2) and Eq. (23):

(3—5x)(1+x )=0

On the other hand, the inverse paramagnetic suscepti-
bility is given by, from Eqs. (29) or (30},

(JXp„,) tC
(33}

or

(34)

In Eq. (21) the correlated effective paraineter A, was de-
fined only for the region of T (T, . In order to extend the
parameter to the region of T& T„ let us here impose a
condition, namely,

with
C C'

A A'' (35)

for P=1, (26)

which is nothing but that derived in Ref. 3. The transi-
tion temperature 1, is then given by

AT, —=2.885 for P=1,J ln2
(27)

which is equivalent to that of the Bethe-Peierls method.

D. Susceptibility

The initial susceptibility is defined by

80 t Bo.g= lim
H 0dII J Bh

1

(28)

Differentiating both sides 'of Eqs. (11) and (15) with h, we
obtain

C=(A —380 )
~h I=o

+0(1—cr )
88

(29)

and

x =tanh(2t, ),
where t, =JILT, . Therefore, the value of A,, at P= 1 is

given by, from Eq. (23),

from which we can obtain an equation determining the
parameter A, for the region of T & T, :

1 Ki E2+K—2(1——A, ) (1+2k, )

K, +K4A, '+K, A,
4

1 —K i E,'+K; (1——A, )'(I+ 2K, ) —(1—A, )'

Ki +K4A, +K'5 A4

(36}

The parameter A, is then determined as a function of P and
t. By the use of A, , the inverse paramagnetic susceptibility
(33}can be evaluated.

We are now in a position to examine the physical prop-
erties of the dilute Ising ferromagnet in a square lattice
numerically. The numerical results will be given in the
next section.

IV. NUMERICAL RESULTS
AND DISCUSSIONS

By solving the coupled equations (25) and (21), in Fig. 1

the transition temperature and the critical correlated ef-
fective parameter A,,(P) are plotted as a function of P.
The T, and A,, for the pure system are given by (26) and
(27). In the limit that T,(P)~0 and o ~0, we can obtain
the critical concentration P, as P, =0.5642. The result of
P, is extremely reasonable, since the best result of SE in

square lattice is P, =0.590. On the other hand, the A,,(P)
rapidly increases from the value A,,= —,

' at P= 1 to the
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FIG. 1. Critical temperature T, and critical correlated effec-
tive parameter A,, as a function of the concentration of magnetic
atoms. The critical concentration I', for Z=4 is given by
0.5642.

critical value A,,=0.734 at P=P„as if the effective coor-
dination number z' decreases; as discussed in Ref. 3, the
A,, for pure systems is given by

If we apply the argument to the present system, z* at
I'=I'c is given by z'—=2.362„which means that our sys-
tem ls quasi-onc-dlmcnslonal at I =Ic.

In Fig. 2, the reduced magnetization curves obtained by
solving the coupled equations (19) and (21) numerically
are shown for the selected values of P. The effect of de-

creasing the concentration of magnetic atoms is an in-
crease in the depression of magnetization over the entire
temperature range for T&T„a phenomenon which is
generally observed in dilute and amorphous ferromagnets.
Very near the critical concentration, however, the
behavior of the reduced magnetization curve is rather dif-
ferent. The curve of P=0.6 is over that of P=0.7 and

P=l

C&

~ G.6

+ Q.4

07-
l l l i

0.9 0,8 0.7 06
P

G
Q Q.2 G.4 G.6 Q.B l

FIG. 2. Reduced magnetization curves for sclcctcd va1ucs of
I'. The concentration dependence of spontaneous magnetization

is a1so depicted for the range of 0.6 & P & 1.

shows a rather slow decrease of magnetization on increas-

ing temperature. The result also reminds us of that of the
reduced magnetization curve of a quasi-one-dimensional
ferromagnet; as discussed in Ref. 15, near the critical con-
centration the magnetic behavior of a diluted two-
dimensional ferromagnet becomes similar to that of a
one-dimensional system. In the inset of Fig. 2, the con-
centration dependence of saturation moment at T=O is

also shown for the region of 0.6 & P & 1.
In Fig. 3 the temperature dependences of the correlated

effective parameter are shown for selected values of P,
which are obtained by solving. Eqs. (21) and (36). The
curve for the pure (P= 1) system is equivalent to that ob-
tained in Refs. 3 and 4. The critical value A,, for P= 1 is
given by (26). The curve for P= 1 shows a sharp max-

imum at the transition temperature, Decreasing the con-
centration of magnetic atoms, on the other hand, the
correlated effective parameter shows anomalous behavior,
especially below the transition temperature. For the con-
centration less than unity, even at T=o, the parameter
has a finite value which increases on decreasing the con-
centration of magnetic atoms. This anomalous behavior

may be related to the following fact: As discussed by
some authors, the correlated effective-field concept is
closely related to that of reaction field introduced by On-
sager. Namely, the Weiss field acting on a given spin is
the sum of two fields, the cavity field, which is the field in

the absence of the spin in question, and the reaction field
duc to thc polarization by thc spin of its neighbors. Usu-
ally this reaction field is small compared to the cavity
field and one can identify the cavity field as the Weiss
field, excluding the critical region. The fact is clearly seen
in the curve for P = 1; at a very low temperature the corre-
lated effective parameter for P= 1 has a very small value.
Increasing the number of nonmagnetic atoms, on the oth-
er hand, the cavity field simply decreases, but the fluctua-
tion of the central spin due to the reaction coming from
the random sitting of neighbors may have a finite value
even at T=0. In other words, it seems that the effect of
dilution on the Weiss field is to increase the importance of
reaction field. Thus the correlated effective parameter
may increase upon decreasmg the concentration of mag-
netic atoms. Especially near the critical concentration, the
correlated effective parameter has a large value and
behaves almost independent of temperature below T, (P).
This phenomenon may have some relationship to the
problem of spin-glasses; the spin-glass phase may be
characterized by a reaction field, which can be larger than
the cavity field, as proposed by Cyrot. '

Above the transition temperature, on the other hand,
the correlated effective parameter decreases monotonically
%'1th lncrcaslng thc temperature as shown ln Fig. 3. Rc-
plotting the values of A, at T=T, (P), it seems that the
critical values A,c for selected values of I' just lie on a
curve, as depicted by the solid line in Fig. 4. For the con-
centration near P=1, the temperature dependence of A,

above T, follows the same curve, within numerical errors,
but near the critical concentration the dependence shows a
clear difference, as depicted. by the dotted line in the fig-
UI C.

The temperature dependence of the inverse initial sus-
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T/Tc
PIG. 3. Temperature dependences of A, for selected values of

ceptibility X is shown in Fig. 5 for selected values of P.
Only for the pure (P =1) system does the initial suscepti-
bility vanis11 lil 'tile liiiiit of T~O. Fol' the coliceiitiatioii
of P, & P & 1, the susceptibility diverges twice, once at the
critical point (infinite cluster contribution) and again at
T=O (finite cluster contribution). Thus we observe the
coexistence of a Curie-Weiss —type law and a Curie-type
law within one formalism. In order to observe the
behavior of X above the transition temperature clearly, the
inverse paramagnetic susceptibility is depicted in Fig. 6
for selected values of P, which is obtained by solving Eqs.
(33) and (36). Near the critical temperatures, the results of
X~„', have all downward curvatures. A characteristic
behavior is that the deviation from the Curie-Weiss law is
observed in a wider region than that of the pure (P= 1)
system, upon decreasing the concentration of magnetic
atoms. In view of the result, we evaluate the effective ex-
ponent y(T) of the paramagnetic susceptibility defined by

y(T) =(T—T, )Xp„, dT
(37)

which was first intmduced by Kouvel and Fisher. ' By
the use of Eqs. (33), (35), and (36), we can solve Eq. (37)
numerically. The results for selected values of P are de-

picted in Fig. 7. At T=T„ the results all reduce to the
value of unity, since our approach is essentially a molecu-
lar field approximation. For higher temperatures, the ef-

0.80.6 I t 2 I.4
T/ Tc

FIG. 5. Thermal dependence of the inverse initial susceptibil-
ity for typical values of I'.

0.2

fective exponent also appmaches gradually to the value of
unity. The effective exponent shows a maximum at a
temperature T,„. A characteristic feature of the result is
that both the maximum value and the T,„ increase vnth
decreasing concentration of magnetic atoms. For crystal-
hne systems, however, it is well known that the effective
exponent decreases monotonically with increasing tem-
perature. Accordingly, the result for the P=1 system
cannot have any physical meaning, especially for the
"real" critical range, since our theory is a molecular field
appmximation. In amorphous and dilute ferromagnets,
on the other hand, the effective exponent runs thmugh a
maximum and t]he real critical range is expected to be-
come narrower than that for the pure system. Thus our
result may have some relation to the experimental results.

We have discussed the dilute spin- —,
'

Ising ferromagnet
in a square lattice. Within the correlated effective field
theory, we calculated the most relevant thermodynamical
quantities, namely critical temperature, critical concentra-
tion, magnetization, correlated effective parameter, and
initial susceptibility. Some interesting effects of dilution
come up in the thermal behaviors, especially for the corre- „

P= 0.6

PIG. 4. Concentration dependence of A, The solid and
dashed llncs arc thc tcIHpcraturc depcndcnccs of A, above thc
transition temperatuxes for I' = 1 and P =0.6, respectively.

FIG. 6. Thermal dependence of the inverse paramagnetic sus-
ceptibility foI sclcctcd values of I.
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FIG. 7. Temperature dependence of y(T) for selected values
of P.

lated effective parameter and susceptibility. The suscepti-
bility shows the effect of the eventual coexistence, in the
system, of an infinite cluster with finite ones. The corre-
lated effective parameter exhibits some characteristic
behaviors for the concentration less than unity. The result

may be attributed to the increasing importance of the re-
Rctl011 field 111 tllc Wc1ss flcld, 011 decreasing tllc collcc11-
tlat1011 of IIlagnctlc Rtollls. It ls 1111pol'tRIlt 10 1'cInal'k llclc
that the characteristic behavior (shown in Fig. 3) of the
correlated effective parameter below the transition tem-
perature is not explicitly reflected in the observable ther-
modynamical quantities. In Sec. III, the correlated effec-
tive parameter was defined separately in the regions of
T & T, (P) and T, (P) & T. Although not explicitly stated
there, it is also important to remark that the parameters
so determined take the same value at T=T,(P).

Finally, we have studied for simplicity the physical
properties of the dilute Ising ferromagnet in a square lat-
tice. Of course, the formulation discussed in Sec. II can
be applied to other dimensional dilute ferromagnetic Ising
systems. However, the framework suffers from faults
characteristic of any effective-field theory, particularly in
the critical regions and depending only on z, although it
does provide a straightforward method of determining the
thermodynamical quantities over the entire temperature
range.

APPENDIX

The coefficients K; (i = 1—5) and K (i = 1—5) in Eqs. (10) and (15) are given as follows:

EI ——
1

P(1—P) sinh(DJ)[tanh(px)]„0+2 2
P (1—P) sinh(DJ)cosh(DJ)[tanh(px)]„

+3 3
P (1—P)cosh (DJ)sinh(DJ)[tanh(px)]„0+4

&
P sinh(DJ)cosh (DJ)[tanh(px)j„

Ez 4& P cos——h(DJ)sinh (DJ)[tanh(Px)]„o+ 3 P (1—P)sinh (DJ)[tanh(Px)]„

Ez ——
1

P(1 —P) cosh(DJ)[sech (px)]„o+ 2 P (1—P) cosh (DJ)[sech (px)]„

P(1—P) oh(DJ)[ h(P )], + 4 P oh(DJ)[ h(P )]„

K4 ——
2

PI(1 —P) sinh (DJ)[sech (px)]„o+3 3
P (1—P)sinh (DJ)cosh(DJ)[sech (p„)j„

and

+6 4 P cosh (DJ)sinh (DJ)[sech (Px)]„=0,

E5 ——
~ P sinh (DJ)[sech'(Px)], 0,

T

E'I ——2 0 {1—P) sinh(DJ)cosh(DJ)[tanh(px)j„o+2
1

P(1—P)cosh (DJ)sinh(DJ)[tanh(px)]„

+
1

P(1—P)sinh (DJ)[tanh(px)]„0+2 2 P coshl(DJ)sinh(DJ)[tanh(px)]„
I

+2 2 P sinh (DJ)cosh(DJ)[tanh(px)]„2 J
t

K'z ——
1

P(1—P)cosh (DJ)sinh(DJ)[tanh(px)]„o+2 2 P cosh (DJ)sinh(DJ)[tanh(px)]„

+2 2
P sinh (DJ)cosh{DJ)[tanh(Px)]„=0,

E'I =
0 (1—P)~sinh (DJ)[sech (px)] o+ 1

P(1—P)sinh {DJ)cosh(DJ)[sech {px)]„

+ 2 P sinh (DJ)cosh (DJ)[sech (Px)],
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lt4 —
0 (1—P)2cosh~(DJ)[sech (px)] o+ 1

P(1—P)cosh (DJ)[sech (px)]„o

+ 2 P(1—P)cosh(DJ)sinh2(DJ)[sech (px)]„o+ 2 P cosh (DJ)[sech (px)]„

+4 2 P sinh (DJ)cosh (DJ)[sech (px)]„o+ 2
P sinh (DJ)[sech (px)]„

I

Ks =
2 P cosh (DJ)sinh (DJ)[sech (Px)]„

The coefficients can easily be calculated by applying a mathematical relation, e f(x)=f(x+a). For instance, the
coefficients, Ei, K2, Ei, and Ez, are given by

E, =4P(1 —P)'tanh(r)+6P'(1 —P)'tanh(2r)+3P'(1 —P)[tanh(3r)+tanh(r)]+ —,'P'[tanh(4r)+2tanh(2r)],

Kz —,'P~[—tanh(4t) —2t anh(2t)]+P (1—P)[tanh(3t) —3 tanh(t)],

K'i ——(1—P) tanh(2r )+ —,
' P(1—P)[3tanh(3r ) —tanh(t )]+—,

' P tanh(4t),

K', =—,P(1—P)[tanh(3r )+tanh(r)]+ —,P'tanh(4t ) .
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