PHYSICAL REVIEW B

VOLUME 29, NUMBER 5

1 MARCH 1984

Transport properties of spin-glasses. Effect of including Kondo-like terms

Satish K. Das
Department of Physics, University of Roorkee, Roorkee 247672, India

R. S. Tripathi
Department of Physics, Pant University of Agriculture and Technology, Pantnagar, India

S. K. Joshi
Department of Physics, University of Roorkee, Roorkee 247672, India
(Received 30 April 1982; revised manuscript received 1 March 1983)

Transport properties in spin-glasses have been studied for the s-d model using the method of the
double-time Green’s function. The higher-order Green’s functions have been decoupled to lower or-
ders using Nagaoka’s decoupling scheme. The self-energy has been obtained in a multiple-scattering
approximation. A self-consistent expression for the ¢ matrix has been obtained using Hamann’s ap-
proach, and the temperature T,,, at which the resistivity is maximum, has been calculated. An ex-
pression for the Lorenz number has been obtained, following the procedure of Nam and Fullen-
baum. The relative contribution to the Lorenz number (AL /L), where L is the contribution to the
Lorenz number due to the exchange interaction J, is lower in the spin-glass system as compared to
the Kondo system. The thermoelectric power has been calculated using the perturbation expansion
of the self-energy to order J>. It is found to contain values V,J2 and V,J3, where the second term is
very large and dominates over the first term at low temperature, and the sign of the thermoelectric
power is therefore decided by the sign of ¥, and J. The thermoelectric power involves a term such
as Q + X, where Q is the spin-glass order parameter and X is the spin-deviation correlation function.
No abrupt change in the calculation of the thermoelectric power is found around T, which is sup-
ported by the experimental data. The thermoelectric power calculation agrees well with the experi-
mental data at low temperatures but there is a systematic discrepancy between the two at high tem-

peratures due to the neglect of the electron-phonon interaction in the present calculation.

I. INTRODUCTION

In a previous paper' the present authors calculated the
magnetoresistance of the spin-glass alloys within the
framework of Edwards-Anderson (EA) model, with the
use of the method of the double-time Green’s function.?
For this we have used the decoupling approximation of
Nagaoka4; howeyer, we neglected the correlation functions
of the type (a;:laqn,sj' ) appearing in the higher-order
Green’s function. These correlation functions describe the
quasibound states between the conduction electrons and
the impurity spin. For dilute magnetic alloys Nagaoka’s
approach has been extensively studied by several au-
thors>~7 and it has been shown that such correlation func-
tions give rise to the logarithmic divergence in the resis-
tivity and a giant thermoelectric power in dilute magnetic
alloys. These anomalous properties are known as the
Kondo effect® and the corresponding dilute magnetic al-
loys as the Kondo systems. The transport properties in
the dilute magnetic alloy problem has been studied by
diverse methods. Abrikosov® used the diagramatic ap-
proach while Suhl!® used the Chew-Low method. Later
Hamann’ generalized Nagaoka’s approach and could show
that all the three methods are closely related. It is to be
noted that Nagaoka’s formulation is easy to handle be-
cause only the lowest-order decoupling is involved. Re-
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cently the renormalization group and the scaling ideas
have also been applied to the Kondo problem!! and Bethe
ansatz has been used to calculate, essentially, exactly the
energy spectrum and the susceptibility of spin-% Kondo
problem.!?

In this paper we shall study the transport properties of
spin-glasses including the Kondo-like terms in the absence
of the magnetic field by using Nagaoka’s approach and its
generalization by Hamann.” We shall study here spin-
glass alloys of noble-metal hosts with transition-metal im-
purities. In these alloy systems there is interaction be-
tween the conduction electron and the isolated impurity
spins called the s-d interaction at very low concentration
of magnetic impurities (below 0.1 at.% ) . It is argued
that the Kondo effect in spin-glasses is washed out due to
the presence of the internal magnetic fields. However,
there are compelling experimental and theoretical evi-
dences that the Kondo effect in spin-glasses may not be
completely ignored. Larsen'® has argued that the resistivi-
ty maximum temperature T,,, which is generally found to
be greater than the spin-glass transition temperature T,
can be explained by including the Kondo-like terms. The
giant thermoelectric power in spin-glasses'* ! is also rem-
iniscent of the persistence of Kondo effect. Larsen'? has
derived the expression for T, as a function of the Kondo
temperature T} in the parquet approximation with the use
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of the noise model. Recently Fischer'® has studied the
Kondo effect in spin-glasses and rederived Larsen’s result
for T,, in the modified form, with the use of the time-
dependent perturbation theory by approximating the
higher-order spin-deviation correlation functions to two-
body correlation functions. Also there is a basic difficulty
in his method in treating the spin operator S;(¢) as an or-
dinary field operator.” Because of these objections in the
earlier theories, we have here taken up the studies of the
resistivity by the method of double-time Green’s function
and by retaining the Kondo-like terms. Some other trans-
port properties like the thermopower and the Lorenz num-
ber have been studied in the spin-glass by the same
method and by retaining the Kondo-like terms.

In Sec. II we write the equation of motion for the
Green’s functions and decouple the higher-order ones into
the lower order and then average them over the impurity
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configurations. In Sec. III we obtain approximate solu-
tions for the Green’s functions and hence the self-energy
to the first order in concentration. In Sec. IV the resistivi-
ty is obtained with the use of the self-consistent expression
for the ¢ matrix along the line of Hamann,” from which
the expression for T, is derived. The Lorenz number is
calculated following closely the approach of Nam and
Fullenbaum,'® while we calculate the thermoelectric power
using perturbation method and the self-consistent ~-matrix
approach. The last section is devoted to the conclusion.

II. FORMULATION

We consider a system of free electrons interacting with
the magnetic impurities distributed randomly. The Ham-
iltonian of the system is given by’

H: Efka;sah+(Vo /N) 2 CXp[l( E— E')’l_ij]a;sak's

ks k,k',s,j
—(J/N) 3 expli( E—E’)-ﬁj][(a;I,ak',—a,Lak'l)sz+a,LakftSj+ +a,ITak,¢Sj‘] . (1
kk',j

The first term is the energy of the free electrons measured from the Fermi energy Er. The second and third terms are
the normal and exchange interactions with the strengths ¥, and J, respectively. For simplicity we assume that ¥, and J
are independent of k and k’. The summation over j extends over all the impurity sites N;. N is the total number of
atoms. a;L and ay, are the creation and annihilation operators for an electron with the wave vector k and spin s. S? and
S¥ are the components of the impurity spin operator.

To investigate the transport properties in the spin-glass phase we follow the two-time Green’s-function method. We
define the retarded double-time single-particle Green’s function for s =s'=1 as’

G )= —i0(1){[ax,(t),ai,(0)]) , 2)
where { ) is the thermal average and ©(¢) is the unit step function. Its Fourier transform is given by
Gulo)= [ _: Gu(t)e'®'dr . 3)
As usual let us write the equation of motion of the Fourier transform of Gy /() as follows:
(©—€ )Gl ) =84 +(Vo /N) 3, expli( k—G )R, 1Gg0) —(J/N) 3 expli( K—G )R, IM(0) . @)
%J aJ

I‘{;kr( o) is the Fourier transform of the higher-order Green’s function defined by
Th(t)=—i0(t)([(ag()SHD) +aq,(1)S](1),af,(0)],,. ) . (5)
I"{; (w) obeys the equation of motion,
(0 —€g )T @) =84ASF) +(Vy /N) 3 expli(G—G ")-R;ITY 1)
[

+U/N) S, expli( G—G )R, 1{{{ap (D[SEDS] (0 —S7 (DSHD] | af (00N,
q.j
— L ag (NSADSEO +SF (OS5 ()] | af1 (0) D)

—(J/N) 3 expli(g
99"

—q ") R;1{Kag,(t)a) (Dag (DS (1) | af (OO,

—Kag(Dag (Dag (DS] (1) | af (00N,
+ «aw(t)[a;rt (t)aq”f(t)*a;'l(t)aq”l(t)]sj_(t) ' a]Z'T(O) ))a,

—2{ag,(tag, (Dag(DSHD) |af (0N} ©)
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where we have used the notation { )), for the Fourier transform of the corresponding Green’s function and used the

commutation relation
[SJZ)S_F ]"‘“ +S 8]] ’
[Sj+,Sj'_ ] = 2SJZ5”' .

(7

To solve Egs. (4) and (6) we have to approximate the higher-order Green’s functions appearing in (6). For this we shall

use the decoupling scheme of Nagaoka,*

« aq,a;'laq»fS{F l a]I’1 » = (ag'Laq”TSi-‘- )« aqr | al-cr’f » + <aqTa;'lSi+ ) «aq"T l alI'T » ’

«aqla}laq"rsizlalz’t »=(aq¢a;r't )«aqu,Siz]a,I" »+ (aqla;r'zsiz )«aq"tsizla;cr‘r », (8)

Uag:SiESi | ady W=ASiS;7 Yag:|agy W,
etc. In the absence of the magnetic field, we have

(a)iap)=Cajiaz,) ,

(a;,aquS“ )——-(a;‘aq%S”L)=2(a;faq,TS’)=——2(a;laqr15”) .

From Egs. (8) and (9), Eq. (6) reduces to

9)

-

(0 —€ )T =(S7 )8+ (Vo /N) 3, expli( G—q ") R 1T —(J/N) 3, expli( G—G")-R;1(S;S; VG

q"J
+(2n] —1(J/N) 3, expli( §—
Pz
where
n,{: 2 (a}aq Yexpli(q'—q )°§j]
q
and (1)

m)=33 exp[i(d'—¢q )-Rj](a},aq,Sf ).
v

Nagaoka®® has studied the anomalous scattering of con-
duction electrons in alloys with a moderate concentration
of magnetic impurities. Our equations are very similar to
his equations. In fact one can easily check that our Eq.
(10) reduces to Eg. (12) of Nagaoka®® for j'=j, Vy=0,
S=+,and (§7)=0.

Equations (4) and (10) are the two basic equations
which have been studied by many workers for single im-
purity in various approximations. The problem is quite
involved in the spin-glass phase because of the random
distribution of the magnetic impurities. The random dis-
tribution of the impurities obviously causes the exchange
interaction among the impurity magnetic moments to
vary randomly. These spins do not have a long-range
correlation with no overall magnetization. We have to in-

]

(0—€,)Tp=(Vy /N) 3, expli( G —
q.J'

+(J/N) 3 expli(G—G")-R;1(m] —
<

3-8 ot

)Ry —(J/N)2n) —1) S expli( G —
<

q”’j‘

+(J/N mé 2 expli( g —
q"

q")R;1G (10)

troduce this feature of the spin-glass phase into Eq. (10).

The correlation term (§j §] ) between the spins at j and
J' is to be evaluated from the first principles keeping in
mind the random distribution of impurities. We have
s1mp11f1ed th1s by resorting to an approximation where we

replace ( S S ) by its average over all the impurity con-
ﬁguratlons, that is we write for ( S S ) in (10),

[€S;°S) Mav=[(S; (S ) Loy +[(8S;85;) Lo
=(Q+X)3;; ,

where [ ],, denotes the average over the impurity configu-
rations, '® and

Q=[<SJ )2]av
and
X=[(5§,8§, )]av

are the spin-glass order parameter and the spin-deviation
correlation functions, respectively. With the above ap-
proximation Eq. (10) reduces to

a ')'ﬁj]l“{;'k'

Q—X;j)Gyr 12
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where Gy, I‘Jq'k, etc. are to be understood as configuration-
ally averaged.

III. APPROXIMATE SOLUTION FOR Gy AND Ty

Equations (4), (11), and (12) are the set of coupled equa-
tions to be solved self-consistently. These equations are
still quite involved and hence it is necessary to resort to
some approximations. With V,=0, similar equations
were solved in a t-matrix approximation by Nagaoka?® for
a normal alloy by replacing n] and m] by their averages
y=n, and mMj=m, Such an approximation is
equivalent to neglecting some of the diagrams with inter-
sections of interaction lines in the calculation of Gy (w).
The presence of V, in Eq. (12) makes our task more diffi-
cult. Let us solve Eq. (12) in the -matrix approximations.
For this we set

ale=—2n,—1)(J/N) 3 exp[i(G—q")'R; T}
<

+(/N) Y expli 4—G ") R;)(m; —Q—X)G e
<

(13)
and write Eq. (12) in a more familiar form,
Tl =Gy +(GVo /N) 3 expli( 4 —G 1R 10,
g ”
where
Gi=—1—. (15)
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r ) G% +?—?IE r

= WM— > [X + XX XX

o]
= —W"*——?—O—W—

O = X + o0
FIG. 1. Graphical representation of the multiple scattering
approximation and the iterated form.

Equation (14) can be solved by using the usual tech-
nique of the multiple scattering theory. For this we treat
the first term in (14) as the inhomogeneous term and
iterate it in powers of V. A graphical representation to it
and its iterated form is given in Fig. 1. In this approxima-
tion we get

T=Gahe+(GJt/N) 3, expli( §—B )R, 160 ,
p

(16)

where t=V, /(1—V,F) is the ¢ matrix for the scattering
by a single impurity, and
1

F=(1/N)}‘,w o 17
— %k

We now substitute (13) into (14) and get

The=GJl—(2n,—1)—21g(0)1(J /N) 3 expli( G —G )R, [T
<

+Ggl(m,—Q —X)+tT(0))(J/N) 3 expli( §—7
<

')'ﬁj ]Gq’k' N (18)

where
ng— 5
glw)=(1/N)3,
7 @€
and
m,—Q—X
I‘(w)=(l/N)2—q—Q——— . (19)
. ©—€
Now we multiply Eq. (18) by exp[i( E——ij’ )-ﬁj] and sum over g and j, so that
i(k—3ad)R.ITV,, ——et~ 77 (k—3 VR IAG .,

%exp[t( k—q)R;]T T2/ (@) qz, exp[i( k—q )R ]G i (20)
where J g =J[1+tF(w)] may be considered as the effective exchange interaction. Substituting Eq. (20) into Eq. (4) we
find

Grw=81GR+(GRV* /N) 3 expli k—d )'R;1G @1

q,j )
where
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=V 142 48w

Equation (21) is the well-known equation and can be solved graphically. Equation (15) of Nagaoka®

our Eq. (21) with the exception that we have V* instead of ¥’. Henceforth we shall closely follow his work.

We average over the impurity positions in Eq. (21) and get

5kk(w)=[w—ek ——2(0))]—1 ,
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(22)

is the same as

(23)

where the overbar represents the average over the impurity positions. The self-energy =(w), to the first order in concen-

tration, is given by

%
1—V*Flo)

_ clt+2 g(0) =TT ()]
1427 558 (0) +J % T (@)F(w)

Sw)=

In order to calculate n; and m;, we have to find out the following averages:

S expli( K'—K )R, ]G
<

_| > expli( K=k’ )'ﬁj]Fkkr
<

av

Gy and T can be easily obtained by the procedure of Ref. 20. The final result i_s

14+2J 58 ()

~ o
Gk(aJ)—Gk( )1+2Jeffg(w) F

W Vol1+2J 8w
and
JeitF(0)G ()

fk(a))=
1 +2Jeffg(a))+Jeff (o) (@)

{[my—

With the use of the spectral representation of the Green’s
functions, n; and m; are given by

n=—m"" f_: do f(0) ImGy(w)

and (28)

my=—2m7"! fm d(of(co)ImI—‘k(a)) R

where f(w)=(eP*+1)~! and B=(kzT)~!. Thus we get
Eqgs. (23), (24), and (26)—(28) as our ba51c set of equations
which should be solved simultaneously in a self-consistent
manner. '

In the absence of ordinary scattering ¥,, Hamann,
Falk and Fowler,” and Bloomfield and Hamann?! studied
Nagaoka’s equations self-consistently and derived an ex-
pression for the scattering matrix which is true for all

7

temperatures (72 Ty). Subsequently Kondo® and Nagao-

ka®® incorporated the ordinary scattering ¥, and obtained
the self-consistent expression for the scattering matrix. If
we assume that the spin-deviation correlation function X
in (24) is a constant and not affected by the scattering
mechanism, Hamann’s method may be applied to the
present case also in a stralghtforward manner. In analogy
with the work of Hamann’ and Nagaoka?® we have

] JJeffF( )}

O —X+tT(@)][142J g8 (w)]—[2n — 14268 (o) [ o T ()} .

(24)

(25)

(26)

(27

S(w)=ctw)=

Lp [1— exp[2in+iAlw)]

X(w)

[XXw)+(Q+X)m?] 2

where

X(@)=—— [1—(Q+X)7¥ cos™y

dco'] ,

In|HX)| ,

N =

fD flo)—+
+¥ D w—'+id

1 r__dx
27ri 0—x+i8

2

Hix)= | X(x —18)2] +(Q+X);r
X(x—i8)*+(Q+X)r

2 1+i(mprpVy)
1—i(mppVy)

, Flo)=—inpp,

|

(29)

(30)
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where D is the width of the conduction band and 7 is the
phase shift due to the ordinary potential ¥, only. In the
following discussions we shall neglect A(w) because it
plays little role in the calculation of the transport coeffi-
cients. The Kondo temperature T} is obtained by setting
X(0)=0. This leads to

Ty =TP exp{ — 7 [Q(Ti)+X(T)17 }

where Tp=Dexp(1/7) is the Kondo temperature for
noninteracting spins.

The self-energy expression (29) is not reliable below the
Kondo temperature because in this region the localized in-
teraction between isolated impurity and conduction elec-
trons become dominant causing fluctuation in the d- or
f-electron spin S of the impurities. Also for T << Ty, the
Kondo effect prevents strong impurity-impurity interac-
tions which are the basic ingredient of spin-glass state.
Hence the transition temperature Ty must be higher than
T,. Moreover, our calculation for Q and X for the
“good-moment” system would not be reliable for T" << T.

(31)

IV. TRANSPORT COEFFICIENTS

We assume that the usual Boltzmann transport theory
may be applied to the spin-glass system. The transport
coefficients require the evaluation of the integrals?*

df(e)
de ’

K,=— [ deple’e” 3 r,(e) (32)

where p(e) is the density of states of the host electrons, v
the electron velocity, 7, the relaxation time for an electron
with spin o, and f(e€) the Fermi-distribution function. 7,
is related to the imaginary part of the self-energy X, of

the Green’s function Gy (w) through
75 '=—(1/h)ImZ (o) . (33)

The electrical resistivity p, thermal resistivity W, ther-
moelectric power S, and the Lorenz number L are given
by

p=3/e’K, ,

W=3TK, /(K,K,—K?),

S=K, /eTK, ,
L=p/WT=(K,Koq—K?)/(eTK,)? .

(34)

A. Resistivity

In the absence of the magnetic field 7, =7_ and the
conductivity o assumes the form

of

de

— 2e2pF 2

3 vy | 7(e) (35)

o de,

where we have replaced the energy-dependent p(e) and
v(e) by their values pr and vf, respectively, at the Fermi
surface. o can be calculated to any desired order in J and
Vo. In the Born approximation 7 can be easily obtained
from (24) and (33) if one sets m, =0 and all the terms
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higher than JZ%; are neglected. A simple calculation to or-
der V3 and J? yields

e,
=R V310 41]

as obtained by Fischer® and also by us.!

In this way one can find out 7! to any desired order in

J and ¥V, with the use of the perturbation approach. Our

main interest is to obtain here the resistivity maximum

temperature T,,. For this we use the self-consistent ex-
pression (29) for the self-energy and obtain

p=—3€__
2me’prv}

(36)

In(T/Ty)
[InX(T /Ty)+(Q +X)w?]/?

X |1— cos2y (37)

For most of the spin-glasses the resistivity maximum
temperature T, is greater than T;. Hence to calculate
T, we put Q=0 in (37). From the condition d p/dT =0,
simple algebra leads to

) (38)
T,

m

T,, =Ty exp TY

where X' =dX /dT.

The result (38) is similar to that of Fischer.!® We ob-
serve that T,, is dependent on the spin-deviation correla-
tion function X. To evaluate it, let us define the Green’s
function,

G;i(D=(55;(1)|8S,(0))) . (39)
The spin-deviation correlation function X jj 1s related to it
through the spectral representation,

[ <8§J '8§j ) ]av
1

d . .
= ﬁ—l—[Gﬁ(m—He)—ij(a)——le)]av

1 do .
=— f o] [ImGjj(0+in)], . (40)

Now we write?’

1
ImGj(0)]yy=—3—"
[ Ji ]av N §m2+eg

(Oeq
q

with X, =X for an ideal spin-glass and €,=Ag” or
€,= const. A is the diffusion constant. We shall assume
that €,=¢, is a constant, which in fact means a single-
mode behavior. Evaluating (40) in high-temperature ap-
proximation we obtain

— X
T 14-(Bey /m) In2

with X=(1/B)X, which is independent of temperature.?’
From Egs. (38) and (41) we finally obtain

X (41)

d=x¢y— In(xg—2)+In2, (42)
where

Xo=1In(T,, /Ty), d=1In(%,/kyT;)
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and

- €o
0= 4m2

This result is the same as obtained by Fischer'® but there
is a difference in the value of &, In the above treatment it
has been assumed that ImGj;(w) is independent of Kondo
temperature T}. It is to be noted that the single-mode ap-
proximation for the excitation spectrum used here is
crude. To compare with the experimental data one re-
quires the spectrum of excitation modes. From the above
discussions it is obvious that T, is mode dependent.

B. Lorenz number

The Lorenz number for metals containing a low con-
centration of magnetic impurities has been calculated
algebraically by Nam and Fullenbaum'® using Hamman’s’
expression for the ¢ matrix. They have shown that the
Lorenz number L shows a maximum at certain tempera-
ture Ty which may be smaller or greater than T;. In the
previous section we have seen that the form of the ¢t ma-
trix in the spin-glass phase is similar to the normal Kondo
systems. The Lorenz number L may be calculated, there-
fore, using the approach of Nam and Fullenbaum.!® If we
write 2(w)=Z2y (0)+Z2;(w), where 3;(») does not con-

tain any contribution from the ordinary scattering poten-
tial ¥, the rest of the calculation is then analogous to
Nam and Fullenbaum and we get

L/Ly=1+0.6666G(1,y) , 43)

where Ly=K(0)/0(0)T is the Lorenz number when J =0
and G(1,y) is given by (44) below. It is to be mentioned
here that in principle one can calculate the Lorenz number
using the self-energy expression (29) without splitting it
into two parts. We did this mainly to compare our result
with the normal Kondo system as follows:

Co 3g(0,p)

Co=C/[2mpp(Imt,)] .

?

t, is the ¢ matrix with J =0, and

g(0,y)=1 (45)

_ Yy
2+ (Q+Xx)m)\ 2’
where
y=In(T/T}) .

It is to be noted here than unlike the Kondo system, we
get an extra temperature dependence to L through
(Q+X). The temperature T, at which L shows a max-
imum in the Kondo system is around T} which is near 1
or 2 K. To study L in the spin-glass phase and around
Ty, the knowledge of low-temperature excitation modes
become important. Several authors have studied the low-
temperature excitation modes and their effects?® on the
resistivity and specific heat. Rivier’® and also we our-
selves! have shown the 7’2 behavior of the resistivity at
low temperature in spin-glasses using Rivier’s modes.?’
The spin-deviation correlation function X calculated by
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these modes is
Q,.S5?
X= 6\/5:2/\3/2 (kB T)3/2J3/2 ’ (46)

where J3,, =T(3)£(3) with T'(z) as the T function and
§(n) as the Riemann ¢ function. Q,, is the atomic volume
and A is the diffusion constant. At low temperatures the
spin-glass order parameter Q(T) is given by?

Q(T)=S1-T/T;)~S?, 47

for sufficiently small temperatures. Substituting (47) and
(46) into (45) we get

y
— , (48)
P24+728[1+bexp(3y)]}17?

where b is a constant given by

0,S(S+1)
- 6‘/§1T 2A3/2

In Fig. 2 we have plotted AL /L, vs temperature for a
normal Kondo system (dashed curved lines) and a spin-
glass system (solid curved lines) for mp¥y=3.29 (curves Iy
and Ig), mp¥o=1.0 (curves IIg and IIx), and mp¥V(=0.5
(curves IIIg and ITIg ), where the subscripts S and X stand
for the spin-glass and Kondo systems, respectively. The
value of b=0.1 has been arbitrarily taken because the
value of the diffusion constant A in (49) is difficult to cal-
culate. From the figure we observe that the value of
AL /L is lower in the spin-glass system as compared to
the Kondo system and also the maximum in the former
system is more pronounced and shifted towards lower-
temperature values as compared to that in the latter sys-
tem. On physical ground the result looks sensible because
the role of J for the s-d interaction becomes less important
for the spin-glass system. For T/T} <<1 we find more
pronounced deviation between IIlg and IIIx as compared
to other sets of curves. In the first place the deviation is
expected because the calculation of Q and X for the good-
moment system breaks down in this temperature region.
Secondly, the curves III show much pronounced devia-
tion, which is also expected because the value of mp¥; in
this case is smaller and hence the role of the s-d interac-
tion strength is more dominant.

g(0,y)=1

(kgTw )5, . (49)

C. Thermoelectric power

We shall calculate the thermoelectric power from Egs.
(24), (32), and (34). For this we shall assume that v% and
ple) in (32) are energy independent and replace them by
their values at the Fermi surface. It is then clear that only
those terms in 7(e) which are odd in € will contribute to
the thermoelectric power. Kondo?® has demonstrated that
a giant thermopower in zero field appears in the fourth
order of the perturbation series for the relaxation time.
The thermoelectric power was found to be proportional to
J3V,. To calculate the thermoelectric power for the spin-
glass system, we shall resort to the perturbation expansion
of the self-energy (24) to the fourth order in J and V.
This is achieved by restricting the values of I'(w) to order
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FIG. 2. Plot of AL /L, for the Kondo system (dashed-line curves) and for the spin-glass system (solid-line curves) with the values
of mpV,=3.29 (curves Ix and Is), mp¥V,=1.0 (curves Ilx and Ils), and mp¥=0.5 (curves Illx and IIls).

J.sr and g(w) without exchange interaction in (19). A sim-
ple algebra yields the result

=g —;—‘lrp(Q X2 43pV oI () + 478 (@)

+47 202V fl0)—+1} , (50)

where

I(w)= f;%dé‘k=—ln o+D __“D—‘

w—D | 20

and (51
, > f@)
g@=p [ P—a%dw.

In (50) we see that the terms in VyJ? and VJ? are odd
in @ and terms in J? and J? are even in w. Hence the con-
tribution to the thermopower will come from the terms
VoJ? and VoJ? only. It is to be mentioned here that Kon-
do did not get the VyJ? term because he neglected the

principal part of F(w) defined by (17). We now substitute
(50) into (32) and evaluate K;. With the use of the results

3
I I(w)a—z—wdw= — 2p 2k, TV/D

and (52)
[1f@)—11 [% odo=r/12(kgT) ,
we find
S=+ﬂ:— [—kei ]vzpz(QJrX)
:IEZ;VoJ%VoJS /[V%+(Q+X)J2]. (53)

In the evaluation of K, we have used the Born approxi-
mation for 7. Thus as expected we get a giant thermo-
power, the sign of which depends upon the sign of J and
Vo. This was also noted by Kondo for the normal alloys.
However, in the spin-glass system the thermoelectric
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power depends on Q+X also, is temperature dependent.
There is another term V,J? present in our calculation
which might have been present in Kondo’s calculation, if
he could have taken principal value of F(w) in (17). This
term, at high temperature will become important and
hence there will be a decrease in the absolute value of the
thermopower. At sufficiently high temperature the VJ>
term may dominate over the V,J> term and this will give
rise to positive thermoelectric power. Since the term
(Q +X) smoothly varies around the temperature Ty, we do
not expect any abrupt change in the thermoelectric power
around this temperature. This is also supported by the ex-
perimental data.'* One point must be noted here that Eq.
(53) is the high-temperature result. Following the argu-
ment of Kondo,?® one should multiply the right side of
(53) by T/(T+T,) to make it applicable for the whole
temperature  range, and the resistivity term
[V3+(Q+X)J?] should include the phonon contribution

I

T sin(27)
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also. Here T is an arbitrary constant to be determined
from experimental points. Q and X have been calculated
for low temperature from Eqgs. (47) and (46), respectively,
for S= % Above T, X has been calculated from Eq. (41).
The values of mpV, and T, have been determined from
the two points of the experimental data of AuFe (5
at. %).1* We get mpV,=1.104 and T =29.82. The value
of J/Vy=—0.2 has been taken. The phonon contribution
of the resistivity has been ignored, due to which our result
deviates from the experimental curve at high temperature
(see Fig. 3). But at low temperature our result agrees well
with the experimental data. ,

As we have obtained a closed expression (29) for the
self-energy 2(w), it is worthwhile to calculate the ther-
moelectric power from this expression which will be valid
for all temperatures. We have evaluated the two integrals
K, and K, following Maki*® and have obtained

THQ+X)

2e 1—cos(2n){ In(T/Ty)/[ ln2(T/Tk)+772(Q+)()]1/2} [lnz(T/Tk)+77'2(Q+X)]3/2 :

We see that the dependence of the sign of the thermo-
power on ¥V, and the dependence on temperature coming
through Q +X remains the same as found by the perturba-
tion method. It is not difficult to see that for T >> Ty,

T (K)

0 40 80 120 160 200 21].0 280
T I I

-2

s(uv/ Kl

-10

FIG. 3. Plot of the thermoelectric power of spin-glasses. The
solid-line curve represents our calculation and the dashed-line
curve denotes the experimental results for Ty =22 K (Ref. 14).

(54)

I
(54) reduces to (53) except the term proportional to VyJ?
which is absent in (54) because in Hamann’s treatment’ of
the self-energy, F(w) is approximated by —imp.

V. CONCLUSION

We have studied the transport properties in spin-glasses
using the method of double-time Green’s function for the
s-d model. The higher-order Green’s function has been
decoupled to the lower order with the use of Nagaoka’s
decoupling scheme and retaining the terms representing
quasibound states. The self-energy of the Green’s func-
tion for the spin-glass has been obtained in multiple
scattering approximation. Using Hamann’s’ approach, we
have obtained a self-consistent expression for the ¢ matrix
and thereby calculated the resistivity maximum tempera-
ture T,,. This temperature T, is higher than Ty which is
supported by the experiments. Following the procedure of
Nam and Fullenbaum!® we have calculated the Lorenz
number L for the spin-glass system. Unlike the Kondo
system, we get an extra temperature dependence through
Q+X. With the use of Rivier’s modes at low tempera-
ture, for X, we find that AL /L, where AL is the contri-
bution to the Lorenz number due to the s-d interaction, is
lower in the spin-glass system as compared to the Kondo
system and also the maximum of AL /L, in the former
system is more pronounced and shifted towards lower
temperature values as compared to that in the latter sys-
tem. On physical ground the result looks sensible because
the role of J for the s-d interaction becomes less important
for the spin-glass system. At temperature T'/T; <<1, the
deviation in the calculation of AL /L for Kondo and
spin-glass systems is thought to be due to the fluctuation
in the impurity moments which is not being taken care of
in the calculation of Q and X.

The thermoelectric power has been calculated using the
perturbation expansion of the self-energy to order J3V,,.
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We get an expression for the thermoelectric power involv-
ing the terms VoJ? and V,J°, where the second term is
very large and dominates over the first at low tempera-
ture. Hence the sign of the thermopower is determined by
the sign of J and ¥V}, in the small temperature range. Ow-
ing to the presence of the term V,J? which becomes sub-
stantial at high temperature, there will be a decrease in the
absolute value of the thermoelectric power. At sufficient-
ly high temperature the V,J? term may dominate over the
VoJ> term and this will reverse the sign of the thermoelec-
tric power. Our expression for the thermoelectric power
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also involves a term Q+X which arises due to the spin-
glass phase. Since the term Q +X smoothly varies around
the temperature Ty, we do not expect any abrupt change
in the thermoelectric power around this temperature.
This is also supported by the experimental data.'* Our
calculation for the thermoelectric power agrees well at low
temperatures, but at high temperatures there is a sys-
tematic deviation which is thought to be due to the neglect
of contribution arising from the electron-phonon interac-
tion.
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