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Antiferromagnetic model with Neel states as ground states
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We discuss in one as well as three dimensions an antiferromagnetic model with Neel states as

ground states. Long-range order exists for this Hamiltonian. Finite-temperature properties of this

Hamiltonian can be computed through the usual Green-function method and the results obtained

are identical with those of the isotropic Heisenberg Hamiltonian through a similar method. The

reason for this identity and its implication in analysis of experimental data are discussed.

I. INTRODUCTION

Some time ago an antiferromagnetic model was dis-
cussed, for which the ground-state wave function could be
written down explicitly. ' That model and its extensions
have been studied by several authors. ' In particular,
Shastry and Sutherland show that it exhibits frustration
and dimerization effects. The ground state has no long-
range order in the two-spin correlation function but exhib-
its a type of long-range order in the four-spin correlation
function. " Using group theoretic methods, Klein has
constructed a whole class of sitnilar Hamiltonians with
known ground-state properties. Van den Broek, Caspars,
and Magnus as well as Shastry and Sutherland have for-
mulated similar Hamiltonians and studied the excitation
spectra in some cases. A cubic antiferromagnet with
known ground state has been studied also.

It is, however, well known that the elementary theory of
the Heisenberg antiferromagnet is based on the Neel states
and finite-temperature Green-function computations' de-
rived from them continue to be used for analysis of exper-
imental data. " In this paper we discuss a Hamiltonian
with Neel states as ground states. The model has strong
transverse anistropy. It can be discussed in one as well as
three dimensions and its finite-temperature properties can
be computed through the Green-function method. The re-
sults indicate that if the experimental material is known to
be an isotropic Heisenberg antiferromagnet the results
should be analyzed not by the elementary theory but by
detailed computations through other methods like series
expansions. '

II. THE ONE-DIMENSIONAL MODEL

The Hamiltonian with Neel states as ground states can
be written in one dimension as

N

H„(J,h)= g [JSt'St'+1+ —,
' b(S+S++1+S; S;+1)] . (1)

Here J&0, b &0, 0(h/J(1, N is even, and N+1=1
(periodic boundary conditions). Let us write the Neel
states as

I() 1 ts1P2+ 3P4 +N —IPN

02 Pl+2P3+4 PN —1+N

(2a)

(2b)

The ground state 4F is the completely aligned state, and
the ground-state energy is —JN/4. By a simple canonical
transformation it can be shown to have the same energy
spectrum as the Hamiltonian

E
HP( —J,h) = $ [ JSt'St'+1+—, 5(S;+St+—1+S;S;++1}].

Now, consider the operator

A = II'tr",

(4)

where tT' is the Pauli matrix and the product is taken over

with ct and P the up and down spin functions, respective-
ly. These states are the lowest eigenstates of the Ising part
of the Hamiltonian (1) with energy Eo JN/4 a——nd—the
remaining part of (1) being a sum of two raising or two
lowering operators for nearest neighbors has no effect on
these states and no contribution to the ground-state ener-

gy. Actually, a lot could be said about (1) because it is a
special case of the XYZ model studied by Baxter, ' but the
results of interest to us can be obtained directly, because
the structure of (2) is rather simple. Also, Fogedby' has
studied the ferromagnetic version of (1}and given an ap-
proximate description of the excitation spectrum.

Consider the ferromagnetic linear chain with longitudi-
nal anisotropy

N

Hp( —J,—6)= g [—JS,'S,'+1 ,
'

b,(S;+S;+1+S;St+—~1—)].
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alternate sites. The canonical transformation with A con- For o =1, the dispersion relation for small excitation ener-
nects (4) to (1) by gy and sma11 wave vector is

AHF( J—,A)A '=Hg(J, h) .

We note the following relations:

S'02= 2( —1} 6

and

S+$,=0, S $2 —0, m odd

S+P2 ——0, S~P~ ——0, m even .

The excited states of (4) can be calculated by the Bethe an-
satz. Following the same trick, we would construct the
excited state of (1), but a double periodicity appears as
there are two ground states P+ and P belonging to wave
vectors 0 and K, IcspcctIvcly. Thus thc states

y+ g eight(S++S —)y+ (10)

can be easily shown to have the excitation energy

where o=5/J. The excited states built up from the
ground state P

g, =pe''i (S++S )P (12)

have the energy

This means that the ground-state energy of (1) is J1—V/4.
To discuss the spectrum, we must also consider the

translation group of (1) and (5). If T denotes the transla-
tion operator of displacement from one site to the next,
the ferromagnetic state 4i belongs to the wave vector
k =0 as T4z 4F—.—Depending on whether we rotate the
spins at the odd or the even sites, we have two operators
A, and A„respectively. Neither commutes with T but we
have A, 4~=/, and A04'z ——P2. We note that T com-
mutes with both A, and A, . Given the spectrum and
eigenfunctions of (4) labeled by the wave vectors of the
translation group, these eigenfunctions of (4) acted on by
3 will have to be suitably mixed to make the spectrum
and eigenfunctions of (1).

Since T has the eigenvalue +1 for 4+, the states P~
and $2 have the same eigenvalue. Two normalized ground
states belonging to the eigenvalues +1 for T can be con-
structed:

III. THE THREE-DIMENSIONAL MODEL

A three-dimensional antiferromagnetic Hamiltonian
with Neel states as ground states can now be easily con-
structed. Consider a bipartite lattice and the Hamiltonian
with nearest neighbor interaction (J~ 0):

H= ,' g [ —JS,'SJ'+—, 6(S+—SJ+S; SJ+)j,
(~j)

(17)

where i runs through one sublattice and j through the oth-
er such that i and j are nearest neighbors. The factor —,

avoids double counting of bonds. The ground-state energy
is Eo ——,

'
JNq,——where q is the number of nearest neigh-

bors. On (17) we apply the un! tary transformation

where the product runs over one sublattice, and generate
the desired antiferromagnetic Hamiltonian

H„=—,
' g [JSS'+—,'5(S;+S++S; S )]

&~i &

(19)

We can have two Q operators for the rotation of the two
sublattices. They generate the two Necl states 4I and 42.
In C&~, the up spins are on sublattice A, the down spins on
sublattice 8, while the reverse happens in 42. We have
now three primitive translations, each of which takes 4i
into 42 and vice versa. The ground-state functions

4+= (4,+C,), 4-= -(4,—4,)+ 1 1

2 2

are eigenfunctions of the translation operator. The excita-
tion spectrum for J=5 has the form e-q as q~0.

The ground state (20} has the conventional long-range
order. Dyson, Lieb, and Simon' have utilized the ca-
nonical transformation (18) to prove that the two-
dimensional version of (19) will have long-range order at
finite temperature. It is likely that the Hamiltonian (19)
in three dimensions has long-range order at finite tem-
pcraturc also.

Other excited states can be computed by Bethe-type ansatz
and rearrangement as in (14).

The ground states (7) have the alternating long-range
order of the Neel states:

(p-+ ~S,'SJ
~ p +&=-45;J—+ „'(1—5~—J)( —1)'

At finite nonzero temperature, the one-dimensional sys-
tem will not exhibit long-range order.

e=J(1 cr cosq) . — (13) IV. GREEN-FUNCTION CALCULATION

From (11) and (13), the lower excitation branch has the
spectrum

,
J(1—o cosq), 0&q&m. /2
J(1+acosq), n/2&q &m.

We now apply the Green-function technique to (19}to
temperature thermodynamics.

basic equation is (Pi= 1)

«&A;»& = ([A,a] &+(([A,H~;g&& . (21)
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EGk + = S+—pSGk ++ASGk++,

EG++ =PSGk+++ASGk + . (23)

Gk (a,a'=+ or —) is the Fourier transform of the
Green function ((Ss,SP ))E with respect to the reciprocal
sublattice. Also

Let A =Ss and 8 =S~+ where g and h denote sites on the
same sublattice. The last term of (21) requires decoupling.
Following Lines' we do the simplest Tyablikov decou-
pling, we put the average value of S at a site as S (the "up
sublattice") and —S (the "down sublattice"). This is ex-
pected from the structure of the Neel states. The equa-
tions for the Green function can be written as

As T~T, from below, S—+0 and we get

S(S+1)
3k' T, )k

(32)

The expression is identical to that of Lines for the usual
Heisenberg antiferromagnet.

To calculate the parallel susceptibility, we include the
magnetic field term gp—&H Q,. S; in the Hamiltonian
(19). The average spin per site S„=S+5S and

S~=—S+5S on the up and down sublattices, respective-

ly, are no longer equal and opposite. Starting with Green
functions for the sublattice we get

S+5S= I 2( [sinh(a'/kz T)+A'sinh(b'/k~ T)]

X [cosh(a'/k~T) —cosh(b'/ksT)] ')k j
p= Jq, A, =Jg exp(ik 5) . (24)

(33)

5 joins a site to its nearest neighbor.
For the linear chain (1), b, =J, this leads at zero tem-

perature to

S(E 2JS)—
n (E 2JS+—2JS cosk )(E—2JS—2JS cosk )

a'=pS,
b'= [p, (5S) 2pgpt—tH 5S+g'p~H'

A 2(5S)2 $2S 2] 1/2

~'=(gp~H p5S)/—b' .

(34)

r

S
k

2m'

I +
E—a&S E—n2S

where

0!i 2=P+k .

Now from the relation

(8(t')A(t)) = limi f defoe
'"" "(e" —1)

g~o —ao

(27)

we can obtain using (21)

X( ((~;~)). ;,—((&;»). ;,),
(28)

(s+s„-)=s sinh(pS/kit T ) —1
cosh(ps/k~T) cosh(AS/—k&T) k

(25)

For spin- —,
'

particles, the poles give the exact elementary
excitation energies (11), (13), and (14). In three dimen-
siolls

Combining the two equations (33), we get an expression
for 5S

5S= —,
' A'sinh(b'/k~ T)[cosh(a'/k~ T)—cosh(b'/kz T)]

X[sinh (a'/k&T) —A sinh (b'/ksT)]

To obtain the zero-field parallel susceptibility X~~, we con-
sider the limit H +0 in the ex—pression

X~~ =Ngp&5S/H .

Using the expression (30) for S we obtain for temperatures
below the transition point

Ng pttsinh(AS/k& T)
X() =— = . (37)

A, sinh(ps/kz T)+p sinh( AS /kg T )

At T=0, g~~
——0. To evalute X

~

at the transition tempera-
ture T, we use the result (37) or the ordered state. Con-
sider the limit T~T, from below. Then S~O and we get

X~~(T, ) =Ng'p,'/2p . (38)

For temperatures above T„S„=Sd——5S as S=O. There
is no long-range order and we put ((S„') ) =S(S+1)/3;
then

where ( )k denotes an average for k over the N/2 values
in the first Brillouin zone. The expression for sublattice
magnetization is

2S(s+1) A'sinh(b'/k&T)

35S cosh(b'/k~ T ) —1
(39)

1 sinh(pS/kz T )——2— (30)
S cosh(pS /k~ T) cosh( As/k& T)—

At and above T„we have ((S") ) = ((S~) )
=((S') ) = —,S(S+1) and we obtain from (30) the ex-

pressiorl

sinh(ps/ks T )
—,S(S+1)=S (31)

cosh(pS/k&T) cosh(A, S/k&T) —k

Xg Pg Ai CX2
2 2

+ + + e ~ ~ (40)

with r=3k~T/S(s+1) and a&,a2 are lattice-dependent
constants.

A' and b' have now simpler forms. The series expansion
for susceptibility X~~ in inverse temperature is
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V. DISCUSSION

The thermodynamic properties of Eqs. (32), (36), (38),
and (40) are all identical with those of Lines for the iso-
tropic Heisenberg antiferromagnet. This is so despite the
fact that the Hamiltonian (19) is very different from the
isotropic Heisenberg Hamiltonian. These formulas result
from an approximate Green-function calculation, the cru-
cial feature being the replacement of the mean value (S,')
by +S for the two sublattices. It is clear that this is justi-
fied in (19) much more than in the Heisenberg Hamiltoni-
an. In the latter an additional hypothesis of broken sym-
metry has to be made but the broken symmetry has not

been rigorously demonstrated.
If the experimental material is known to be described by

the isotropic Heisenberg Hamiltonian, it would be better
not to compare the results with Eqs. (32), (36), and (40),
for they are more typical of a Hamiltonian like (19). Now
more accurate calculations are available' and those
should be used in analyzing data.

The Hamiltonian (19) should be studied further for ex-
cited states and perhaps it may be useful for some experi-
mental materials. Since the ground-state structure is sim-

ple, it may serve as the start of perturbation theoretic in-
vestigations for the XYZ-type Hamiltonians for three-
dimensional systems.
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