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Temperature and volume dependence of the thermal conductivity of solid neon
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The thermal conductivity ~ of solid natural neon has been measured by the linear-flow method
for specimens isobarically frozen from the dense-fluid phase within a high-strength steel cell. By
crossing the fusion curve at several different pressures to as high as 7 &(10' bars, crystalline samples
with molar volumes between 11.16 and 13.35 cm'/mole were grown, and for each the isochoric vari-

ation of ~ vs T was determined at a set of temperatures in the experimentally accessible range be-

tween 5 and 40 K. The large magnitude of ~ and reproducibility of the results demonstrate that the
present method of preparation and manipulation of solid neon consistently yields good-quality
specimens. An analysis utilizing the zero-degree limit of the Debye temperature So to account for
all volume dependence indicates that the array of data, when expressed in terms of the resistive
mean free path, may be rendered into a single function of the inverse reduced temperature 80/T.
The exponential variation of this common curve over more than 2 orders of magnitude is charac-
teristic of three-phonon umklapp scattering and thereby gives support to Peierls s model of heat
transport in dielectric crystals, More recent first-principles theoretical calculations are in qualitative
agreement with experiment but yield conductivities somewhat below the observed values.

I. INTRODUCTION

In dielectric solids quantized lattice vibrations, or pho-
nons, typically provide the dotninant means for the trans-
port of thermal energy, and it is momentum-
nonconserving scattering of these phonons which leads to
the dissipation of heat currents in such materials. The
underlying source of resistive phonon scattering arises
from the coupling of phonon states via lattice imperfec-
tions and/or anharmonicity of the interatomic potential.
Information about these inherent mechanisms which af-
fect the propagation of phonons in a solid may be ob-
tained from an experimental determination of the thermal
conductivity ~—a parameter which provides a quantita-
tive measure of the impedance to heat flow.

The solidified inert gases are probably the simplest
representatives of the solid state, and as such provide an
excellent laboratory for the investigation of the lattice-
dynamical properties of nonmetals. The interpretation of
thermal-conductivity data should be easiest for measure-
ments made on these substances since they so closely ap-
proximate the theoretically studied models of ideal crys-
tals. Furthermore, the relatively large compressibility of
the inert-gas solids enables one to constrain specimens
within a high-strength-steel pressure vessel in such a
manner that a-vs-T data may be acquired under essential-
ly constant volume conditions. In the absence of compli-
cating thermal-expansion effects, the experimental results
may then be directly compared with the predictions of
various theoretical computations that have been developed
in the Helmholtzian representation with temperature and
volume serving as the independent variables. In addition,
by performing measurements on samples of a gas solidi-

fied at a number of different molar volumes, the manner
by which tc depends on u may also be inferred.

To date, it is only solid helium' and argon that have
been extensively studied to determine the volume as well
as temperature dependence of their conductivities. Simi-
lar information about solid neon would also be desirable in
order to make more complete the set of data available to
the theorist on these simple systems. Although a few such
measurements have been reported, they dealt with the
low-temperature thermal conductivity of only modestly
compressed neon specimens. The present experiment, on
the other hand, is concerned with an examination of the
thermal transport behavior of neon over a broad range of
molar volumes. Attention is directed principally to those
temperatures where the dissipative phonon-phonon in-
teractions of umklapp processes dominate.

II. EXPERIMENTAL DETAILS

For solid neon, with its fcc structure, the coefficient of
thermal conductivity may be represented as a scalar quan-
tity and may be determined as the constant of propor-
tionality in the expression

Q= ttV T, —

which relates the thermal energy current density Q to an
imposed temperature gradient r7T. This definition serves
as the basis of the steady-state heat-flow method for
measuring x. It is a simple yet reliab1e technique and is
most straightforward when applied to a linear sample of
uniform cross section. The usual procedure calls for one
end of the sample to be placed in contact with a thermal
reservoir while the other end is electrically heated. Mea-
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FIG. 1. Basic experimental configuration.

surement of the power input to the heater together with
the cross-sectional area of the sample and the temperature
difference between two points separated by a known dis-
tance along the axis of the sample then enables one to cal-
culate the thermal conductivity directly using Eq. (1).

For the present study of a solidified gas at constant mo-
lar volumes, however, it is necessary to contain the speci-
mens at high pressure and low temperature. This requires
the use of a relatively thick-walled steel sample cell
suspended from the thermostatically controlled tail of a
liquid-helium cryostat. This mount serves as a heat sink
for the thermal-energy current generated by the gradient
heater attached to the closure end of the pressure cell.
The basic experimental configuration is as shown in Fig.
1.

The details of this setup are dictated by several design
criteria. For example, because of the need to withstand
high internal pressures, the sample chamber is made from
18%-Ni maraging steel with yield strength of 2070 Mpa.
This alloy possesses outstanding strength and ductility
characteristics even under cryogenic conditions. To en-
sure a bursting pressure greater than about 9)&10 bars,
and yet allow one to deal with reasonably sized specimens,
the cell was fabricated with an inner diameter of 0.6356
cm and an outside diameter of 1.0266 cm. Although the
ratio of outer to inner diameter is as small as is practic-
able, there is enough steel present that a significant frac-
tion of the energy generated by the gradient heater is not
transmitted through the sample, but is instead shunted to
the cold block of the Dewar via the wall of the pressure
cell. Since a quantitative measure of this proportion of
heat carried by the wall is required for a proper computa-
tion of the thermal conductivity of any sample, it was first
necessary to make an independent determination of the
conductivity of the maraging steel alone. This was done

by performing ineasurements on the evacuated cell at a
series of temperatures in the experimentally significant re-

gion from 5 to 40 K. No data were collected at higher
temperatures because the conductivity of the steel in-
creases to such relatively large values that virtually all of
the heat is transported by the cell wall, and the presence of
the sample in its interior becomes nondetectable within
the resolution of the instrumentation used. The radial
flow technique used by Clayton and Batchelder is better
adapted to high-temperature studies.

The principal thermometry components used to ascer-
tain the temperature field distribution of the system are a
germanium resistance element, needed for an absolute
determination of T, and a differential thermocouple of
Au+0. 03 at. % Fe and Cu construction. The latter de-
vice exhibits excellent thermoelectric sensitivity at low
temperatures and, in conjuction with a dc potentiometer
having a least-count equal to 10 nV, can directly measure

a b, T as small as 0.001 K. Since the temperature differ-
ence of interest is that across a given length of the sample,
it is important that the measuring section be located near
the central portion of the pressure cell where the surfaces
of constant teinperature are sufficiently planar that the
gradient obtained at the exterior wall is identical to that
which occurs in the specimen confined inside. It is for
this reason that the cell has a rather long slender profile
with the thermocouple junctions clamped to it at positions
several diameters away from the complicated geometry
near either end of the inner cavity.

The source of the heat flux through the experimental

region is a 1500-Q Nichrome resistor cemented to the bot-
tom of the pressure cell. It is wired in series with a vari-

able dc power supply along with a precision resistor which

is used to monitor the current in the circuit. Typically,
electrical energy supplied to the gradient heater at a rate
less than a milliwatt is all that is required to maintain a
b T between the thermocouple junctions on the order of
1% of the sample's average temperature. Nevertheless, an
accurate determination of such low power dissipations is
routine when the above-mentioned potentiometer is em-

ployed for the necessary voltage measurements.
Although the energy developed in the gradient heater is,

for the most part, constrained to flow through the sample
region, some fraction is conveyed away from the resistor
by the electrical leads and pressure tubing. By utilizing
long coiled lengths of fine gauge wire and 0.08-cm-o.d.
capillary tubing, in conjunction with appropriate thermal
anchoring of these components, it has been possible to
reduce the calculated loss along their associated thermal
paths to about one-third of one percent.

On the other hand, there may also be a contribution to
the heat current through the sample region which is not
due to the electrically generated power in the Nichrome
heater, but instead arises from the unavoidable heat leaks
into the low-temperature environment. The two principal
mechanisms —thermal radiation and transport by the few
molecules present in the imperfect vacuum envelope —are,
however, not of major consequence in the present study.
This is because the slight temperature difference between
the experimental arrangement and the surrounding
thermal shield allows for little radiative transfer, while the
cryogenic pumping action of the cold hardware surfaces
maintains an excellent vacuum so as to limit severely any
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residual gas conduction ox' convcct1on. FurthcITDorc, so
long as these unwanted heat inputs are not large and can
be assumed independent of the small amounts of energy
generated internal to the system, it is an easy matter to en-
tirely eliniinate their effect. This is done at any particular
temperature by performing two sets of measurements,
each for a different level of power dissipation in the gra-
dient heater. Manipulation of the data so obtained then
allows for the parasitic addenda to the heat current
through the sample region to be canceled by means of a
simple silbti'actioii.

Thc neon samples studied 1Q th1s cxpcr1IIlcnt werc
prepared from a 99.998% chemically pure natural isotopic
mixture of approximately 91 at. % Ne and 9 at. % Ne.
Each solid specimen of a particular molar volume v was
formed by isobaric growth from the dense fluid melt at
the appropriate point along the P-T fusion curve. The
growth conditions for the individual samples are shown in
Table I.

The method calls first for the cell to be prepressurized
at room temperature, in order to firmly seat its Teflon
sealing gasket, and subsequently cooled to the desired
neon freezing point Tf(v), while manipulating the pres-
sure in such a manner as to remain just on the fluid side
of the fusion curve. Once at this point of T = T~(v) and
P &Pf (v), the 1500-Q gradient heater is turned on and ad-
justed so that the bottom of the cell is maintained about
0.2 K warmer than the top. This helps ensure that the in-
let to the cell is not closed off by frozen neon before the
interior has been filled with solid. Likewise, premature
blockage of the connecting capillary tubing is prevented
with the use of a small resistor positioned at the tubing's
thermal anchor to the heat-radiation shield.

The pressure in the system is then gradually increased
until the onset of solidification occurs. This is manifested
by a marked relaxation in pressure as recovery occurs
from a superpressed state and the first bit of neon crystal-
lizes into the nucleation tip at the top of the sample
chamber. After the pressure has stabilized at P =Pf(v),
an overpressure of a few bars is again generated, which
drives more fluid into the cell. As this additional neon
solidifies, the pressure again drops back to the equilibrium
freezing point at which time the sequence is repeated with
the result that the horizontal interface between the coex-
isting solid and fluid phases slowly moves down the length
of the cell. This inverted arrangement is intended to allow

contaminants such as particles of dust, Teflon, etc., which
may be suspended in the fluid neon to sink to the bottom
of thc cell before they can become incorporated as imper-
fections in the solid.

When the content of the pressure vessel cavity is entire-
ly solid neon, the gradient and tubing heaters are de-
energized. This results in a frozen plug of neon forming
in the tubing entry so that the sample becomes isolated
from the external pressure generating apparatus. Finally,
an anneal for several hours is performed in an effort to
reduce structural defects and the nonuniform density dis-
tribution in the solid. The latter is due to the slight varia-
tion in growth conditions along the small temperature gra-
dient maintained across the length of the cell during the
solidification process.

Once prepared in the above fashion, each specimen is
cooled from its growth point down to the range of tem-
peratures in which the thermal-conductivity measure-
ments are to be performed. Here it is necessary to proceed
very slowly in order to minimize thermal inhomogeneities
Rnd accompanying daIYlaglng pfcssuI'c gradients. Even a
difference in temperature of a few degrees between the
ends of a sample can be sufficient to generate a pressure
difference on the order of a hundred bars in such a
clamped system. Only by exer'cising care it is possible to
reduce thermal shock to the samples and thereby prevent
excessive stresses from developing across them.

Yet, because the pressure cell is not perfectly rigid, it is
impossible to RVO1d 1ntI'oduc1ng some strain 1nto a spcc1-
men. The character of this deformation is chiefly a reduc-
tion in volume as the dimensions of the sample chamber
diminish slightly with the decrease in internal pressure
that occus when the temperature is lowered from the
freezing point to the experimentally relevant region. The
geometrical changes which occur in this manner have
been calculated and are in every case less than about
0.5%. Furthermore, for each speciinen studied, data are
acquired sufficiently far below the fusion curve that
thermal and elastic contractions have all but ceased before
these low temperatures are attained. Indeed, the volume
change ovcI' thc tcIIlpcratur'c 1Rngc 1Il wh1ch a glvcn
sample's conductivity is measured is typically only about
0.1%, so that the data may be considered as being gath-
ered under essentially isochoric conditions. Table I con-
tains a listing of the low-temperature molar volumes for
all the solid-neon specimens studied in this experiment.
Also given, to aid the data analysis that follows, are the
zero-degree Debye characteristic temperatures 80(v) cor-
responding to these molar volumes.

TABLE I. Summary of thermodynamic parameters for the experimental samples. The Debye tern-
peratures are derived from the results of Fugate and Swenson (Ref. 6).

p(P, T &0)
(cm /mole)

Neon 1A, 18
Neon 2
Neon 3
Neon 4

35.0
46.3
62.8
85.9

13.38
12.70
12.01
11.24

13.35
12.66
11.95
11.16

75.78
86.58

100,08
118.82
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Because solid neon is a material for which some
thermal-conductivity data already exist from several
sources, ' ' the initial effort of this experiment was to use
some of these prior results as a benchmark for establishing
the reliability of the present technique for determining a.
To th1s cnd, thc first samples neon 1A Rnd neon IIB wcI'c

grown at such a point on the fusion curve that, when
cooled at an almost constant volume of 13.35 cm /mole,
their internal pressure declined to only a small positive
value near 0 K. The conductivity values measured for
these specimens could then be compared with the observa-
tions of Kimber Rnd Rogers, who worked with 13.39-
cm /mole free-standing solids in equilibrium with their
saturated vapor at =1 bars. Joint consideration of these
results is facilitated in Fig. 2 in which are presented the
data of this study together with a smoothed curve
representing the low-temperature findings of Kimber and
Rogers. As can be seen, the results of these two investiga-
tions are in excellent agreement and support the validity
of the present experimental method.

Kimbcr and Rogers report that they were able to form
and maintain specimens which visual inspection revealed
to have a good RppcaIancc with polycrystR111nc boundaI1cs
on the thermally etched surfaces separated by several mil-
limeters or more. The comparable conductivity found for
neon 1A and neon 18 of the present study indicates that
their degree of perfection is similar to that of the Kimber
and RogeI's samples. It is reasonable to suppose this is

true as well for our other samples having smaHcr molar
volumes. Corroborative evidence for this assumption is
given by the fact that similar specimens grown at high
pressures for neutron scattering studies were also observed
to have grains of large dimensions and a tight mozaic
structure.

As an IIldlcatloII of just how sensIttve the low-
temperature thermal conductivity is to sample quality, the
results of White and Woods are also graphically illustrat-
ed in Fig. 2. The disappointedly low v values obtained by
thcsc 1nvcstlgators Rrc Rcknowlcdgcd to bc caused by thc
severely damaged condition of their specimens as the
internal pressure became negative upon cooling and they
tended to pull away from the walls of their Inconel con-
talnCf.

Lastly, in Rn attempt to learn something about the
volume dependence of the conductivity, a was measured
as a function of temperature along several different iso-
choric traces. In addition to the measurements performed
at 13.35 cm /mole, data were also acquired at three other
smaller volumes (see Fig. 2). The final sample had a mo-
lar volume of 11.16 cm /mole in the temperature span of
interest and was grown at 6480 bars. Preparation of speci-
mens wi. th suitably smaller molar volumes was not at-
tempted because pressures exceeding the design criteria of
the experimental cell would be required. Nevertheless,
even within this limitation, it was possible to produce and
thereupon study solid-neon samples w1th molar voluIIlcs
differing by almost 20%.

lOG

Insight into the nature of the interaction mechanisms
which impede the transport of heat in solid neon is facili-
tated if the data of Fig. 2 are discussed in terms of the
free path between those phonon scattering events respon-
sible for limiting the thermal conductivity a. A con-
venient approach is to regard the phonons as constituents
of a quasiparticle gas which pervades the crystal lattice.
In this way, the desired mean free path l between col-
lisions which retard the flow of heat may be associated
with the measured values of ~ by way of the simple rela-
tlOQ

I.O

O. l
'-

I.Q
i l

lQ

TEMPERATURE (K)

FIG. 2. Thermal conductivity of solid neon along sever'al iso-
chores. The present data are given by 0,, neon 1A, 18 (13.35
cm /mole); k, neon 2 (12.66 cm3/mole); +, neon 3 (11.95
cm'/mole); 8, neon 4 (11.16 cm3/Inole). The smoothed results
for the =1 bars experiments of Kimber and Rogers (Ref. 7) and
White and Woods (Ref. 8) are represented by the curves labeled
KR and %'%, respectively.

(2)

which is well known from the kinetic theory of gases. In
this expression U represents the molar volume, C the
specific heat capacity, and u an appropriately averaged
vcloclty of sound.

Determination of the quantities C and u needed 1n the
above formula is most easily performed within the frame-
work of the Debye model. ' For example, the heat capaci-
ty at constant volume in this context is given by

C„=9NkII(T/8) I x exp(x)[exp(x) —1] dx, (3)

with x being the reduced frequency ~&/k&T, 0 is the
Debye temperature, and X is Avogadro's number. Al-
though not solvable in closed form, this integral can be
numerically evaluated at any desired reduced tempera-
ture T/8. Also, if no distinction is made between longi-
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tudinal and transverse vibrational modes, the Debye flrst-
soUnd velocity 1s described by thc equation

u =kII8{U/6n fi X)'~

In view of these approximations, the mean free paths aris-
ing from Eq. (2) will be only approximate, but neverthe-
less they may be expected to display the proper tempera-
ture and density behavior and be of the correct order of
magnitude.

Conveniently characterizing each sample by the zero-
degree limit of its Debye temperature, the calculated
values of the mean free path I are exhibited in Fig. 3. A
proilllilcllt fcatlll'c of this gl'Rpll ls flic lllallllcl wllcl'cby fhc
matrix of data points is made to fall quite close to a com-
IIlon curve when temperature 1s normalized by Oo. Thcrc-
fol'c, wlthlll thc 11IIllts of Rccul'Rcy illlposcd by thc pl'cscllt

data, the phonon mean free paths for all the neon samples
have the same functional dependence on T/80. This sup-
ports the concept that the Debye temperature is a valid
quantity with which to parametrize the volume depen-
dence of thermal-transport phenomena in simple dielectric
solids.

Also illustrated in Fig. 3 are the mean free paths ob-
tained from the =1 bars conductivity measurements of

Limber and Rogers on natUIRl neon Nc Rnd nominally
pure Ne (containing (0.05 at. % Ne). The latter
curve is included to demonstrate the effect of the relative
content of Nc Rt low tcIIlpcI'RtUI'cs. Indeed~ lt 1s clcal
that at the lowest telnperatures attained by the above in-
vestigators, the presence of only =9% of this atomic
species in natural neon is sufficient to reduce I by nearly a
factor of 2.

Furthermore, it appears from Fig. 3 that only for values
of 80/T(12 does the contribution of the Ne isotopic
lattice distortions to the scattering of phonons begin to be-
colllc rclatlvcly Iilslglllflcallt. It, ls lfl tllls tcillpcl'Rtllrc
range, then, that the dissipative interactions of the pho-
Qons RIYlong themselves Rrc cxpcctcd to bc thc dominant
factor limiting the free path l. These are the umklapp
processes, for which wave vector is conserved only up to
an additive constant equal to a nonzero reciprocal-lattice
vector G. Such interactions may be viewed as inelastic
phonon-phonon coll1s1oQS by wh1ch wave-vector momen-
tum fIG is extracted from the momentum current distribu-
tion of the phonon gas and transferred to the crystal lat-
tice, thereby attenuating the flow of heat. Those phonon
interactions (normal processes), which satisfy the wave-
vector selection rule with 6 =0, conserve Inomentum and
need not be considered in the calculation of the phonon
free path.

The functional form of the free path at these moderate
temperatures, where three-phonon events are expected to
play a principal role, is suggested by the work of Peierls. '

Implicit in his treatment of the problem is the supposition
that I should be inversely proportional to the number of
phonons %'hich CRQ partlc1patc 1Q resistive Umk4, pp px'o-
cesses. Such phonons have wave vectors that extend half-
way or more out to the edge of the first Brillouin zone and
therefore have energies of greater than approximately
fico~(max)/2, or equivalently k&8/b, where kII8 denotes
the maximum quantum energy that can be excj[ted among
the lattice modes and b &2. Thus, because they are Bose
particles, with statistical mechanics requiring the popula-
tion ns of any mode with wave vector q to be close to the
equilibrium Planck dlstrlbutlon

l I

30 40
OH

FIG. 3. CoInputed phonon mean free paths for the neon sam"
ples as a function of 80/T. The data are identified by the same
plotting symbols as in Fig. 2. Free paths obtained from the re-
sults of Kimber and Rogers (Ref. 7) for natural neon Ne and
pure Ne are represented by the lower and upper solid hnes,
respectively.

[exp(fico' /kii T) 1]—
then the number of phonons suitable for umkiapp scatter
ing is roughly

[exp(8/bT) —1]

so that the mean free path should vary as the reciprocal of
this expression. Consequently, if 80 is again used to scale
the temperature, it seems appropriate to fit the data below
8o/T =12 In Fig. 3 with the formula

I =a [cxp(80/bT) —1] .

Utilizing a nonlinear least-squares technique to opti-
mize the fitting parameters, it is found that
Q =2.36X 10 CIIl Rnd b =1.68 y1cld thc best rcprcscnta-
tion of the umklapp-limited data in terms of Eq. (5). The
resulting fitting curve is excellent in that the experimental
points are randomly distributed about it with an 11%
average deviation, which is of the salne order as the pre-
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a=o(U") /kq8(U'") (6)

Here, U" and U"', respectively, represent the second and
third derivatives of the potential evaluated at the position
r =o of the minimum —e of its attractive well. With the
interaction potential for neon and argon expressed in the
common functional form U(r)=sf(r/o), the above for-
mula reduces to

(7)

where use has also been inade of the fact that
k&8=iri(U"/M)'~ for atoms of mass M arranged in an
fcc structure and subject to nearest-neighbor interactions
only. ' The denominator A in this relation for a is simply
the dimensionless parameter 2rrR(o Me) '~ introduced
by DeBoer' as a measure of quantum-mechanical devia-
tions from the classical principle of corresponding states.
In terms of a Lennard-Jones 6-12 potential, it follows
from Eq. (7) that

TABLE II. Best values for the adjustable parameters of the
formula I =a [exp(80/bT) —1] used to fit the mean-free-
path data in the ranges 3.95 & (So/T)A, & 13.24 and 3.75
& {Oo/T)N & 11.24.

Argon
Neon

10.2 &&10 ' cm
2.36 && 10 cm

1.66
1.68

cision of the measurements themselves.
It is likewise encouraging to note that the value of 1.68

obtained for b is consistent with the prediction made by
Peierls that it be less than approximately 2. In fact, the
agreement is quite satisfactory in view of the approximate
nature of Peierls s estimate, since this parameter is sensi-
tive to the details of the geometry of the frequency disper-
sion surfaces throughout the Brillouin zone. Furthermore,
this same value of b adequately describes the data for each
of the neon samples. The reason for this can be under-
stood in terms of the recent inelastic neutron scattering
studies on neon, which indicate all the vibrational modes
scale with compression by very nearly the same factor; i.e.,
the shape of the phonon density-of-states distribution is
practically independent of v." It is also reassuring that
analogous data for solid argon' are best fit with essential-
ly the same value of b as for neon (see Table II) in accor-
dance with these two rare-gas solids having similar inter-
molecular forces and phonon spectra. '

Just as b gives some measure of the threshold energy re-
quired by the phonons to partake in umklapp processes,
the other adjustable parameter a in Eq. (5) is related to the
strength with which such lattice waves couple. For in-
stance, smaller values of a signify a greater degree of in-
teraction between the phonons, which in turn implies a
inore anharmonic interatomic potential. Quantitatively, a
generalization of the work of Kontorova' suggests the
following relation between a and an assumed central in-
teratomic pair potential U(r):

when the values of o. and e listed by Horton are em-
ployed. This result, not unexpectedly, predicts a low-
temperature anharmonicity of solid neon which is some-
what greater than that for argon. Here again, experiment
correlated quite well with theory since the numbers listed
in Table II yield

(aN, /ap„)„p, ——0.23 .

VI. MORE FUNDAMENTAL THEORETICAL
CONSIDERATIONS

Although the description of heat transport due to
Peierls is useful for the analysis of experimental results, it
is, in a sense, not entirely complete. Indeed, the very pa-
rameters whose adjustment allow for good fits of the data
are available for this purpose only because the
phenomenological formulation is unable to specify their
values quantitatively. Nevertheless, semi-empirical ap-
proaches such as this are heavily relied upon chiefly be-
cause there is, as yet, no widely applicable self-contained
theory of lattice thermal conduction.

Of the few attempts to develop an accurate prediction
of ir from first principles, ' the effort by Julian is by
far the most ambitious. He assumed a Boltzmann-type
transport equation for determining the steady-state pho-
non distribution and dealt solely with the case in which
the collision term is governed by three-phonon scattering
events. Giving special attention to the rare-gas crystals,
he then derived an expression from which the
conductivity's absolute dependence on temperature and
volume can be directly computed.

With the use of only the appropriate interatomic poten-
tial and atomic mass as input to distinguish between neon,
argon, krypton, and xenon, it is a straightforward matter
to follow Julian's prescription and numerically evaluate
it( T,v) for any one of the rare gases. In the case of neon, a
realistic mathematical model for the intermolecular forces
has been given by Goldman and Klein. ' It entails a
Morse function for the repulsive wall and bowl of the in-
teraction energy, as well as van der Waals terms for the
long-range tail, with the two portions joined by a spline
curve. The specific form of this potential, derived from
an analysis of solid-state data incorporating three-body
forces, yields theoretical heat-capacity values in excellent
agreement with the measurements of Fugate and Swen-
son and is therefore assumed well suited for the present
calculations.

The resulting conductivity is displayed as a function of
molar volume at constant reduced temperature in Fig. 4.
The particular value T/8O ———,

' is chosen for the construc-
tion of this graph because it is common to the umklapp-
dominated regime of each of the neon samples and there-
by facilitates comparison between theory and the experi-
mental results which it is intended to simulate. Unfor-
tunately, as the figure makes clear, Julian s findings are in
serious disagreement with the data, being low in magni-
tude by a factor which becomes as large as about 4 or 5 at
low densities.

Matters were subsequently improved somewhat by Be-
nin, who carefully reanalyzed Julian's work within the
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FIG. 4. Volume dependence of the thermal conductivity of
solid neon at the reduced temperature T/80 ——1/8. The solid
linc Is thc prcdiction of Julian s thcoly (Rcf. 23) and thc individ-

ually plotted points are empirical data derived from 4, Kimber
and Rogers (Ref. 7), 0 Clemens, sample no. 10 (Ref. 3), and

present work.

framework of self-consistent phonon theory. Disappoint-
edly, however, the resulting conductivity for neon, calcu-
lated at its saturated vapor pressure density, is only about
50% larger than that obtained by Julian. Furthermore,
this correction is presumably even less at the smaller mo-
lar volumes, where the effects of the zero-point motion of
the atoms diminish in iInportance. Thus, despite its so-
phistication, the self-consistent phonon approach ap-
parently does little more than to change the qualitative
shape of the theoretical curve shown in Fig. 4; the abso-

lute magnitude of ir(theory), although slightly improved,
still remains significantly below that of the observed data.
It should be noted that any systematic inaccuracies that
could be introduced because of less-than-perfect sample

quality would, if anything, depress the measured values of
~ and therefore cannot serve to justify the discrepancy be-

tween theory and experiment.

text JU11an s Rs well Rs his owQ prcvioUs analysis wcI'c pcI'-

formed. Here, umklapp processes are taken to be suffi-

ciently infrequent at low temperatures that the desired
solution of the phonon Boltzmann equation differs only

little from that which arises when such processes are com-

pletely absent. In this way, normal processes alone Rre as-

suIIlcd to dctcfminc thc nlanncl' by which thc energy
transported through the crystal is shared among the pho-
nons.

However, Benin gives evidence that this theoretical lim-

it is, in no case, actually realized. Pointing out that uIn-

klapp processes never become entirely frozen out, he ar-

gues that even at the lowest temperatures they compete
with the normal processes in influencing the distribution
of energy among the lattice modes. Therefore, whereas all

prior treatments of the problem concerned themselves

principally with thermal phonons, more recent insights
have led Benin to equally emphasize the importance of
those few high-energy (fez »kBT) excitations always

present to undergo umklapp scattering. Incorporating
their special role into a variational calculation of the

thermal conductivity and then focusing upon lithium

fluoride and sodium fluoride, he did in fact manage to ob-

tain excellent agreement with experiment. Likewise, it is
anticipated that application of this concept to the solid

rare gases will be successful in greatly reducing the dispar-

ity between 1~(theory) and ~(experiment) which still exists
for these substances.

A promising alternative means for improving the

present theoretical results appears to be along the lines of
linear-response theory. In such an approach, the
heat-transport process is formalized not by way of a pho-

non Boltzmann equation, but rather in terms of an energy

current autocorrelation function. Since it is a measure of
the response of a system when driven by a small applied

temperature field, this function is directly related to the
coefficient of thermal conductivity. However, the diffi-

culties entailed in its evaluation presently rival those in-

herent to the successful solution of the Boltzmann equa-

tion. Because of this, little has been achieved ln the way

of explicit numerical coInputations. Yet the success with

which Werthamer and Chui implemented the correlation
function formulation to calculate the three-phonon um-

klapp thermal rclaxatioQ time ' is promising. Just Rs

their work helped explain the observed thermal conduc-

tivity of hcp helium, one may be optimistic that further

quantitative progress will be forthcoming for the heavier

rare-gas solids.
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