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The Monte Carlo technique previously developed to compute directly the free-energy difference
between two clusters containing S+ 1 and X particles is applied to the three-dimensional cubic Is-
ing model with nearest-neighbor interactions. For cluster sizes 1(g (19, at two reduced tempera-
tures (T/T, =0.4 and 0.59) it is found that down to surprisingly small sizes {N) 8) the free energy

F~ can be written as F~ Na+N——~ b+N'~ c+d +~13 '1nN, where a and ~ are given their
theoretical value for bulk phases, and b, c, and d can be understood, respectively, as the surface con-
tribution, a step contribution, and a vertex contribution. A Fisher-type model

(F~ Na +——N X+~P ' lnN) when fitted to the data yields a size- and temperature-dependent value
of cr. Other proposed models are shown to depart systematically from our data. Typical values of
nucleation rates for this model, as predicted from the present data, range from 10 to 10+ —those
expected from the classical capillarity approximation of I'~.

I. INTRODUCTION

It has long been recognized that the nucleation rate in
first-order phase transitions is extremely sensitive to the
free energy of the nucleus and especially to the interfacial
energy between the dense and dilute phase. ' The nucleus
free energy is classically evaluated following the capillari-
ty approximation, considering the nucleus as a macroscop-
ic drop, the free energy of which is the sum of a bulk and
of a surface contribution, the energy per bulk or surface
particle being set equal to their macroscopic value. This
procedure has often been questioned (for a review see Ref.
2) and various expressions have been proposed for the free
energy of the nucleus: Let us quote the Lothe-Pound
correction, the use of Fisher's droplet model, the in-
clusion of curvature effects on surface free energy (e.g.,
Refs. 7 and 8} among other more empirical approaches.

In view of the experimental difficulty for studying the
thermodynamical properties of small aggregates, the
knowledge one has of such properties often results from
fitting the nucleation rate, as predicted by the classical
Seeker-Doring theory to experimentally measured rates.
This procedure is quite common in physical chemis-
try ' ' ' as well as in physical metallurgy. " Since one of
the major interests of knowing nuclei properties would be
to predict or at least to rationalize nucleation rates, the
above procedure is not very satisfactory. Moreover, the
Becker-Doring theory rests on many intuitive assump-
tions, the range of validity of which is not well defined. '

A better knowledge of nuclei properties is certainly
desirable. Several theoretical attempts have been made to
predict the energy of nuclei. ' In view of the many diffi-
culties inherent to this problem, some attempts have been
made to measure the free energy of clusters (the quantity
which really matters in the rate of nucleation) in model
systems amenable to computer simulations: clusters of

Lennard-Jones atoms, the dynamics of which were gen-
erated by molecular dynamics, ' clusters in the Ising
model, configuration space of which was explored by a
Monte Carlo technique. ' *'

As is well known, however, free energy cannot be mea-
sured directly and must be obtained by integration of
another thermodynamic quantity along the proper path.
Such a procedure is therefore too heavy to allow systemat-
ic studies with the high precision required to discriminate
between conflicting models of nuclei.

In a previous paper, ' which we later call paper I, we
proposed a Monte Carlo technique to compute directly the
free energy diff-erence Fr+i Ftv between —two clusters
containing, respectively, %+1 and X particles. This ener-

gy difference is indeed the crucial parameter of the nu-
cleation theory. A very similar technique (although less
precise, cf. Sec. II}was proposed independently in Ref. 18.

In paper I the technique was assessed on the square Is-
ing model for which the thermodynamical functions
relevant to this study are known accurately. The tech-
nique consists of expressing the free-energy difference of
interest as a thermal average which can be computed with
high accuracy by Monte Carlo techniques. '

The main results of paper I are as follows:
(i} For the planar square Ising model with nearest-

neighbor interactions, the cluster free-energy differences

F&+&—Fz could be computed with an accuracy better
than 2.5% within reasonable times for sizes up to 45 par-
ticles per cluster, and temperature ranging from 0.4 to 0.8
times the critical temperature.

(ii} The high accuracy thus obtained together with the
availability of safe theoretical values for the thermo-
dynamical functions of the bulk phases in the planar
square Ising model allowed for discrimination between
controversial expression of Ftv. Our results are fully con-
sistent with the following expression of the clusters' free
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energy F~. (N & 10),

N——p+N '~ X+P 'r lnN+d,

wh er eN =N/C, „,C, „ is the particles concentration in
the dense bulk phase along the coexistence line between
the dense and the dilute phases.

Equation (1) gives a good representation of the data
down to surprisingly small sizes (N & 10) provided that, P
being the inverse temperature (1/kBT), p is given the
value of the chemical potential of the particles at the coex-
istence line, X is given the value of the specific surface en-
ergy of a macroscopic drop having the equilibrium
shape, ' ' r is given the recently proposed value:
x=1.25, ' and d is a positive constant which is found to
be temperature dependent and which can be interpreted as
a curvature dependence of the surface specific energy.

In other words, the results of paper I are fully con-
sistent with the capillarity description of a cluster provid-
ed that the surface-energy term is computed for the equili-
brium shape and the curvature dependence of the surface
energy is taken into account.

In the present paper we apply the technique of paper I
to the three-dimensional simple cubic Ising model. Very-
high-accuracy results are obtained which are very well fit-
ted by an expression of the form

witll NAB =2EAB —
EAA

—EBB aIld Z Is tile coo1'dlIlat1011 of
the lattice (Z =6).

The results presented here were obtained using
EBB

——EA„——0, without loss of generality. We consistently
used 10 Monte Carlo steps per 8 particle which yielded
for E&+I F~—an accuracy always better than +0.5%
within CPU (central processing unit) times of the order of
16 min for N =20 on a CDC 7600 computer.

For the interested reader, let us quote that we solved
some computations using R biased sRmpling tcchn1quc
aimed at reducing the variance of fz. For the range of
parameter values studied, no significant saving of comput-
er time could be achieved. This conclusion may, however,
not hold closer to the critical temperature.

The technique used in Ref. 18 is very similar although
Ez+I E~ is—found from a one-sided estimate, i.e., per-
forming the exploration of the configuration space of one
system (N particles) instead of two (N and N+1 parti-
cles). This simplified technique gave systematic deviation
to the more precise estimation from Eq. (3), at least in the
sytem w'e studied.

Finally, a still better estimate than that provided by
Eqs. (3) and (4) can be obtained if we do not restrict to one
the number of bonds broken or created by removing or
adding a 8 atom to the cluster. Our data showed that the
gain in precision thus obtained was not worth the increase
in CPU time. '

where p and w are given their theoretical values.
The technique is briefly recalled in Sec. II while the

data are described and discussed in Sec. III. Alternative
expressions to Eq. (2) are discussed in Sec. IV and predict-
able consequences for the theory of nucleation are briefiy
discussed in Sec. V.

II. COMPUTATIONAL TECHNIQUE

The technique has been described in paper I (Secs. II
and III). The computation starts with a cluster of N
atoms 8 embedded in 3 atoms on a simple cubic lattice;
A cubic box of M lattice sites with periodic boundary con-
ditions is used. The condition M &(N+1) ensures that
the cluster is free to propagate without reaching unphysi-
cal configurations. Metropolis's algorithm is used for
determining the probability of exchanging a randomly
chosen A-8 pair. Since 3 and 8 are not restricted to be
nearest-neighbor atoms, a very efficient exploration of the
configuration space is obtained.

For every configuration thus generated, we compute the
fraction of 8 atoms which are linked by one bond to the
cluster (fz ), and the ratio of the number of A atoms
linked to the cluster by a simple bond to the total number
of A atoms linked to the cluster (f~ ). As explained in pa-
per I, one finds after solving the computation for two cells
containing N and X+ 1 8 atoms, respectively,

m —N f~ exp( —P~)
exp P(sr+ I Zx)=— — , (3)N+1 tv+I

where 5 has the following form as a function of the pair
interaction energies (EAA, E„B,EBB):

III. NUMERICAL RESULTS: MODEI. ING THE
CLUSTER FREE ENERGY

Detailed data with an accuracy better than 0.5% have
been obtained at two reduced temperatures (T/T, =0.4
and 0.59) for sizes going from 1 to 20. Some data were
also obtained at T/T, . =0.8 and for other crystal struc-
tures (fcc and bcc). These latter data are, however, not
sufficiently complete to deserve a detailed discussion here.

Table I reproduces the data. In the second column
E~+)—Eg 1s grvcIl 1n Rgg un1ts.

Figures 1(a) and 1(b) represent the data of Table I.
%hen compared to the two-dimensional case' the curves
of Fig. 1 appear to be much more smooth at small sizes in
three dimensions than in two dimensions. It seems that in
three dimensions the noncompact configrations of a clus-
ter of given X are relatively more degenerate than in two
dimensions (contribution of nonplanar shapes); this results
in a smoothening of the jumps in Fz+I F~ which corre-—
sponds to those X which allow for compact structures.

In view of the success of the capillarity model in
describing the results in two dimensions (paper I) we first
tried to describe the data of Figs. 1(a) and 1(b) by the fol-
lowing expression:

=a +b [(N+1)'"—(N)'"]
~AB

+(pWgB) sin &+1

~AB Z( EAB EAA ) (4) with, following the notation of paper I:
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TABLE I. F~+]—F~ in units of the ordering energy ( W») as measured by the Monte Carlo tech-

nique, and deviation between experiment and simple capillarity [Eq. (5)] or complete expression [Eq.
(8)], for two reduced temperatures. (a): T/T, =0.4; (b): T/T, =0.59. Note that the results for X =1
and 2 are exact.

(F.+i —F.)i~»
measured

[(~N+1 ~N) (~N+1 ~N) ]/~As
Eq. (5) Eq. (8)

1

2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

1.5045 +0.0000
1.2741+0.0000
1.0997+0.0020
1.0410+0.0014
0.9744+0.0014
0.9311+0.0021
0.8784+0.0030
0.8542+0.0030
0.8211+0.0029
0.8005+0.0029
0.7744+0.0029
0.7632%0.0030
0.7402+0.0031
0.7248+0.0031
0.7146+0.0030
0.6977+0.0030
0.6832+0.0030
0.6800+0.0032
0.6639+0.0033

(a)
0.0344
0.0254
0.0638
0.0305
0.0287
0.0183
0.0274
0.0150
0.0168
0.0102
0.0123
0.0021
0.0059
0.0039

—0.0018
0.0005
0.0016

—0.0077
—0.0033

—0.1579
—0.0877
—0.0134
—0.0259
—0.0139
—0.0145

0.0018
—0.0049

0.0014
—0.0015

0.0037
—0.0039

0.0021
0.0020

—0.0020
0.0017
0.0041

—0.0040
0.0015

1

2
3
4
5

6
7
8

9
10
11
12
13
14
15
16
17
18
19

1.2691+0.0000
0.9292+0.0000
0.7611+0.0017
0.6807+0.0017
0.6215+0.0017
0.5836+0.0017
0.5542+0.0018
0.5293+0.0020
0.5123+0.0022
0.4962+0.0021
0.4805+0.0021
0.4714+0.0021
0.4658+0.0021
0.4490+0.0022
0.4405+0.0024
0.4389+0.0022
0.4327+0.0023
0.4238+0.0023
0.4204+0.0023

(b)
—0.3267
—0.1271
—0.0406
—0.0161

0.0013
0.0062
0.0087
0.0110
0.0086
0.0078
0.0086
0.0044

—0.0020
0.0039
0.0024

—0.0051
—0.0073
—0.0062
—0.0100

—0.5205
—0.2394
—0.1160
—0.0701
—0.0387
—0.0238
—0.0139
—0.0059
—0.0037
—0.0008

0.0032
0.0015

—0.0026
0.0053
0.0054

—0.0006
—0.0016

0.0007
—0.0021

"-" c-'
COCX

AS

where p, „and C, „are the 8 chemical potential and
concentration along the coexistence line as given by the

low-temperature expansions,

As ) coex

where X is the specific surface energy for the equilibrium
shape of a drop in the simple cubic lattice. This quantity
is not known. However, the (100) specific surface energy

has been computed using the low-temperature expansion
and two estimates of b have been deduced assuming the
equilibrium shape to be either spherical (b, ) or cuboidal
(b, ). The corresponding values of b are given in Table II.
~ has been given its recent theoretical value v.= ——,', al-

though Fisher's value (v =2.2) has also been tried and will
be discussed later. '

Equation (5) was fitted to the data, leaving b as the only
free parameter. The results are given in Table II. The b
value obtained is in the range of the two estimates b, and
b, However, carefu. l inspection of Fig. 1 and Table I re-
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FIG. 1. Free-energy difference (I"z+&—F@) in 8'z~ units as a function of E, and theoretical minus experimental values for two

fits [Eq. (5)] and [Eq. (8)]. (a) T/T, =0.4; (b): T/T, =0.59.

veals a systematic deuiation between the data and Eq. (5),
at small sizes (which is not surprising), but also at the
larger sizes which is not acceptable in the spirit of the
capillarity approximation. A better fit to the data is

TABLE II. Parameter values.

achieved by adding a X'/ term to the development of Eq.
(5),

(I'is+ i I'iv)/~~a =&—+b[(&+ I )' ' —E' ']

+c[(~+1)1/3 ~1/3]

T/Tg

0~~a =2P&~a'

p "/Wqq (Ref. 29)
C' " (Ref 29)
a [Eq. (6)]
o')g)/8 gg (Ref. 30)

b,
b measured [Eq. (5)]
b measured [Eq. (8)]
c measured [Eq. (8)]
P '~/Wgs
d measured [Eq. (5)]
d measured [Eq. (8)]

0.400
2.2170

—0.000602
0.9986

—0.000603
0.4873
2.3587
2.9264
2.680+0.016
2.9461+0.0025

—1.340+0.012
—0.0501

0.0312+0.0048
1.7129+0.0044

'In this calculation e~ ——e~~ ——0.

0.590
1.5030

—0.008 33
0.985

—0.008 45
0.3840
1.8758
2.3273
1.7060+0.0081
1.9964+0.0018

—1.4001+0.0089
—0.0739

1.7588+0.0041
3.4416+0.0020

(8)

Keeping the values of a and r as before, the data have
been fitted to Eq. (8) leaving b and c as free paraineters.
The results are given in Table II. The value of b is still in
the range of the estimates b, and b„' the c term is negatiue
and weakly temperature dependent. As seen in Fig. 1 and
TaMe I, the introduction of the W contribution to I'&
eliminates the systematic deviation at Iarger sizes.

The X'/ contribution may be viewed as resulting from
a curvature dependence of the surface free energy. Indeed,
since curvature goes as X-'", setting X~ instead of X in
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Eq. (7) with

yields Eq. (8) with

c =(eX j8"gI[)C, „

(9)
(

X—1

g [(P~, E;—)'*~'—(F~~& F~—)'""']) .
i=1

The following choice of the integration constant d en-
sures that for large N, Fg ~' Et't—' fluctuates around 0 as
it should:

pexpt
d = —(a+b+c r—lnC, ~„)

The necessity of introducing a curvature dependence of
e was already found in two dimensions [d term in Eq. (1)].
Here c is found to be negative, in agreement with
phenomenological models. ' Note the correspondence
between the notation of Eq. (9) and Tolman's notation,

where R and 5 are, respectively, the radius of the surface
of tensions and the difference between the former radius
and that of the surface of zero excess density.

The fitting procedure may be pursued as follows. Since
tllc values of F~+ I F~ llav—c bcc11 colllputcd fol every
single value of ltd, starting from 1, F~ can be found by
summation,

N —1

E&—g (E. I F.)+F

Note that El is known exactly (Fl ——Zeus). The results
are given in Table ID. As can be seen, even for the largest
N available, the computed relative precision is still found
to be smaller than 1%. Sinlilarly, a theoretical expression
F~ ' of Fz can be obtained by summation of Eq. (8),
yielding

gtheor

=aX+bX ~ +eN'~
~~a

+(p8"gtt) '~ln +1,
coex

where d is an integration constant which can be numeri-
cally determined as follows. From Eqs. (11) and (12) one
obtains

pexpt ptheor gexpt I, theor
N —

1 1

E—1

[(F E )exPt

(F F )th(:or]

where the superscript expt refers to the Monte Carlo re-
sults and where according to Eq. (12)

FI""'——a +b +c —(pR'gII ) 'r lnC, ~„+d . (14)

SIIlcc thc palRIIlctcr valllcs 111 Eq. (8) wclc c11oscll iIl R way
to eliminate the sytematic deviation between theory and
experiment for Ett+I Ett at large iti, the sum—mation on
the right-hand side of Eq. (13) yields for large values of N
a quantity which fluctuates around a constant value which
we note as

N —1

+ g [(E;~& F~)'""—(F~~& —F~)'""'—[) .
l =1

As seen in Table II, the values of d thus determined are
positive, temperature dependent, and contribute signifi-
cantly to the free energy of the cluster (Table III).

As a final check we tried the value &=2.2 (Fischer, Ref.
31) following the above procedure. A systematic deviation
between experimental values and values predicted from
Eq. (8) appears for the large clusters. The same is true for
the empirical value (v=2.09) proposed by Marro and
Toral. '4

Our data therefore support Eq. (12) which contains two
new contributions as compared to the classical capillarity
picture. Indeed, in addition to the bulk term (lV), the sur-
face term (ltd ~ ), and the logarithmic term, Eq. (12) con-
tains a "line" term (X'~') and a point term (N ).

One is tempted to relate the ltl ' term to an edge ener-

gy and thc X term to a vertex energy. Indccd, thc resis-
tance of surface to bending in the Ising-square model was
already phrased in terms of a corner energy, and the ex-
istence of line contribution to the free energy of small
clusters has been predicted in the case of a fluid lens em-
bedded in two fluid phases. "

Physically, the line term produces the curvature depen-
dence of the surface free energy. The point term might
correspond to the bending of surface steps due to surface
curvature in a direction perpendicular to the steps. This
mould be a jog energy.

The weight of each contribution to the cluster free ener-
gy is displayed in Table III. The cluster free energy is
dominated by the surface contribution which is corrected
by two major terms of opposite signs: the negative line
contribution and the positive point contribution. The log-
arithmic term is very small. For the largest cluster size
studied, the point contribution is roughly ——, the line
contribution which is ——, the surface contribution, at low
temperature. At higher temperaure (0.59T, ), the above
figures become —1 and —~, respectively.

Before ending this section let us cite the results of Table
IV. The computational algorithm we use gives as a by-
product the average internal energy Et)t of the clusters
(Table IV). In paper I (FN+1 F~) could not be c—omputed
for every single value of E up to the largest size, so that
thc knowlcdgc of thc E~ Inadc useful lnformatlon avail-
able. In the present study, fitting the internal energy gives
no further understanding of the problem. Table IV sim-
ply makes thc data available to the interested reader.
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TABLE III. Free energy of the clusters (in 8'qq units), as obtained by summation of the second
column, of Table II [Eq. (11}]and contribution of each term of Eq. (12) to the measured value. (a}
T/T, =0.4; (b) T/T, =0.59.

1

3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

3.QMS+0. 0000
4.5045 +0.0000
5.7785+0.0000
6.8783+O.0020
7.9192+0.0024
8.8936+0.0028
9.8247+0.0035

10.7031+0.0046
11.5573+0.0055
12.3784+0.0062
13.1789~0.0069
13.9533+0.0074
14.7165+0.0080
15.4566+0.0086
16.1815+0.0091
16.8961+0.0096
17.594+0.010
18.277+0.010
18.957+0.011
19.621+0.011

—0.0006
—0.0012
—0.0018
—0.0024
—0.0030
—0.0036
—0.0042
—0.0048
—0.0054
—0.0060
—0.0066
—0.0072
—0.0078
—0.0084
—0.0090
—0.0096
—0.0102
—0.0108
—0.0115
—0.0121

2.9500
4.6828
6.1362
7.4335
8,6258
9.7407

10.7949
11.8000
12.7639
13.6927
14.5910
15.4624
16.3100
17.1359
17.9425
18.7313
19.5039
20,2614
21.0051
21.7358

—1.3500
—1.7009
—1.9470
—2.1430
—2.3085
—2.4531
—2.5825
—2.7000
—2.8081
—2.9085
—3.0024
—3.0907
—3.1743
—3.2537
—3.3294
—3.4018
—3.4712
—3.5380
—3.6023
-3.6645

—0.0001
—0.0348
—0.0551
—0.0696
—0.0807
—0.0899
—0.0976
—0.1043
—0.1102
—0.1155
—0.1203
—0.1246
—0.1286
—0.1323
—0.1358
—0.1390
—0.1421
—0.1449
—0.1476
—0, 1502

1.7129
1.7129
1.7129
1.7129
1.7129
1.7129
1.7129
1.7219
1.7129
1.7129
1.7129
1.7129
1.7129
1.7129
1.7129
1.7129
1.7129
1.7129
1.7129
1.7129

1

3

5
6

8
9

10
11
12
13
14
15
16
17
18
19
20

3.0000+0.0000
4.2691+0.0000
5.1983+0.0000
5.9594+0.0017
6.6400+0.0024
7.2615+0.0029
7.8452+0.0033
8.3994+0.9338
8.9287+0.0043
9.4410+0.0048
9.9372+0.0052

10.4177+0.0056
10.8890+0.0060
11.3549+0.0064
11.8038+0.0068
12.2444+0. 0072
12.6833+0.0075
13.1160+0.0078
13.5398+0.0082
13.9602+0.0085

—0.0085
—0.0169
—0.0254
—0.0338
—0.0423
—0.0507
—0.0592
—0.0676
—0.0761
—0.0845
—0.0930
—0.1014
—0.1099
—0.1183
—0.1268
—0.1352
—0, 1437
-0.1521
—0.1606
—0.1690

0)
2.0000
3.1748
4.1602
5.0397
5.8480
6.6039
7.3186
8.0000
8.6535
9.2832
9.8922

10.4830
11.0576
11.6176
12.1644
12.6992
13.2230
13.7366
14.2407
14.7361

—1.4100
—1.7765
—2.0336
—2.2382
—2.4111
—2.5621
—2.6972
—2.8200
—2.9329
—3.0378
—3.1358
—3.2281
—3.3154
—3.3983
—3.4774
—3.5530
—3.6255
.—3.6953
—3.7625
—3.8273

—0.0011
—0.0524
—0.0823
—0.1036
—0.1201
—0.1336
—0.1450
—0.1548
—0.1636
—0.1713
—0.1784
—0.1848
—0.1907
—0.1962
—0.2013
—0.2061
—0.2106
—0.2148
—0.2188
—0.2226

3.4416
3.4416
3.4416
3.4416
3.4416
3.4416
3.4416
3.4416
3.4416
3.4416
3.4416
3.4416
3.4416
3.4416
3.4416
3.4416
3.4416
3.4416
3.4416
3.4416

IV. OTHER EXPRESSIONS OF THE CLUSTER
FREE ENERGY

The cluster free energy is often written in the form

=aN+bN +ks T — ln .
— . (16)

AB ~~a

As discussed by Fisher, ' the exponent o. should not be
identical to the macroscopic value [(D —1)/D where D is
the dimensionality] for two reasons: the larger number of

available configurations for larger clusters would increase

o, while cluster interference effects in the cluster gas at
finite density would decrease cr. According to scaling ar-

guments, Fisher concludes that 0 = I/P5 (where now P is

the critical exponent for the spontaneous magnetization
and 5 is that for the critical isotherm) or o =0.62+0.03
for small clusters in three dimensions.

A Monte Carlo study of the surface area of droplets in
the Ising model supports a different expression for the
surface term in Eq. (16): The surface area would vary as
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=0.590
/~~a
sured.

3.0000+0.0000
5.0000+0.0000
7.0001+0.0000
8.8617+0.0033

10.6941+0.0031
12.4632+0.0067
14.2051+0.0067
15.9091+0.0073
17.566+0.010
19.207+0.010
20.812+0.013
22.409+0.013
23.989+0.013
25.576+0.013
27.039+0.013
28.555+0.033
30.064+0.033
31.529+0.033
32.954+0.033
34.405+0.033

3.0000+0.0000
5.0000+0.0000
7.0000+0.0000
8.7528+0.0032

10.5232+0.0045
12.1637+0.0090
13.727+0.013
15.117+0.013
16.519+0.018
17.882+0.023
19.103+0.023
20.283+0.027
21.525%0.034
22.637+0.032
23.793+0.036
24.914+0.039
25.953+0.036
26.940+0.041
28.073+0,041
28.998+0.045

TABLE IV. Measured average internal energy.

T/T, =0.400 T!T,
U:/~„ UN

Ineasured mea

20-

10

20-

I l

Xo' with o'= (1+P)/P5 while the surface specific energy
would vary as N '~, at least for small clusters; for larger
clusters, the macroscopic behavior is recovered with
o'=(D —1)/D. The cluster size where the transition
occurs is temperature dependent, and scales with the
correlation length to the third power. We tried to fit our
data using Eq. (16) in the following way: Giving a and ~
their theoretical value as discussed in the preceding sec-
tion, we construct a log-log plot of

pexpt

aN +Ps ln
~~a Ccoex

vs N (Fig. 2}. As can be seen, the plot is curved, the tran-
sition size being at N'=5 at low temperature (0.4T, ) and
E ~11 at high temperature (0.59T~}. For the larger clus-
ters (N & X'), o =0.66 fits well the low-temperature data,
and it is not inconsistent with the high-temperature data
(for X =11 to 19, we find o =0.6 with a systematic devia-
tion pointing to an upward curvature of the plot). For the
smaller clusters (N &X') we cannot determine o at low
temperature because N' is too small, while at high tem-
perature a=0.5 is consistent with the data. As seen in
Fig. 2, o =1/P5=0. 62 is not consistent with the data at
0.59T,.

It should be stressed that the o value thus determined is
a property of the isolated cluster, while scaling arguments
leading to a=1/P5 apply to the macroscopic phase
viewed as a gas of clusters. Cluster interference effects
(excluded volume interaction) which contribute to the bulk
properties have been shown to act as an effective surface-
energy term. The data presented here should help in as-
sessing this latter term. Finally the transition size X'
varies with the temperature and scales well with the third

2 5 10 20 N
&&G. 2. Fit of E~ to Fisher's droplet model [Eq. {16)]. The

ordinate is bE in Eq. (16); o values are given along the fitted
lines. fa): T/T, =0.4; (b): T/T, =0.59. Dashed-dotted lines
represent the experimental uncertainty.

power of the correlation length extrapolated from the crit-
ical temperature.

As a last check, we compare our data at 0.59T, to the
values predicted by Penrose and co-workers ' following
an empirical fit to computer simulation data: '

P(I'„+, F„)=aln W—, 1+
(~+2)1/3

with o, = 1, P', =0.010526, and C=2.415 at 0.59T~. Fig-
3 depicts our data plotted as a function of

in[/]', (1+V/(Pf —2}'/3]. As can be seen in Fig. 3, the
values of Penrose and Buhagiar underestimate

F~+ ) F~ fol larger clu—ster sizes.
When fitted to a straight line, our data yield for

4&% & 19

~=0.959, W, =0.02873

Alternatively, Eq. (17}may be fitted to our data, leaving
o'= »nd keeping 8', and C as adjustable parameters; for
4&%&19 we get

8,=0.01115+0.00008, C =2.216+0.031.
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0(F„.,-F„)

1.0 T=O.S 9 to19

0.6

0.8
l

1.0
s

1.2 In 1 C~-2)
FIG. 3. Fit of (F~+ & F~) to —the model of Penrose et al. [Eq. (17)] at TfT, =0.59. Note that we use e~ =ass ——0 while Ref. 40

uses e~ =e„s=0. For the same reduced temperature, the values of P(F~+~ FN) repor—ted here are shifted up by 6Pe~s (=4.5089)
with respect to Ref. 40. The labels 5, 10, and 15 give the value of X for the corresponding points. The dashed line was fitted to
points 9&X&19.

V. CONSEQUENCES FOR THE NUCLEATION
THEORY

The data presented here can be used to assess the vari-
ous simplifying assumptions which are the basis of the
classical nucleation theory of unmlxing. Indeed, thc ki-
netics of unmixing in the simple cubic Ising model has
been well studied using Monte Carlo techniques. "4'4'-"
The data presented here are currently being used as in-
gredients of the nucleation theory: The results will be
compared to the data obtained on the kinetic Ising model.
These results will be published elsewhere.

A rough estimate of typical effects of the line and point
contributions to the cluster energy [Eq. (12)] on the nu-

deation rate can be found as follows. The stationary nu-
cleation rate J, is proportional to the concentration of
critical nuclei N* defined by

BF~
N ~Ã~

Therefore, Rs R flirst Rpproxlmatlon,

J, ~exp( PE~) . —

~e compare the estimates of J, given by alternative cx
pres»ons of FN, for a given supersaturation [i.e., for a
given negative value of a in expression (12)]. Thc expres-
sions of F~ are Eqs. (12) on the one band and a capillarity
expression obtained by setting c =d =0 in Eq. (12) and
giving b either the value obtained by the fit of the data
with Eq. (5) (cf. Table II), or the estimated values for a
spherical or a cuboidal critical nucleus. For the sake of
completeness, ~=0 is also studied. The computation is
done at two temperatures (OA and 0.59T, ) with two super-
saturations yielding to correct critical sizes either small
(%*=5)or large (N'=19).

Taking as a reference the value of J, as obtained using

the best expression for F~ [Eq. (12)], all capillaritylike ex-
pressions of Fz give nucleation rates within a factor of
10 —10 of the reference rate. The cuboidal shape ap-
proxirnation for the critical nucleus always results in an
underestimation of the nucleation rate (by a factor up to
10). All other approximations overestimate the nu-
cleation rate by a factor smaller than 10. Therefore,
naive capillarity descriptions of the critical nucleus leave a
range of uncertainty of 5 orders of magnitude on the true
nucleation rate. The highest sensitivity of the nucleation
rate to the choice of the expression of F~ is of course ob-
tained at lower supersaturations, but also at higher tern-
perature. This results from the temperature variation of
the surface specific energy.

The above conclusions cannot be simply compared to
the existing predictions of the effect of the curvature
dependence of the surface energy on the nucleation rate. '
Using our experimental values, we get in Heermann's no-
tations 0.4&y &0.6 which would imply a lowering of the
critical radius when the curvature correction is taken into
account. Such is not the general case for the following
reason: for the cluster sizes studied, the surface-energy
contribution obtained by fitting the data (b in Table II) is
not the same whether the curvature cor'rection is included
[Eq. (8)] or not [Eq. (5)]. In other words Heermann's
treatment assumes that the specific surface energy along
the equilibrium shape is known, while in the present study
it must be extracted from the data.

VI. CONCI. USION

Direct Monte Carlo computation of the free-en«gy
difference between clusters comprising %+1 and X parti-
cles (solute atoms) following the technique of paper I (Ref.
17) has been done in the simple cubic Ising model for
every value of X from 1 to 19 at 0.4 and 0.59, the critical
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temperature. The summation of the results from N = 1 to
N —1 yields the free energy Ftv of the cluster with an ac-
curacy better than l%%uo.

The free energy Fz (in units of the ordering energy
Wqa) is best described by the expression:

~N
=aN+bN +cN' +d + ln

~~a ~As Ccoex

where a and r are given their theoretical value, and b, c,
and d represent, respectively, surface, line, and point con-
tributions.

The line contribution corresponds to the curvature
dependence of the surface free energy while the point con-
tribution is tentatively ascribed to the cross curvature
dependence of the surface steps energy. Other expressions
of the clusters free energy (Fisher's droplet model ' or
empirical expressions ) deviate from our data.

A rough estimate of nucleation rates for unmixing in
the model system under study shows that the various
capillarity approximations of Ftv yield nucleation rates
ranging from 10 to 10 that predicted using the correct
values of F~, i.e., leaving an uncertainty of about 5 orders
of magnitude on the nucleation rate.
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