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Antiferromagnetic classical XFmodel: A mean-field analysis
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The antiferromagnetic classical XY (planar-rotator) model is analyzed under the mean-field ap-
proximation. Phase diagrams are obtained and found to be strongly dependent on the underlying

lattice geometry. For bipartite lattices, there exists a second-order transition across a unique phase
boundary. For tripartite lattices, there exist two phase boundaries, separating an intermediate
"nonhelical" phase from a low-temperature "helical" phase and the high-temperature paramagnetic
phase. The two phase boundaries merge into a single critical point at finite temperature and zero

magnetic field.

I. INTRODUCTION

Critical properties of the two-dimensional ferromagnet-
ic classical XY model, also known as the planar-rotator
model, are now well understood as a result of the seminal
studies carried out by Kosterlitz and Thouless. ' In con-
trast, however, there have been few studies done on the
planar-rotator model with antiferromagnetic interactions.
Recent Monte Carlo simulations suggest that the nature
of phase transitions in such systems is affected by the in-
troduction of frustration. This implies that for an antifer-
romagnetic Hamiltonian, the underlying lattice structure
is important. Further studies are very much needed to
clarify the situation. Here we take the underlying lattice
geometry explicitly into account and report the results of
a mean-field analysis of the antiferromagnetic planar-
rotator model for bipartite (e.g., square) and tripartite
(e.g., triangular) lattices. This provides a set of exactly
solvable equations determining the free energy and hence
all the thermodynamic properties of the system.

We find that there indeed exist profound differences in
the critical properties of the bipartite and tripartite lat-
tices, even under the mean-field approximation. Briefly,
the H-T phase diagram for bipartite lattices, where T is
the teinperature and H is a uniform magnetic field, is
found to consist of a single phase boundary separating an
ordered phase from the paramagnetic phase. The transi-
tion across this phase boundary is second order. For tri-
partite lattices, however, the phase diagram has a different
structure. For temperature T below a critical value, the
system undergoes a sequence of two transitions as the
magnetic field is increased, from a "helical" phase to a
"nonhelical" phase, and finally to the paramagnetic phase.
The transition is second order across the paramagnetic
boundary, but the nature of the helical-to-nonhelical tran-
sition is more subtle and will be discussed in detail in Sec.
III. Above the critical temperature the system remains
paramagnetic regardless of the lattice geometry.

The format of this paper is as follows. In Sec. II we
describe the mean-field-theory formalism and obtain its

sblution. In Sec. III we present an analysis of the results
and in Sec. IV we make some concluding remarks.

II. FORMALISM

A =K g cos(8; —8J)—h gcos8; .
~l J)

'
I

(2)

Consider first the ground state of the Hamiltonian for
A=0. For bipartite lattices the spins on the two sublat-
tices are aligned in opposite directions. For tripartite lat-
tices, the ground state consists of configurations in which
spins on different sublattices form +120' angles with each
other. In particular, for the triangular lattice this leads
(up to a global-spin-rotational degeneracy) to a +3Xv 3
periodic pattern shown in Fig. 1. We note that there ex-
ists two topologically distinct ground-state patterns
described by different "helicity. " To each elementary tri-
angle in Fig. 1 we assign a helicity, + or —,according to
the way that the three spins at the vertices of the triangle
are aligned. A + ( —) helicity describes an arrangement
in which the spins are rotated sequentially 120' clockwise
(counterclockwise) when the triangle is traversed in a
clockwise direction. This discrete degeneracy in helicity
is one of the most interesting and profound differences be-
tween bipartite and tripartite systems.

The mean-field calculation is performed by minimizing
the following free-energy functional:

Consider an antiferromagnetic classical XY model de-
fined by the reduced Hamiltonian

A=ICQ s; s —h gs.
&Ii &

where E=J/(ksT)~0, h—=H/(k&T), and the summa-
tions are extended over the sites of a lattice whose coordi-
nation number is z. Here (i,j) denotes nearest neighbors,
and the spins are unit vectors confined in a plane (planar
rotator). Writing h s; =h cos8; where 8; is the angle be-

tween the spin s; and the applied field H, the Hamiltoni-
an (1) can also be written as
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where

a;cosP;—:h K—$'CJ, a;sing;—:—K $'SJ. ,
j J

I,(a) =—(2~) ' I cos(v8)e"" d8

is the modified Bessel function of the first kind of integer
order v. In (8), a; and P; can be interpreted as the magni-
tude and the angle of the local mean field on site i S.ub-
stituting (8) into (6) one obtains

C;=R (a;)cosP;, S;=R (a;)sing; (10)

%[p]=Tr(pA +p Inp)

under the constraint

p= IIpi (4)

where Tr designates the trace over all states of the system,
and p; is the density matrix of site i Substitu. tion of (2)
and (4} into (3) gives, with Trp; =1,

e[p;]=K g (C, C, +SS,)—h QC, + QTr(p, i~, ),

(b)
FIG. 1. Typical ground-state patterns for the triangular lat-

tice at H=O. The plus or minus signs indicate the helicity of
each triangle. The pattern shown in (b) can be obtained from
the pattern shown in (a) by a reflection.

both for all i, where R (a) =Ii(a)/Io(a). Substitutmg (10)
into (9) yields the following self-consistent equations for
determining a; and P;:

K g'R (aj )cosgj +a;cosP; =h,
J

K g'R (aj )singj +a;sing; =0,
j

both for all i The. extremum free energy is given by

'p(a;, $;)=K g R (a )R (a. )cos(p —p )
(&,j)

—h gR (a )cosP.

+ g Ia;R {a ) —ln[2nIO{a )]I, (12)
a

where the a s and P s are the solutions of (11). Equation
(11) is most general, and for a system of X sites, it
represents a set of 2N equations. The number of indepen-
dent equations is reduced drastically if one takes into ac-
count the fact that both the ground state and the disor-
dered state have tlie subiattlce periodicity. Tlllls, fol aii
n-partite lattice of coordination number z, (11}reduces to
2' equations~

Kq g R (ay)cosP~ h acosP-——
P=1
p@~

C;=Tr(p;cos8;), S;:—Tr(p;sin8;}.

Clearly C; and S~ are the respective mean values of the
spin components in directions parallel and perpendicular
to the applied field. The variational equations are given
by

—K g'(Cjcos8;+S&sin8;)+h cos8;+A, ; —1 =lnp;(8;)
j

(7)
for all i, where A,; is the Lagrange multiplier introduced to
ensure the normalization of p;. The prime in (7) desig-
nates that j is the nearest neighbor of i If one expo.nen-
tiates (7), collects the coefficients of the cos8; and sin8;
terms, and removes A,; through the normalization condi-
tion, one can show that

I a;COS(8; —4,.)

2mIO(ai)

Kq g R (aii)singing= a~sinP-
P=1

for a=i, . . . , n, where q=zf(n —1) is the number of
nearest neighbors (of any given site) belonging to the same
sublattice. The extremum free energy per spin is now
given by

n n

P(a, P )= K g g R(a )R(aii)cos(P —Pii)2' a=1 P=1
pA~

n

+—g Ia R(a ) —ln[2mIo(a )]] .
a=1

(14)
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slnol~ =0 .

qR(ao) E (19)

0.5 I l. 5
T( J/Kg)

arnagA8tlC

I

2.5

Whereas (16) has a unique solution for any Ean'd h, (18)
can have tloo solutions (ao ——0 and ao&0) in a sPecific
range of E. This is illustrated in Fig. 3. Since the slope of
R (a) is —,

' at a=O, the specific temperature range is given

by 0&1/E &q/2. Therefore, the ordered phases only ex-
ist for 0&1/E &q/2. Moreover, from (19) we note that
the ordered phases can only exist for h &nqER(ao(E))
The graphical solution of (19) for various values of
h/[qR (ao )Ej is shown in Fig. 4 for the squalc and the
triangular lattice. In this figure each vector represents
u =(cost@, sinco ) and (19) requires

H(J) 5

4

0,5 t l, 5
T( J/y~)

I

2.5

g u =(h/[qR(ao)Ej, 0) .
e=1

With this picture in mind, we draw two unit circles whose
cclltcrs al'c at a dlstallcc II /gER apart, and wllosc 1'adll al'c

ul and u„, respectively. Then, as shown in Fig. 4(a), this
procedure uniquely determines the vectors ul and u2 for
n =2, but leads to an infinite set of solutions for n =3
The paramagnetic phase boundaries correspond to the loci
of T and H satisfying

h =EnqR(ao(E)) .

Substituting (20) into (16) yields

FIG. 2. Phase diagrams of (a) the square and (b) the triangu-
lar antiferromagnetic XF model. In (b) there are two ordered

phases (helical and nonhelical) and a paramagnetic phase. At
zero field the phase boundaries merge into a single critical point.

ao+EzR (ao) =ao+EzR(ao )

ao(E,h)=ao(E) . (22)

Subst1tutlng (20) IIlto (19) ylclds

Our task is to find all possible solutions of (13) and deter-
mine which solution corresponds to the lowest free energy
through (14). In this way we can determine the stable
phase of the system for different T [=J/(ksE) j and II
(equal to h /E) and therefore construct the entire phase di-
agram.

or

g cosol =n, g slnoI (23)

III. RESULTS

I.ct us now be specific to the square (n=2, z=4, q=4)
and triangular (n=3, z=6, q=3) lattices. The phase dia-
grams are shown in Fig. 2. T'he paramagnetic phase for
both lattices corresponds to a solution of (13) of the form

P =0, a =ao(E,h) for a= 1, . . . ,n,

ao+EzR(ao) =h . (16)

P =co, a =ao(E)&0 for a=1, . . . ,n,

ao —EqR(ao ) =o (18)

FIG. 3. Graphical solution of (18) at T=J/kz g T, . The
solid curve represents R(a) and the dashed and dotted lines
represent a/(3E) and a/(4E), respectively.
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FIG. 4. Graphical solution of (19). (a) Square lattice. (b) Tri-
angular lattice. The vector u~ is denoted by n. The solution in
(a) is twofold degenerate, and an infinite set of solutions to (b) is
generated by sliding the vector labeled 2 along the tracks defined
by the tv' circles. The helicity of the solution in (b) changes at
h/(3ER )= 1.

Qp~ —Oj Q II) ~ ~ I pn 0 (24)

Equations (22)»d (24) together imply that b«h the mag
nitude (a )»d the»gle (~ ) of the mean sublatt
magnetization change continuously across the outer phase
boundary, thereby indicating a continuous transition.
Moreover, we have calculated the specific heat and found
a discontinuity across the paramagnetic phase boundary
suggesting that the transition is second order.

The additional (inner) phase boundary of the triangular
lattice phase diagram satisfies

h =3KR(ao(E)) .

understand the nature of the inner boundary con»d«
the following. In the first panel of Fig. 4(b),
Ii/[3ER (ao }] is less than unity. We note that the three
vectors shown in this panel correspond to a spin configu-
ration of the system exhibiting a pattern of alternating
helicity similar to those shown in Fig. I. In addition, one
CRQ gcQclatc RQ opposltc-hcllclty splQ pattern simply by
reflecting the three vectors across the dashed line. A con-

tinuous manifold of solutions can be generated if one
"slides" the two ends of the second vector on the "tracks"
defined by the two circles. Moreover, one can prove that
this operation can never change the helicity of any triad.
In the third panel of Fig. 4(b), h/[3KR (aIi)] is greater
than unity. In this case all solutions correspond to zero-
hclicity spin patterns and onc can always reach thc mirror
reflected solution through "sliding. " The inner phase
boundary shown in Fig. 2(b) corresponds to the second
panel shown in Fig. 4(b) where h/[3KR(aIi ])= 1. Since in
mean-field theory any two solutions related by shding
have the same free energy, one would expect that in the
real system there exists arbitrarily low energy excitations
constructed by long-wavelength spatial distortions of the
spins so that locally

cosset i+ cose~2+ cosr0& ——h /[3ER (a,' )]

sin6) I +sind)2+ sing)3 ——O .

At finite temperature these excitations can sufficiently
mix mean-field solutions in the same continuum, so that
within the inner phase boundary there will be two coexist-
ing phases of opposite helicity, but outside of the inner
phase boundary there will be only one phase of zero helici-
ty. Furthermore, one would expect the inner phase transi-
tion to be associated with the vanishing of the interface
tension. Under such conditions, the wall formed at the in-
terface of two semi-infinite domains, which have opposite
helicity, becomes thermodynamically favorable. As usual,
tbc I'cal trRQsltlon temperature should bc lowcI' than thc
value predicted by the mean-fidd theory. As shown in
Fig. 2(b}, when the magnetic field vanishes, the two phase
boundaries merge and coalesce to a single critical point on
the temperature axis. It is conceivable that this may give
rise to a new type of critical point. Finally, we emphasize
that an interesting feature of the triangular lattice is the
presence of a continuous ground-state degeneracy even for
a nonzero magnetic field (which removes the global-spin-
rotational symmetry). This "accidental degeneracy" is ab-
sent in the square lattice.

IV. CONCLUDING REMARKS

We have described the mean-field phase diagram of bi-
pa~ite and tnpa~ite antiferromagnetic Xy models using
the square and triangular lattices as specific examples.
Th«esults exhibit intriguing differences between th~~~
two types of systems. For the square lattice the phase dia
gram consists of an ordered phase and a paramagnetic
pha'e. Fo«he triangular lattice, there are three diff~~~~t
phases: the helical phase, the nonhelical phase, and the
paramagnetic phase. Since our mean-field theory is exact
ai T=O, the existence of three different phases is rigorous-
ly proved. The phase boundaries separating the helical
and Qonhelical phases and the nonhelical and paramagnet-
ic phases merge at H=o. A plausible conjecture is that
there may be a new universality class associated with this
critical point. The ground states for the square and the
triangular lattices also show very interesting differences.
At H=O the ground state of the square lattice breaks
global-spin-rotational symmetry, whereas the ground state
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of the triangular lattice breaks an additional reflection
symmetry. At finite H the continuous symmetry of the
Hamiltonian is removed for both systems. The ground
state for the square lattice is therefore only twofold degen-
erate (the remaining degeneracy is due to the symmetry in-
volving a global spin reflection about the axis defined by
the external field); however, the ground state of the tri-
angular lattice remains continuously degenerate.

In order to determine the nature of the phase diagram
more quantitatively, one needs to include the effects of
fluctuations. This can be done by performing Monte Car-
lo calculations throughout the entire H-T plane. Such cal-
culations are currently in progress and will be reported
elsewhere.
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