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Self-consistent, nonrelativistic augmented-plane-wave (AP%) calculations for CsI vere carried
out to generate the band structure, the static-lattice equation of state (EOS), and the volume depen-
dence of the electronic energy-band gap. The theoretical room-tempcratuxe isothermal compression
curve agrees well with static and ultrasonic measurements at low pressure. Our calculations do not
agree with two recent sets of diamond-anvil-cell measurements above 10 GPa. Thc calculated band

gaps are too small at low prcssure, but, at high pressure, are consistent with both the experimental
results and the Hexzfeld-model prediction. These results suggest that the insulatox-to-metal transi-

tion occurs in the xange 100+10 GPa. A calculation of the shock compression curve of CsI shows

that the thermally excited electrons cause a significant softening of the Hugoniot curve. The experi-
mental zero-pressuxe band gaps of the isoelectronic compounds Xe, CsI, and BaTe are linearly

correlated with 1n(u jutt), where utt is the specific volume of metallization predicted by the Herzfeld
model. Based on this correlation, and on the similarity of the AP% calculated EOS's of Xe and

CsI, which agree closely with experimental compression mcasuxements, wc predict that BaTe will

become metallic at approximately 30 GPa.

I. INTRODUCTION

There is currently great interest in the pressure-induced
insulator-to-metal transitions (IMT s) in the isoelectronic
sequence Xe, CsI, and BaTe. In these compounds, elec-
tronic band-structure calculations suggest that the IMT's
will proceed by a reordering of the energy bands, ' with the

empty d-like band dropping in energy below the top of the
filled p-like bands. Augmented-plane-wave (APW) calcu-
lations predict that Xe will become metallic above 130
GPa (1.3 Mbar), at a volume very near the Herzfeld-
theory prediction of 10.2 cm3/mole (16.94 A3).2 4 The
predicted narrowing of the band gap has been found in
very good agreement with diamond-anvil cell (DAC) opti-
cal measurements to 55 GPa. ' These results are con-
sistent with shock data for Xe in which it is found that
the high temperatures accompanying the shock process
(-30000 K near 130 GPa) thermally excite electrons
from the 5p to 5d states, and lead to a softening of the
Hugoniot curve that depends on both the electron energy-
band gap and its volume derivative.

In CsI metallization is expected to occur when thc
lowest unoccupied level, fhe 5d-like cesium band, drops 1n

energy below the top of the filled Sp-like iodine band. In a
prcvlous papcx' wc coIQparcd a purely thco1ct1CRl cst1IQRtc
of the metallization pressure in CsI with an estimate based
on recent optical-absorption measurements, Rnd with the
prediction of Herzfeld's theory. We found our results to
be consistent with both of these earlier values. In the
present paper we give a more extensive discussion of the
equation of state (EOS), and the volume dependence of the
band gap, and present new calculations of the CsI Hugoni-
ot curve.

We begin by giving, in Sec. II, details of the calculations
of the electronic band structure, room-temperature
compression curve, and zero-pressure mechanical proper-
ties. In Sec. III these results are coIQpared with available
experimental data, and. we compare our calculated
Hugoniot curves with the shock-compression data. Some
final remarks are contained in Sec. IV.

II. METHOD OF CALCULATION

A. Contributions to the room-temperatux'e pressure

The electronic band structure and the static-lattice EOS
were calculated using the nonrelativistic, self-consistent,
APW method. These calculations used only the
'"muffin-tin" (MT) portion of the total crystal potential
and the Hedin-Lundqvist (HL) model' for the exchange-
correlation interaction. Since this model is known to give
zero-prcssure opt1cal gaps that arc too small, calculat1ons
were also made ustng Slater s (tz =1) exchange potential.

While relativistic effects are important in CsI, the good
agxeement with static-coIQpression measux'ements at low
pressures suggest that the relative. stic corrections to the
compressibility are small. Similarly, the correction for the
effect of relativistic interactions on the band gap at zero
pressure is small compared to the error inherent in the use
of the electxon-density-functional formalsim for the calcu-
lation of conduction bands. ' On the basis of free-atom
calculations' Ross and McMahan estimated relativistic
corrections to the band gap for Xe to be less than 0.5 eV.
At high pressure, when the gap is very narrow, the effect
of relativistic interactions may be appreciable, introducing
a measure of uncertainty into our prediction of metalliza-
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tion. Electronic wave functions in the first four shells do
not overlap significantly with neighbors and are, there-
fore, regarded as core states and treated as in a self-
consistent atomic calculation. The remaining 16 electrons
from the fifth shells of Cs+ and I are treated as valence
electrons for which Bloch function solutions are deter-
mined. These eigenvalues and eigenfunctions are calculat-
ed self-consistently on a mesh equivalent to 64 points in
the full Brillouin zone. In the HL calculation, iteration of
the solution was stopped when the successive changes in
the pressure became less than 0.05 GPa at low pressures
and less than 0.1 GPa at high pressur'es. The band ener-
gies in this calculation were correspondingly converged to
better than 0.1 mRy. %'e used twelve angular momentum
components in the spherical harmonic expansion for the
wave function within the MT spheres, and omitted vectors
longer than 6~/a from the reciprocal-lattice vector expan-
sion, where a is the lattice constant. In the Slater calcula-
tion, band energies were iteratively converged to better
than 1 mRy. No corrections to the band energies were
made for the effects of the non-muffin-tin (NMT) portion
of the crystal potential, nor for the effects of nonzero tem-
peratur'es.

The room-temperature pressure at a given specific
volume U may be expressed as

with

PApw(u) =Pkc+P

P&pw comprises the pressure arising from the electronic
kinetic energy T, the Coulomb potential energy E~, and
the exchange-correlation energy E„„ofthe crystal, in the
MT approximation. The first two contributions are given
by the virial theorem, '

Pkc (2T+Ec)/3——u .

The exchange-correlation pressure P„ is given as the
volume derivative of the exchange-correlation energy

By introducing scaled coordinates x such that r= V'~ x,
Eq. (4) is easily reduced to

In Eq. (7) x is the radius of a sphere whose volume ls 1/p,
the volume per electron, divided by a constant A. I'ollow-
ing Lundqvist and Lundqvist, we set A =24.3, and
8=0.7679. The ground-state energy terms T, Ec, and
E„„are calculated from the self-consistent set of eigen-
functions and energy eigenvalues according to the
density-functional formalism. '

The second term in Eq. (1) represents the pressure
correction due to the nonconstant potential between the
MT spheres. It is the volume derivative of the energy
ENMr arising from the intersphere portion of the NMT
crystal potential and electronic charge density. %e ap-
proximate ENMT following the method described by
Danese and Connolly, ' but for computational ease we
neglect the contributions from the intrasphere NMT por-
tion of the crystal potential and charge density. The actu-
al intersphere charge density was approximated by a su-
pcxposltloll of R'tolnlc cllal'gc dcns1tlcs prodllccd 111 R

Herman-Skillman' calculation using the Xo, exchange po-
tential. " The value of a was chosen so that the amount
of intersphere charge of this charge density equalled that
of the self-consistent MT crystal charge density. Because
of the close packing in CsI, PMT is fairly small, amount-
ing to approximately —0.2 GPa at low pressures, and
—2.0 at 75 Gpa. The magnitude of this pressure correc-
tion is not great enough to justify the additional computa-
tional effort required for a more rigorous treatment of the
intersphere charge density and the inclusion of the smaller
intrasphere pressure correction.

The final two contributions to Eq. (1), the zero-point
pressure Po and the thermal pressure I'th, are computed
using quasiharmonic lattice theory. Approximating the
mean vibrational frequency of the crystal by the root-
mean-squared frequency (co ) '~ one obtains'

Po(u) =yEO(u)/u =3(—', )I/ skyO/2u .

Eu(u) is the zero-point energy, s is the number of atoms
per crystal basis, and k is Boltzmann's constant. The De-
bye temperature is given by'

0'(u) = {5(co )/3)'~h

2~k

w}lcl c II ls Plallck s coIlstRIlt. Thc quaslhaHIlonlc
Gruneisen parameter is'

P„,=—f p( V„, E„,)du, —1

where p is the electronic charge density, V„, is the
exchange-correlation potential, and E„, is the exchange-
correlation energy per electron. ' These latter two are re-
lated by a functional derivative,

V„,(u) = (pE„,) . —
dp

For the HL potential

V„,(u) = —(e /n. ){3n. p)'~ [1+Exln(1+1/x)] (7)

and for the Slater (a =1)potential

V„,(u) = —(3el/2m. )(3' p)'~

where r is the interatomic separation. Since this y(u) is
temperature independent, the lattice thermal pressur'e is
given by

Pt {u T)=)'Et /u (12)

The Debye model is used to approximate the thermal en-

ergy, E,h. The theoretical room-temperature compression
isotherm is shown in Fig. 1, with numerical values given
in Table l.

B. Finite-strain effective pair potential

The mean-squared vibrational frequency used in Eqs.
(10) and (11) is calculated from'
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M; is the mass of the ith atom, and P;J.(r) is the effective
interatomic pair potential between the ith and jth atoms
separated by the distance r. The summation is over all
pair interactions involving each of the atoms in a particu-
lar unit cell, taken to be the "first" unit cell. For crystals
with the NaC1 or CsC1 structure, in which the sublattices
of each type of atom are equivalent, Eq. (13) reduces to

0
55

Specific Voiume (A')

6& 2) y~ ge pr2yi —i+ gt q2y2 —2

atom1 & atom2
r

FIG. 1. Theoretical room-temperature isotherm of CsI (solid
hne) calculated from Eq. (1), compared with both static- and
dynamic-compression data. The dashed line is Asaumi s (Ref.
29) fit to his DAC measurements. The representative error bar
is adapted from the DAC measurements of Knittle and Jeanloz
(Ref. 30), which are in excellent agreement with Asaumi's (Ref.
29) results. The static-compression measurements of Bridgman
(Ref. 27) are given by the circles, and the DAC measurements of
Hammond (Ref. 28) are given by the triangles. Note the close
coincidence of the unreduced Hugoniot-curve data (squares)
(Refs. 31—33) with the dashed line representing both Asaumi's
(Ref. 29), and Knittle and Jeanloz's (Ref. 30) isotherm.

M M1 2 g~j

The index j ranges over all atoms of type 1, except where
the prime indicates that it is restricted from the first unit
cell. The index k ranges similarly over all atoms of type
2. The superscripts on the pair potentia1s distinguish be-
tween the interactions of like and unlike atoms. If we as-
sume Mi=M2, or that the effective potential field in-
fluencing each atom may be represented by an averaged
field, then for these cubic crystals

TABLE I. Room-temperature (298 K) compression curve for CsI calculated from Eq. (1) using the
corresponding theoretical values of & e ) '~, 8, and y calculated from Eqs. (21), (9), and (10), respective-
ly. The static-lattice pressure is given by the first two terms in Eq. (1), I'Ap+I'MT.

Volume
(A )

94.44
92.89'
89.96
85.86
75.56
72.65
69.96
65.13
60.93
59.03
57.24
55.56
53.97
52.47
51.05
49.71
48.43
47.22
46.07
44.97
43.93
42.93
41.98

(~2) 1/2

(10" Hz)

1.000
1.036
1.122
1.207
1.502
1.599
1.694
1.881
2.067
2.158
2.250
2.341
2.431
2.521
2.61 1

2.700
2.789
2.878
2.967
3.055
3.143
3.231
3.319

98.7
102
111
119
148
158
167
186
204
213
222
231
240
249
257
266
275
284
293
301
310
319
327

2.120
2.034
1.939
1.840
1.606
1.553
1.509
1.436
1.381
1.357
1.336
1.317
1.300
1.284
1.270
1.256
1.244
1.233
1.222
1.212
1.203
1.194
1.186

Static
(GPa)

—0.75+0. 1

0.0
0.66+0.11
3.98+0.13
5.41+0.13
7.05+Q. 14

10.91+0.16
15.58+0.19
18.26+0.20
21.17+0.22
24.30+0.23
27.66+0.25
31.22+0.27
35.05+0.29
39.09+0.31
43.41+0.33
47.97+0.36
52.79+0.38
57.91+0.41
63.11+0.44
68.80+0.47
74.6 +0.50

T=298 K
(GPa)

—0.19+0.1

0.0

1.19+0.11
4.51+0.13
5.94+0.13
7.59+0.14

11.46+0.16
16.15+0.19
18.84+0.20
21.76+0.22
24.90+0.23
28.27+0.25
31.85 +Q.27
35.69+0.29
39.74+0.31
44.07+0.34
48.64+0.36
53.48+0.38
58.61+0.41
63.82+0.44
69.53+0.47
75.3 +0.50

'Experimental zero-pressure volume=95. 32 A .
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where 4 denotes the potential energy per unit cell. This
mass weighting averaging of Eq. (13) renders Eq. (11)
equivalent to the Vashchenko-Zubarev' formula for the
Gruncisen parameter, as can be seen by comparison with
Eq. (15) of Ref. 19. We have used Eq. (15) for our calcu-
lation rather than carry out the lattice sums in Eq. (13),
since, for CsI, setting each of the atomic masses equal to
their average is a good approximation. For alkali halides
in general, where the largest contribution to the lattice
sum of non-Coulomb interactions arises from the unlike
atoms in the first shell of neighbors, one might expect
only a small error would be introduced by the inexact
treatment of like atom interactions when all interactions
are assumed to be equivalent.

To pl'odllcc a crystal potclltlal to llsc 111 Eq. (15), wc
first obtain a third-order finite-strain fit to the static-
lattice EOS (PApw+PMT) using a generalized definition
of Birch's strain parameter ' 'f,

f=—[(U, /U)™/e—1] . (16)

Uo is the P=O volume. A particular measure of strain is
determined by specifying the value of the parameter m.
For example, for m =4, f is the Eulerian strain, and for
m = —4, f is the Lagrangian strain. Making the usual as-

sumption that the crystal potential energy can be written
as a polynomial in strain, the finite-strain expression for
the corresponding pressure is

' (m+6)/m

(1 2(f+4(f—'+ . . ) {l7)P= 3Kof +1
2

wj.th

g= —,(m+4 —2ICO) {18a)

g= —', [Z'oi{.() +Ko(XO —m —3)+3+2m+ 1 lm'/36] .
(18b)

» Eqs. (18) &o is the P=0 value of the bulk modulus.
&0 and Ko are its flirst two pressure derivatives. Writing
the cryst» ~~~rgy as a quartic in strain leads to the
fourth-order finite-strain pressure equation, obtained from

Eq. (17) by truncating the series after the term in f . The
third-order finite-strain equation is obtained by truncating
the series in (17) after the term in f. Defining Fby analo-

gy to Birch,"as

I'

3f[(mf /2) + 1 ](Itl +e)/1tl

The coefficients Al are given by

A i = 6Ã0{1+4$/—m)/I,
&z ——6XO(1+8$/m)/m, (21)

Substituting Eq. (20) into Eq. (15) leads to the following
expression for the mean-squared frequency:

the best least-squares values for uo, Ko, L0, and'KD' can be
easily determined from a polynomial fit to pressure-
volume data. Following the procedure described by
BukowInsk][ and Lees, wc choose vl so that wc obtaBl tbc
fastest converging expansion for the crystal potential as a
polynomial in strain. For this choice of m, the trend of
the computed pressure values plotted as F vs f is indistin-
guishable from a straight line. We are thus able to use a
third-order fit (F linear in f) that is as accurate as the
fourth-order fit, and avoids the possible trade off between
the order of a polynomial and the values of the coeffi-
cients.

For positive m the expansion of the crystal potential en-

ergy as a polynomial in f is equivalent to expressing the
effective pair potential as a finite series in inverse powers
of r. Rewriting 4, given as a cubic in f, in terms of the
specific volume, yields

m/6 ' ' m/3
2A ) UO A2 Uo

4(U) =3UO +
I

Nl /2

+ (20)
3.Nl U

2p
2 MI[ M2

m/6
Ai(m —2) uo

2 U

UO

+Az(m —1)

m/3 m/2
Al(3m —2) Uo+

2
(22)

In earlier work on NaC1, where we have used both the
crystal potential obtained from Eq. (20) and Born-Mayer-
type pair potentials, we have found that the values of y
and 8 calculated using Eq. (15) are sensitive to how well
the potential model reproduces the compression curve, but
not significantly sensitive to the mathematical form of the
effective interatomic pair potential. Since we can routine-
ly obtain very accurate fits to the theoretical compression
points from the generalized finite-strain expression Eq.
(19), we have used Eq. (22) in Eqs. (10) and (11) to gen-
erate 8 and y. Values for (co ) '~, 8, and y are given in
Table I.

III. RESULTS

A. Roon-temperature compression curve

The calculated isotherm [Eq. (1)] is tabulated in Table I
and shown in Fig. 1. Calculated room-temperature values
of Ao, the equilibrium lattice constant, Eo, lCO, and Eo',
were determined from the same generalized finite-strain
analysis applied to the static-lattice results earlier. Table
II shows that the resulting parameter values agree well
with the isothermal zero-pressure properties Barsch and
Chang determined from ultrasonic measurements. Un-
certainties in our theoretical isotherm arise from the ap-
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proximations inherent in the APW method, computation-
al error, and our use of Debye theory and quasiharmonic
lattice dynamics which neglect the temperature depen-
dence of y and provide a volume dependence that is un-
tested by experiment. The theoretical zero-pressure values
for 8 and y (Table I) agree well with the experimentally
determined values 101 K and 2.0+0.30, respectively,
but the observed anharmonic effects at temperatures
greater than 225 K suggest the need for accounting for the
explicit dependence on temperature. %'e have no means
of estimating the uncertainty arising from the approxima-
tions inherent in the APW method.

In addition to the theoretical isotherm, Fig. 1 includes
static-compression measurements of Bridgman, DAC
measurements of Hammond, and Asaumi's fit of the
third-order Birch-Murnaghan finite-strain equation [Eq.
(16) with m=4, truncated after the term in f] to his re-
cent DAC measurements. The representative error bar
shown on this fit is adapted from a second set of recent
DAC measurements of Knittle and Jeanloz, which are in
excellent agreement with Asaumi's results. Shown for
comparison is the Hugoniot curve (the unreduced shock
compression data) for CsI. ' At low pressures our iso-
therm is in good agreement with all of the static-
compression measurements. At higher pressures the
theoretical isotherm continues to agree with the experi-
mental data of Bridgman and Hammond, but it is sig-
nificantly softer than the DAC measurements of Asau-
mi, and Knittle and Jeanloz.

The isotherms measured by Asaumi, and Knittle and
Jeanloz closely coincide with the Hugoniot curve of CsI,
which comprises four independent sets of measure-
ments. ' This agreement between the isotherm and the
Hugoniot curve implies that y is effectively zero along the
Hugoniot curve. Such a condition could arise from
thermal excitation of electrons, but from our calculations
of the Hugoniot curve, given below, we find it difficult to
reconcile the coincidence of these isotherms and the
Hugoniot curve.

B. Energy band-gap volume dependence

Herzfeld's theory of metallization predicts that CsI
should become metallic at a specific volume of 24.3

cm /mole (40.3 A jce11). Using our theoretical isotherm
the predicted metallization pressure is 87 GPa. A precise
estimate of the metallization pressure is difficult to obtain
from Asaumi and Kondo's optical-absorption measure-
ments. A suitable procedure for identifing the energy at
which absorption sets in is not readily apparent. Asaumi
et al. have chosen this threshold energy E, as the energy
at which the optical density equals 0.10. Syassen's pro-
cedure of fitting experimental results to the relation be-
tween absorption and band gap for transitions between
parabolic bands may provide more meaningful values for
E,. In alkali halides the optical-absorption edge is marked
by a series of excitonic peaks in the absorption spectrum.
Thus the uncertainty in identifying the E, is augmented
by the uncertainty in the relation of Eg to E,. In the case
of a direct band gap, Asaumi and Kondo originally as-
sumed Eg ——E, + 0.6 eV, but have revised this relation to
the proportionality Ez ——1.26E, . The proportionality con-
stant is the ratio of the P=O band gap, determined in-
dependently, to the zero-pressure value of E,. Owing to
these ambiguities in the interpretation, we believe their
data probably does not constrain the band gap to better
than +0.5 eV.

Using the computed equation of state to plot Asaumi
and Kondo's threshold energies as a function of volume
rather than pressure facilitates graphic extrapolation of Es
to band-gap closure, as shown in Fig. 2. The two ex-

AandK

HL

Density (g/cm )

a, (A.)

Kp (GPa)
Ko
Ko' (GPa ')

'Reference 4.
Reference 24.

4.645 +0.030
4.S29+0.010
11.95+0.44
6.14+0.22

—1.29+0.19

4.525 +0.014
4.568+0.014'
11.89%0.05
S.93+0.08

—0.73+0.08

TABLE II. The zero-pressure properties of the theoretical
room-temperature (298 K) isotherm compared with the iso-
thermal values determined from acoustic measurements at pres-
sures up to 1 GPa (Ref. 4) Ao is the equilibrium lattice constant,
Ko is the zero-pressure bulk modulus, and Eo and Ko' are its
first- and second-pressure derivatives, respectively.

APW calculation Barsch and Chang'

0 I I

m 0 +5
I I I

Specific Volume (A')

I

75
I

85

FIG. 2. Volume dependence of the energy band gap in CsI.
The extremes of the shaded region correspond to Asaumi and
Kondo's (3 and K) estimate of the magnitude of a direct gap
(upper edge) and an indirect gap (lower edge). The solid line is
their revised (Ref. 34) estimate of the band gap. The upper
dashed line (S) is produced from the AP%' calculation using the
Slater exchange potential, and the lower dashed line (HL) is pro-
duced using the HL potential. The theoretical isotherm from
Fig. 1 was used to convert the observed pressure values into
volumes. The arrow at 40 A' marks the volume of metallization
predicted by Herzfeld's theory (Ref. 3).
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to that observed in Xe. ' The theoretical band gap at
high pressure is direct between the p-like iodine I » state
and the d-like cesium I ~z state (Fig. 3) suggesting that the
APW values should be compared with the upper limit of
the measured threshold energies. We conclude that the
metallization pressure is likely to fall in the range
(100+10) GPa, assuming the suspected structural phase
transitions ' have negligible effect on the band gap.
This result is somewhat higher than Asaumi and Kondo's
estimate, ' but corresponds well to the specific volume of
metallization predicted by Herzfeld's theory.

+N, (u, T)[Es(u)+3kT] . (24)

Onto the static-lattice energy 4 we add the zero-point en-

ergy Ep and the thermal energy E,h calculated as in Eq.
(8) and Eq. (11), respectively. The final two terms in Eq.
(23} are the energy absorbed per excited electron, taken to
be equal to the energy-band gap Es, plus the kinetic ener-

gy of the essentially free electrons and holes occupying the
conduction and valence bands, respectively. The number
of excited electrons per unit cell N, is expected to be sub-
stantial under shock conditions. Therefore, the law of
mass action for semiconductors does not provide a
rigorous estimate of N, . We make the following simple
estimate of the effect of electron excitations for the pur-
pose of illustration.

We begin by extending the usual result for the law of
mass action to obtain a better estimate of N, and
Es/2kT(1. As in the standard development, we treat
the energy bands as being parabolic in the vicinity of the
band edges. Expanding the Fermi distribution function in
powers of exp[ (E p)/kT], wher—e—E is the energy and

p the chemical potential, the integration of the density of
states weighted by the Fermi distribution can be carried
out explicitly. We approximate p by the Fermi energy Ez
which is its zero-temperature value. For an intrinsic semi-
conductor the concentration of conduction electrons per
unit cell is given by

C. Shock-compression curve

The high temperatures generated by shock waves make
it necessary to account for the energy of the shock that is
partitioned among the thermally excited electrons in the
conduction band. ' Accordingly, we have calculated
shock-compression curves for CsI following the method
used by Ross and co-workers ' for Xe. Previous calcula-
tions for CsI used a volume-independent band gap and a
predetermined pair-interaction potential with parameters
fitted to the Hugoniot curve. Our calculations use the re-
sults of the APW calculations for the potential and the
volume-dependent band gap.

Following Ross and McMahan we seek the locus of
points satisfying the Hugoniot-curve equation:

EIr(v, T) E(up, 298—K)

=
2 [PH(u~ T)+P(vp, 298 K)](up —u)

Five contributions to the unit-cell energy are considered,

EH(u T)=4 (u) +Ep(u) +Egh(v 8)

2vrkT(m, m, )'~2
N, (v, T) =2u(g„g, )'~

h

&& g ( —1)"+'x ~ exp( xE—s/2kT) .
x=1

(25)

g~c is the degeneracy of the edge of the valence or con-
duction bands, respectively, and similarly mvc is the ef-
fective mass of these bands. In our calculations of shock-
compression curves for CsI we take the energy-band gap
to be direct (I'&2-I &z}, as suggested by the APW calcula-
tions, and set g, =2 and g„=3. Both effective masses are
set equal to the free-electron rest mass, and we retain all

terms in the summation in Eq. (25) that contribute at least
1% of its total value. In the limit Es/2kT »1, keeping
only the first term in the summation in Eq. (25) leads to
the standard expression. This "one-term" approximation
does not rely on the assumption p=E~, but is systemati-
cally produces larger values for the concentration of con-
duction electrons than does Eq. (25).

In Eq. (23), we considered the contributions to the inter-
nal pressure arising from the energy terms in Eq. (24):

2kT ~Eg
PH(u, T) =P(u, T)+N, (u, T)

v Bv
(26)

The first term contains the static-lattice, zero-point, and
lattice-thermal contributions to the pressure at the
Hugoniot state, and is calculated as in Eq. (1). The contri-
bution to the internal pressure from the gas of conduction
electrons and valence holes is given by the first term in
large parentheses. The last term in Eq. (26) corresponds
to the change of pressure caused by the excitation of elec-
trons from the valence band to the conduction band. For
CsI the band gap is decreasing with volume (BEs/Bu& 0)
making this last term a negative contribution and leading
to a softening of the Hugoniot curve.

In Fig. 4(a) the shock data for CsI (Ref. 31—33) are
compared with the theoretical Hugoniot curves calculated
from Eq. (23) using a variety of hypothetical volume
dependencies for Es. The Hugoniot curve labeled INS
was calculated without including electronic excitations
(the pure insulator case). Curves 5 and HL were comput-
ed using the band gaps from the Slater and HL calcula-
tions, respectively, both of which are shown in Fig. 2. For
comparison, curve C results from using a constant band
gap of 6.4 eV, which is it's P=O value, ' and curve L is
calculated using a band gap starting at 6.4 eV and decreas-
ing linearly to 0 eV at 40 A . These latter results are in
reasonably good agreement with experiment. Given the
physical conditions and complexity of the problem, these
band gaps should be regarded as effective. A more corn-
plete theory would treat the system as a dense plasma with
the energy levels, electron occupation numbers, chemical
potential, and atomic correlations being calculated self-
consistently. Such a calculation is not warranted given
the uncertainties in the experimental data. Figure 5 con-
tains some of the calculated values of T and N, along the
Hugoniot curve. At pressures near 100 GPa, E~/2kT=1,
the present model [Eq. (25)] is only very approximate.

An error of 2% in volume has been assigned to the



JOHN AIDUN, M. S. T. BUK0%INSKI, AND MARVIN ROSS

t

0)

Specific Volume (A3)

PIG. 4. (a) Comparison of theoretical Hugoniot curves calculated from Eq. (22) vnth experimental-shock data (Refs. 3$—33). An

uncertainty in volume of 2% (Ref. 37) has been added to the experimental values. Curve INS is for the pure insulator. The calcula-

tions for semiconducting CsI used a constant band gap of 6.4 eV (curve C); a linearly varying band gap starting at 6.4 eV at Uo and

decreasing to 0 eV at 40 A (curve I.); the band gap from the Slater calculation (curve S); and the band gap from the HL calculation

(curve HU. Cufvc I ls thc theoretical isotherm froID Flg. I. (b) (Inset) Thc shock-colTlpression data and HugoIllot cufvcs fof semi-

conducting CsI from (a) replotted relative to the curve calculated for the pure insulator. The uncertainty in volume assigned in (a)

has been propagated into this figure as an uncertainty in pressure.

shock data to provide a qualitative illustration of the un-

certainty of these measurements. To amphfy the effect of
excitations on the Hugoniot curve, these data and the
Hugoniot curves for semiconducting CsI have been replot-
ted in Fig. 4(b) relative to the pressure calculated for a
pure insulator. The 2% uncertainty assigned to the shock
data in Fig. 4(a) has been propagated into Fig. 4(b) as an
uncertainty in the pressure difference. Even with the es-
timated UIMcrtai11ty thc cxpcrimcI1tal Hugonlot-CUI'vc data
are significantly reduced from the pure-insulator calcula-
tion. Within the accuracy of our simple model, the trend
of this offset can be adequately explained in terms of exci-
tations of electrons across a constant band gap or a band

gap that decreases linearly with volume. Neither the data
nor the theory are sufficiently precise to distinguish be-

tween the theoretical models.
Also plotted in Fig. 4(a) is the theoretical APW iso-

therm from Fig. 1, labeled I. The additional thermal pres-
sure in the shocked state gives rise to the difference be-
tween the Hugoniot curve and this isotherm. This
thermal prcssure would be present whether we used the
APw or an experimental isotherm as our "cold curve. "
The substantial amount of thermal pressure at all densities
inakes it difficult to understand why the recent DAC mea-
surcn1cnts ' arc coincident with thc Hugonlot curve. As
we have noted, this coincidence requires that the effective
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FIG. 5. Values of T and X, (inset) along the Hugoniot curve
calculated from Eqs. (22)—(25) using two effective band gaps.
The solid lines (I.) result from using a band gap varying linearly
from 6.4 eV at Uo and decreasing to 0 eV at 40 A . The dashed
lines (C) result from using a constant band gap of 6.4 eV.

7' (electronic plus lattice) must be zero. This could poss1-
bly occur when there is a substantial amount of electronic
excitations. However, the results in Fig. 5 show that at 55
A, for example, the amount of electronic excitations is
small and the temperature is about 5000 K, which leads to
a thermal pressure of about 10 GPa. At this volume,
then, the isotherm and Hugoniot curve should be offset by
this amount.

FIG. 6. The systematic variation of the band gap in the
isoelectronic series Xe, CsI, and BaTe plotted against the natural
logarithm of the specific volume normalized by the metalliza-
tion volume predicted by Herzfeld's theory (Ref. 3) UH. The
P=O values are denoted by the open symbols. The value for
BaTe was estimated from the optical measurements of Zollweg
(Ref. 39). The zero-pressure band gap in CsI is taken from Ref.
12. The other CsI data is from the revised analysis (Ref. 34) of
optical measurements (Ref. 8), and the Xe data is from Refs. 5
and 6.

90 ——

80—

IV. DISCUSSION

The similarity of the electronic configuration in Xe,
CsI, and BaTe suggests that their band structures and
properties may demonstrate systematic behavior. Figure 6
shows some of the measured optical gaps for those corn-

pounds ' ' ' plotted versus the natural logarithm of the
reduced volume (UA~). Here»s the ac«» vo»me and

UII is the gap closure volume predicted by the Herzfeld
model. The data follow a systematic trend which reflects
the similarity of their electronic structure. Note that the
band gaps at P=O fall virtually on the same curve as
those of the compressed materials. At ambient conditions
each are at different stages along the IMT transition and
the application of pressure effectively transforms one into
another. Although the closing gap is direct in CsI and in-
direct in Xe, in both cases the empty band is d like and
the metallization in both may be characterized as a p-d
tl ansltlon.

The isoelectronic structure of Xe and CsI is also reflect-
ed in their computed EOS. %e expect the additional
Coulomb interaction in CSI to shorten the nearest-

70

50

50

CL

IO

Volume / atom (A~}

FIG. 7. Static-lattice EOS of CsI (solid line) and Xe (dashed
line) as calculated by the APW method (this work and Ref. 5),
and plotted on a per-atom basis.
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neighbor distance. Hence in the solid, we expect CsI to be
denser than Xe at a given pressure. This difference should
become proportionately smaller at high pressure, where
repulsive interactions dominate. As is shown in Fig. 7,
the calculated EOS's are related in the expected way.
Since the Xe EOS agrees closely with recent DAC mea-
surements, this increases our confidence that the CsI
EOS remains accurate at high pressure. Although the cal-
culations for Xe were made for a fcc lattice, while in the
CsI structure the atoms are in bcc packing, the p-U curves
for these two close-packed structures are known to differ
only slightly.

If BaTe follows the same pattern, then the Herzfeld
model predicts that it will become metallic at approxi-
mately 30 GPa (corresponding to v~ ——32.2 cm /mole
or 26.7 A /atom). We have made some preliminary calcu-
lations of the band structure of BaTe in the 81 (NaC1)
phase. The predicted metallization volumes according to
the Slater and HI. exchange-correlation potentials bracket
the Herzfeld volume vent. However, recent high-pressure
x-ray and optical studies of BaTe indicate that it
transforms to the B2 (CsC1) structure at approximately 4.8
GPa."' Previous calculations of pressure effects on the

band structure of CaO predict that the 82 phase should
become metallic at a somewhat smaller specific volume
than the B1 phase. The metallization volume for the
latter also agreed with the actual Herzfeld volume UIt.
Hence we conclude that the actual metallization pressure
of BaTe may be somewhat higher than 30 GPa. On re-
viewing the present work on CsI we conclude that a major
barrier to a quantitative understanding of the EOS is the
apparent discrepancy between the several sets of iso-
thermal measurements.

Note added in proof. Huang and Ruoff have just pub-
lished a new experimental equation of state for CsI. They
report that CsI transforms to a new crystallographic
structure at 40 GPa. Below 40 GPa, their compressibility
curve for CsI (82) is consistent with our computed curve.
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