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It is shown that two-dimensional (2D) paramaguon problems exhibit strong algebraic singularities

~ q —4' i, when some relevant motnentum q is close to twice the Fermi momentum Er. As all

q values from 0 to 2KF are equally relevant for the magnetic instability in 2D, the above singulari-

ties play a key role. By contrast, they are irrelevant in 3D. It is explicitly shown that standard
methods to calculate the uniform static susceptibility fail in 2D due to these singular terms. The
origin of the singularities are multitail ring diagrams, closed fermion loops with "tails" attached to
them. These diagrams are analyzed in detail by generalizing to d dimensions and dynamic tails, the

method of Brovman and Kagan, developed in another context. The subsequent effects in the
Ginzburg-Landau-Wilson Lagrangian describing interacting paramagnons are dramatic and render
such an expansion questionable. Moreover, the nature of the magnetic instability {ferromagnetic or
antiferromagnetic type), which is not well defined in mean-field theory, still remains unsolved in the

presence of paramagnons since standard methods to renormalize the response functions with fluc-

tuations fail to apply in the 2D problem. Any naive transposition from 3D to 2D of the Landau
Fermi-liquid theory to compute, for instance, properties of liquid- He films are suspected to be

premature —if not erroneous —at this stage.

I. INTRODUCTION

Three-dimensional (3D) nearly magnetic Fermi liquids,
with strong spin interactions, have been extensively stud-
ied in the past, both experimentally and theoretically, in
particular using a somewhat simplified version of the
Landau theory, the paramagnon model. This model cor-
responds to a one-parameter theory, depending only on the
relative ratio I of the strong spin repulsion I among fer-
mions of opposite spins, to the characteristic energy of the
particles in absence of interaction EF, parameter I may be
extracted from experiments, through the measurement of
the paramagnetic susceptibility X( T), extrapolated at
T =0 K, and whose ratio to the density of states at the
Fermi level gives the Stoner enhancement (1 I) '. The-
paramagnon model allowed to calculate, in particular, the
T dependence of X(T) and to find that it is strongly
enhanced by the spin fluctuations (the "paramagnons"),
while X( T =0) was not, compared to the mean-field (Ston-
er) value.

This was confirmed later on from the
renormalization-group point of view: Owing to quantum
effects at T =0, the critical exponents at T =0, when
I=1, of the 3D (d =3) paramagnon problem, assume
their mean-field value; thus X(T =0) diverges like
(I I ) " with y = 1 as —in mean field.

The question whether such results still hold for lower
dimensionalities (d &3), in particular for d =2, was also
considered. It appeared that simple conclusions can be

reached for d &2 because the magnetic instability
I/I =Xc(q, co=0) occurs when I increases for a unique
value of q, for which Xc, the noninteracting susceptibility,
is maximum [q =0 for d &2, ferromagnetic instability;

q =2k+ (where kF is the Fermi vector) for d &2, antifer-
romagnetic type of instability]. Instead, for d =2, the in-
stability occurs for a continuum of q values, 0&q &2k+
due to the particular shape of the Lindhard function
Xu(q, to=0) at d =2, which is maximum and remains con-
stant from q =0 to q =2k+. Therefore, compared to
d&2, the d =2 paramagnon problem appeared pathologi-
cal. As was already determined in Ref. 7(b), it may turn
out to be a serious mistake, for 2D itinerant fermions at
T =0, to approximate by constants the interaction coeffi-
cients in the Ginzburg-Landau-Wilson Lagrangian
describing interacting paramagnons as is usually done in
critical phenomena for localized spins at the transition
temperature when vanishing momenta play the leading
role. The reason for not doing so is that in paramagnon
problems these coefficients correspond to interaction ver-
tices given by multitail diagrams: closed fermion loops
with an arbitrary number n (even in absence of anisotropy)
of paramagnons tails attached to them, and with n in-
creasing with the order of the corresponding term in the
Vhlson-type series expansion. The multitail diagrams
were first studied by Brovman and Kagan' for the d =3
electron-phonon problem, with the phonons as the tails.
These authors showed that at d =3, such diagrams with
static external fields are singular for some linear combina-
tion
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(the q s being the momenta of the external tails, and the
a; s being numerical coefficients between 0 and 1); they
also showed that the degree of singularity increases with
the number of tails. An analogous analysis for the d =2
pararnagnon problem was sketched in Refs. 7(b) and 11;
Ref. 11 pointed out more precisely that the singularities in
d =2 are even stronger than in d =3. For d =3 pararnag-
non problems, these singularities are irrelevant as far as
the magnetic instability is concerned, for which the
relevant q; values are q;-0; then as in usual critical phe-
nomena recalled above, it is reasonable to approximate by
constants the various coefficients in the Wilson Lagrang-
ian. Instead, for d =2, where all q; values from 0 to 2kF
are equally relevant for the instability, the above singulari-
ties do play a key role and render the Wilson-type expan-
sion questionable.

The purpose of the present paper is to analyze these

singularities in detail and to examine the consequences for
the critical behavior, as well as the T dependence of the

physical properties of 2D itinerant, nearly magnetic fer-

mions. We first show in Sec. II that a calculation of X( T)
from first principles, taking into account paramagnon ef-
fects as was done successfully in 3D in Ref. 4, would be
inadequate in 20 as it exhibits strong singularities. %e
then show in Sec. III why that is so, by analyzing the mul-

titail diagrams which enter as basic ingredients in the cal-
culation of X( T); we show that these Brovman-Kagan dia-

grams are indeed highly singular. In Sec. IV we conclude
that formal perturbatlon methods break down ln the
paramagnon problem in two dimensions. The question
whether 2D itinerant fermion systems are close to a fer-
romagnetic instability or to an antiferromagnetic one thus

appears to remain open. Furthermore, blind uses of the
Landau theory which implicitly emphasize the role of
small q [through e(k+q) —e(k)=k ' q+q /2
=kFq cos8] appears premature at this stage.

II. FAILURE OF THE THERMODYNAMIC
DERIVATION FOR X( T) IN d =2

In order to directly compare the d =2 case to the d =3,
we first calculate X(T) from first-principles thermo-

I

dynamics as was done in Ref. 4. We follow the same pro-
cedure which proved to be successful in d =3. We write
down the free energy with the same notations (we suppose
the number of atoms per unit volume to be equal to 1 to
simplify, and without any consequence for the main re-

sult, i.e., the existence of singular terms),

Moreover, the static susceptibility in zero field is defined
as

2E
X(H =0)=p'

B(2

where p~ is the magnetic moment and

a'E I aB
2 ag

With all these ingredients put together one gets

2X.—a'bE'/BB2
X(H =0)=

1 I+ , Ia dd'/B—B— (2)

When the fluctuation contribution prove, s at low T to be a
perturbation, as is the case in 30 but not in 20, one is
able to expand further in the limit of strong Stoner
enhancement, (1 I) ' »1, to get—

g is the difference of spins up and down, B is a field
"dressed" by the interactions,

2
GO 7+Pauli~

Xp,„(;=2X0(q =O,a) =0)=22V(Ep),

E(FF) is the density of states per spin direction at the
Fermi level, Xo(q, m) is the dynamic spin correlation func-
tion in absence of interaction, and bF is the contribution
of the fluctuations. As in Ref. 4, B is determined by
(BE/BB) ~

——0. This gives —2XOB+BbF/BB (=0. —
On the other hand, BB/Bg is derived from
(B/Bg)(BF/BB) =0, i.e.,

V

B'bF
2+0+ —1 e

BB

X(T, H =0)= 1—2XO 1 1 B bE
2yo 1

=X(T=0, H =0) 1 —
3 T~

1 REF
1 I BB— (3)

This last form was given as such in Ref. 4 for d =3. In order to calculate B b,F/BB we use the same closed diagrams
as in Ref. 4 to write

[»(1—I Xo +Xo )+I'Xo +Xo +»(1—IXO )+IXO +ln(1 —IXO +)+IXO +] .
2

(4)

We are confined, as in Ref. 4, to the most divergent terms in 1/(1 I) since we are intere—sted in the direct neighborhood
of the instability I~1; we also are confined to the lowest-order T dependence; we then only need
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BRCX0

~p 1 —I X0

2

a =0 (1—&X0)'

where p, =kg/2 (in a.u.), the chemicalgotential at T =0; its T dependence will not appear in the calculation to the lowest
order in T, as proven in Ref. 4. ReX0 is the real part of X0~.

We recall also from Ref. 4 that

aP f k+-,
ro+P —g- +i' sgn(g- —p )kyq k+q

with pg~ g-„~——(a.,p)B, u, p=+1, g-„=k /2 p, an—dX0 —{Xo~)~ c.
So far, everything is unchanged compared to Ref. 4. We now use the fact that d =2. The calculation of the X0~ can

be done rigorously and gives with a bit of tedious but straightforward algebra,

ReXD~(q, co,B)= [8((Q—es) —q kq )sgn(Q —ev)[[(Q —e~) —q k~']'» —[(Q—es) ]'~
)

ip

—8(q k~ —(Q —e&) )sgn(Q —es)[(Q—e~) ]'~

—8((Q+es) qk—P) sgn(Q+e~)[[(Q+e~) q2—kP]'~ [{Q—+as)2]'~'J

+8(q kP {Q+E~) —)sgn(Q+es)[(Q+ev) ]'~ ], (7a)

ImX ~(q, r0,B)= [[q2k —(Q —s )2]'~ 6(q k —(Q —e ) ) —[q kP—(Q~e )2]'~ 6(q2kP —(Q~e )2)J,2

(7b)

for d=» ~q=q /» Q=+« p» kp(&, p—)=kg 2{&,p)B, 8—(x)=l for x)0 and 6(x)=0
for x &0, and sgnx =+ 1 for x )0 and sgnx =—1 for x (0. In further calculatious we use

L

8 RCXO

BB

8 ReXO—2
, 8=0 ~P

ReXD +(q,co,B)=ReX0+ (q, co, —B) .

We also use

1 8 RCX0 8(q —4k@)
=4M(Ep)

4 Bp „=0 q (1 4k~/q ) ~—
with gx) =a8(x)/ax.

Then putting (9) back into (5) shows clearly that strong singularities will arise for q =2k+ and survive even after in-
tegrations. A few comments take place here.

(1) As already announced, the fluctuation contribution to the calculation of the susceptibility cannot be considered as a
perturbation as in the 3D case of Ref. 4.

(2) Aside from the expected divergences in 1/(1 —lj (when I-+1) common to the 3D and 2D cases and characteristic
of strong spin fluctuations, extra divergences arise in 2D; the strongest originates in 8 X0/Bp as shown above, and is
hnked to the very structure of the four-tail diagram. Indeed one of the lowest paramagnon corrections to X0 {Xo itself
being a two-tail diagram, Fig. 1), involves one paramagnon insertion (Fig. 2) which brings in two extra vertices in that
first-order correction shown on Fig. 3; therefore, such first-order correction to X0 involves a four-tail diagram (Fig. 4)
with two of the tails attached to one another to form the inserted paramagnon (Fig. 5). On the other hand, as will be
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FIG. 1. Bare-bubble diagram for the noninteracting suscepti-
bility +0.

FIG. 2. One of the possible paramagnon propagators: the

geometric series of even numbers of bare bubbles linked by in-

teractions (dotted lines), entering as a vertex correction in Figs. 3

and 5.

shown later, the nth derivative of the two-tail diagram (n =2 in c) Xolc)p ) has the same singularities that the (n +2)-tail
diagram, i.e., the four-tail one here.

More generally the singularities characteristic of 2D have their sources in the structure of the nth-tail diagram formed
by a closed fermion loop with n vertices where the n external tails are attached,

J (qt q co& 'co )= —TP Go(P e)Go(P+q& e+coi) ' ' ' Go(P+q&+ ' ' ' +qn &&—+cot+ ' ' +co& —t)
p, E'

n n

x5 gq; 5 +co; (10)

where Go(p, e) is the fermion Green's function. Whatever the tails are made of (paramagnons, phonons, extra fields,
etc.) the above closed loop with n vertices, which itself may be regarded as one interaction vertex among the n tails, is
the crucial singular quantity in 2D. In the next section we analyze in detail the four-tail ring diagram.

III. SINGULARITIES OF THE MULTITAIL RING DIAGRAM

In this section we examine the singular behavior of multitail ring diagrams by generalizing the method of Brovman
and Kagan' to d dimensions and to dynamic legs in the four-tail diagram. Although the calculation here is performed
at T=0 K, the results of Sec. II show that the singularities persist at finite T. Because of momentum and energy con-

servation the m-tail ring diagram involves m —1 external momenta q&, q2, . . ., q &
and the corresponding energies

1~2& m —1 ~

The method of Ref. 10 allows us to tell if a singularity may occur for some values of the external momenta and ener-

gies, and to evaluate the asymptotic behavior close to the singular point. In Sec. III A we examine the four-tail diagram
with dynamic external tails of Fig. 4, for arbitrary dimensionality d. In Sec. III8 we look for the static 2n-tail diagram
with arbitrary momenta which is the analogous in 2D to what Brovman and Kagan studied in 3D.

A. Four-tail diagram with finite q; s and two dynamic legs

Our purpose here is to analyze more precisely the behavior of one of the lowest-order diagrams entering in the calcula-
tion of the susceptibility, i.e., the diagram displayed in Fig. 3 and related to the four-tail diagram as indicated in Fig. 5.
We first present a general calculation for arbitrary dimensionality d then we will apply it for d =2.

1. Calculation for arbitrary ditnensionality d

We recall that the bare fermion propagator is, at T =0 K and for real continuous energies,

Go(p, e) =
e—g +irisgn(

I p I pF)

1

e g+irisg—n(e)
'

P

with the notation of Sec. II. The diagram of Fig. 3 is then expressed in d dimensions as

d q 2d q 3cico2dco3
&(q ~ )=f,„„ 11(q2~2)J4(ll 'V2 13 ~1 ~2~3)@q3 ql q2+(~3 ~I ~2)

(2~)2d+ 2

where J4 is the dynamic four-tail ring diagram of Fig. 4,

(12)

J4(qi, q2, q3'~»~2 ~3)= —t f d &
Go(p &)Go(p+qi, e+~i)Go(p+q3 e+~3)GO(p+q2, e+~2),(2~)"+' (13)

while II(q2, co2) is the appropriate fluctuation or paramagnon propagator,
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PIG. 3. One of the lowest-order correction to the bare bubble

of Fig. 1, with the paramagnon insertion of Pig. 2 exchanged be-
tween the two bare fermion lines of the bare bubble.

FIG. 4. Four-tail Hrovman-Kagan —type diagram: one closed
fermion loop with four fluctuations attached to it; such a dia-
gram represents, as well, the lowest-order interaction potential
(i.e., the closed loop) among two fluctuations.

I Xo(qz, (oz)
II( qz, roz) =

I—IzXO( qz, coz)

To analyze the singularities of J4 in Eq. (13) we generalize the method of Brovman and Kagan' to arbitrary dimen-
sionality d and to dynamic tails. We are restricted, however, for simplicity, to the static case for X&,

d q3dco3
d4(qi, qda~)= f „,&de, q~, q~;()a*.a~)('(q3 —qi —q~)('(a~ —a~) .

which will enter in

d qzdcoz
»(qi()) ff =. , (((q»a~lddqiq*;a2).

(2~)"+'

We use the Feynman parametrization,

QOQ )Q2Q3

i da)dazda38(1 —a) —az —a3)
a/ a

0 3
t

3 4

1 —g a) 00+ g a(Q)

in order to write f4( q &, qz', doz) with the change of variable,

3

p~p g a(qi ~

Kd
14(q, , q~;a2)= ~ f da, du2du38 ( —g a; L(a;q;u~), , ,

2(2m. ) i=1

where K~ ——2qr ~'[1 (d /2)] ' is the surface of the unit sphere and

(Iuq;; q)a=3!f, p 'd(a') f 2'~ I6() '(p, e)+f/2+i'(az+a3)[sgn(e+(oz) —sgn(e)]I

f=f(a;,q;;coz)= ga;q; —ga;q;+2(az+a3)roz.

Taking into account that for coz & 0,
~'

2 1f —&2&6 &0
sgn(e+roz) —sgn(e) = '

0 othenvise,
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the frequency integral in Eq. (21) is performed by splitting the region of integration in —Oo & e & —co2, —co2 & e &0, and
0 +6+ 00 With tile result~

L(a, q;;co2)= — p d(p ) 8( —, —a2 —a3)lmd —2 2 1

(p p /—2+f/2+i rI)

+8(a2+u3 ——, )Im
1 1

(24)
(p p /—2+f/2 m2—+i rl)

where for q infinitesimal we replaced (2a2+2a3 —1)rl by rl sgn(a2+a3 ——,). We use the formal identity,

1 1 8 1 m
Im Im 5(p+x), {25}

(p+x+frI)3 2 (jp2 (p+x +i') 2 Qp

to perform the integral in Eq. (24). It is clear that what we obtain by this method is only ReJ4(q&, q2, co2) that reads,
from Eq. (20),

E
R~«q qz;~2)= — „,ll. (qi q2;~2)+A(ql q2 ~2))

(2m)" Bp'
(26}

4.,s(qi q2'~z) =l4.,b(q ~2)~-„=-„+-„

4.(q; ~z)= f,
l

A(q ~2)= f,

da; 8 1 —ga; 8{—,
' —a —~ )8(p+f/2){p+f/2)'"

ada; 6 1 —ga; 6( ——2+u2+a3)6(p+f/2 co2)(p+f/2 —co2)'"—
To analyze the asymptotic singular behavior of P, b( q &, qz,'co2) in Eq. (27) we first change variables

a;=a;+P; withi =1,2, 3 (29)

in Eqs. (28) in order to eliminate the linear terms'0 in f(p;, q;;~2) of Eq. (22). It turns out that the a; should satisfy the
equations

3
-+ ~ -+
ql ~ Qjqj= 2 pl

j=l
3

qg
' g cxj q J =

p g(
—c02 for l =2, 3,

j=l
and one obtains by introducing Eqs. (29) and (30) into Eq. (22),

f=+PP q q —~(~2)—2p
&~l

b, (co2) = —,$5;q; —(c2+a3)roz —kF .1 2

(31)

(32)

Satisfying the system of Eqs. (30) is sufficient for the existence of a singularity, as was shown in Ref. 10. Moreover, the
external momenta q; and the frequency coz must be such that the solutions a; fall within the range of integration: a; y 0,
1 —g,. a; ~0. When the external momenta are not independent, the Gram determmant

~ q; . qj ~
=0, and Eqs. (30)

have a solution only when some restrictive condition among the q; is satisfied. In particular, we find for q3 ——q&+ q2
that Eqs. (30) are consistent only if q &

. q2 ——0. In this case they reduce to two equations for al+a3, a2+a3, with solu-

tions

FIG. 5. How the four-tai1 diagram generates one of the

lowest-order vertex corrcctlons to go displayed 111 Flg. 3.
FIG. 6. H0%' thc foul-tail diagram gcncratcs another lovfest-

order correction (se1f-energy correction) to go.
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a)(a)2)+a3(rug) = —,',
Q)g

a2(r02) +a3(~02) =——
2

where we made explicit the dependence of the solutions on coq. It follows from Eqs. (27), (28), (31), and (33) that

g, (qi, q2, m2)=2' . f pdpe(a;(a), )+p;) e 1 —ga;(m, ) —gp;

xi =(Pi+P3)qi

xz =(P~+P3}q2,

&(a)2)= —,[q )+q2(1 —2a)p/q2)2 —4kF] =5( co2) —2co2 .—

In order to evaluate gb {q ~, q2, co2) in Eq. (28b) we first change to integration variables y; defined by

ai(~2}+P~=a3{—~2)+}'3,

a3(~2)+P3=ai( —~2)+}'i

P2,+P3= {re+ }—'3»
from where it follows, using Eqs. {33),

3 3

ap(F02)+P2 ——1 —g a ( —co2) —g y

(35)

(37}

(38}

Pi+ A = }'i+}'3

By introducing Eqs. (37) and (38), together with the last equality in (36), into Eq. (28b), one obtains the result,

Xe(x )+x2 —6( —a)2))[x ) +x2 b, ( —F02)]'~— (39)

with xt,x2 as in Eq. (35) with y; in place of P;. By comparing Eq. (39) with Eq. (34) one obtains

A(4 q»~2) —=4.(@,q2; —~z) —= tN qi q~; —~2),

and from Eq. (26),

E
ReJ4{qi q2'2)= — [Wqi q2'z)+4(q~ q2 —~2)1

(2m)" Bp

where tt:—t/i, in Eq. (34).
While ReJ4(q&, q2, co2) in Eq. (41) is an even function of the frequency, the imaginary part Imj4(q&„q2, co2) is an odd

function which is obtained by analytic continuation into the complex co plane.
If we define the complex function,



Ed t)
&4(qi q2;~2)=-

(2m)~ B)M2

+ 00

1mJ4( qi, q2, r(i2) =——P ---; ReJ4( qi, qi, ro')dro' .
N' —N2

We discuss now the asymptotic behavior of i'( q i, q2', F02) in Eq. (34) close to its singular point A(~z) =0. It was pointed
out, in Ref. 10 that the singular contribution of this integral, if any, comes only from the lower integration limit and, in

gener» i™ouidbe « the type I ~(~2) I
«

I ~(~z) I
»

I ~(~z) I
This may in«oduce divergence»»~(qi q2'2) 'n

Eq. (43) because 8/Bp =—8/M, from Eq. (36).
We call now P„„g(qi,q2, aiq) the singular part of the integral in Eq. (34) when the upper hmit is replaced by an arbi-

trary cutoff A. We distinguish three cases.
(a) qi &0, q2&0, and qi q2

——0. For
~

b, (m2)
~

&mz/q2 we mtroduce polar coordinates with ~=(xi+xz)"~ and xi i
as defined in Eq. (35) to obtain

1{„„g(qi,qi, F02)=-— f 1~re(v —h(a)p))[H —h(~2)] ~

qIe'z

with the result,

t f ~{~,) ~'" if S{~,) &0
sing q»qi'air = '' (46)

0 i co2)&0.

In particular, for d =2 there is no singularity.

(b) qi
——0, q2 &0, and qi q2 ——0. This case corresponds to a contribution to the uniform static susceptibility. From

Eqs. (34) and (35) we get

where x2 ——q2/2[1 —(2~g/q2)] from Eq. (33).
Now we obtain for d =2,

(- - . [&(co2)]'~' if 6(a)2)&0
, 0 if b,(a)2)&0.

For 2&d &3 we use the identity,

(s ()f dy(yr s)des &y(yz s)sn —n(d 2)()f dy( r s)sn— (49)

in Eq. (47). The first term in the right-hand side of Eq. (49) is not singular, for either sign of 5(F02). In the second term

one can let the upper and lower integration limits go to 0() because the integral is convergent with the result for
2&d &3,

3(3—d;d/2 —1)(d —2)[&(~2)]'» "~' if i(s(co2) &0
92

if sing( q i » q 2y ~2 )

&[ i y(3 —+/2](d —2)[4(roy)]' "~2 if b(~g) &0,
q2

where 8 is the beta function. ' From (48), {50), and (41)
one will get a nonintegrable singularity in the integrand of
(17).

{c)q, & 0, q2 =0, and qi . qi ——0. This case correspond~
to a contribution to the nonuniform static susceptibility.
We will obtain singularities analogous to the one of (b) but
with (qi, coi ——0) replacing (q2, r02) in particular in formulas
(48) and (50). Putting together this result with that of (a)

above, in Eq. (17), we see that the resulting singularity in

{qi—4k') will occur only over an infinitesimally
small region of integration over the variable qq.

%e are interested in this paper in the singular behavior
of J4(q i, qi, mq) for d =2. It is readily obtained from Eqs.
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(46), (48), and (41).
(a) q))0, q~)0 q, q2

——Od =2:

Re J4 „„g(q),qp', cop) =0 .

(b) q(
——O, qp)0, q( qp ——Od=2:

(Sl)

(53)

[~(~2)lg, =0= ~ (Q'- —4kF') (54)

The result in Eq. (52) deserves further comment. The
dynamic susceptibility in absence of interactions, Xo(q, co)

at d =2, was calculated in Ref. 7 and its real part is

Re Xo( q, co) =Xo(0,0)[+(co)+@(—co)],

where

4(co) = Q+ e(2k@—Q+ )
1

2g

+e(Q+ —2k@) [Q+ —(Q+ —4k@)'~ ],
2q

(55)

with Q+ as given in Eq. (S3) which amounts to setting
B =0 in (7a).

By comparing Eq. (56) with Eq. (52),

Re J„„g(0,q2,'co2) =
2 RCXO(qz, co2),

())M

and this is the strongest singularity that occurs in the con-
tribution of Fig. 3 to the calculation of the static and uni-
form susceptibility X(q=0,co=0) at T=O K, as was
shown in Sec. II, Eq. (9). In particular the results of Sec.
II show that these singularities are not canceled by other
diagrams.

Aside from the divergence in (q( —4k+) ' occurring
in a vanishingly small region of integration over q2 and
co2 to obtain the nonuniform static susceptibility

(q) &O,co( ——0), we see from (a), (b), and (c) that the contri-
bution of a diagram like that in Fig. 3 to X(q) &O,co( ——0)
will be free of nonintegrable singularities (in q2, co2), while
these singularities will build up for the uniform suscepti-
bility X(q) ——O, co) ——0). The asymptotic character of the
calculation does not allow us to analyze the crossover be-
tween these two behaviors.

3. Rengarks

Another diagram entering into the lowest-order
paramagnon contribution to the susceptibility is displayed
in Fig. 6. It corresponds to a self-energy correction of one
of the fermion lines while the contribution of Fig. 5 corre-
sponds to a vertex correction. Of course there are two
such diagrams (of the type of Fig. 6) corresponding to

Re J4 „„(0,q2', coz)=e(Q+ —4kF )(Q+ —4kF )

+e(Q' -4k')(Q' -4k,')-'~2

(52)

where from Eq. (36)

self-energy correction of each one of the two fermion
lines. An analysis of the diagram of Fig. 6 would yield
conclusions analogous to the ones obtained above concern-
ing the diagram of Fig. 5 as is detailed in the Appendix.

Other diagrams' also enter into the calculation of the
lowest-order paramagnon contribution to the susceptibili-
ty. In any case the calculation we give in Sec. II which a
priori takes into account all these diagrams ensures that
the singularities persist when they are all summed up.

B. 2n-tail diagram with static external tails

To end this section, we discuss the singularities of the
2n-tail ring diagram with static external tails in d =2
(n =2 in Fig. 4). These diagrams occur as static interac-
tion potentials Uz„(q;,co; =0) of the P' "' term in the ef-
fective Landau-Ginzburg-Wilson Lagrangian for interact-
ing paramagnons. ' A static 2n-tail diagram is given by
J2„(q;) as in Eq. (13), with 2n fermion propagators carry-
ing the same frequency e and with external momenta q),
qz, and q2„, for the tails and the corresponding frequen-
cies equal to zero. Following the same steps that led to
Eq. (26) one shows that

g2((( —) )

J2.(q() =—,(,) 4(q(»
'll

(M

where 11((q;) is obtained by adding Eqs. (28a) and (28b) for
co&

—0, and the static J2„(q;) is real. For d =2, this gives

(S8)

4(q;(= f, 11da; 8 ( —gn; e(p+f/2), (59)

where now the integral is over 2n —1 Feynman parame-
ters (z), . . .,a2„(, and f(q;) is as given in Eq. (22) with
co2 ——0. After the change of variables in Eq. (29) with the
(z; satisfying equations analogous to (30),

q; ' Z aj qj ——Tqg, i ——1,. . .,2n —1

one obtains

(60)

y(q, )=f f ~p, "dp,„)e 1 —y&, —yp,

~=
2 g ~(q( —4' ~

2 2

xe $ppq; q, —b,
l,J

(61)

(62)

from Eq. (32).
The quadratic form that occurs in the integral of Eq.

(61) has coefficients that form a Gram determinant

~ q; qj ~, then it is positive definite and it has s nonzero
eigen values k;, where s is the rank of the
(2n —1))&(2n —1) matrix (~q; qj~~. Moreover s equals
the number of linearly independent vectors q; in the set
q~, . . ., q2„&, hence in our case we can only have a max-
imum value of s =2 since only two vectors are linearly in-
dependent in 2D. After changing variables in Eq. (61) to
diagonalize the quadratic form, and going afterwards to
polar coordinates, one obtains for the singular part of
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P(q;) close to 5=0,

(63)

with the result for J' "'(q;) from Eq. (58),
(a) for s =2,

J2„„„g(q;)=0.

(b) for s =1,
(64)

0 if 5&0
2n sing li '

+(~ 4(„~~)r2 .f g 0
(65)

Equations (64) and (65) are the generalization to 2n tails
of Eqs. (51) and (52). For s =1, all momenta q; will be
parallel, then we may write

qj =aJ q, , j=2, . . , (2n. —1)

and to satisfy Eqs. (60) implies that

2n —1
2ajaj ———, , a. =a. , a~ ——1,

j=1

and from Eq. (62),

2 2b = —,q) kF . —

(66)

(67)

(68)

IV. CONCI-USIONS

A. Discussion

In this paper we have generalized the Brovman-Kagan
study of the 2n-multitail diagram to arbitrary dimen-

sionality d and to include the dynamics of the external
tails. For a given dimension, as found by Brovman and

Kagan, the degree of singularity of such diagrams in-

creases with the number of external tails, i.e., for increas-
ing order in the Ginzburg-Landau-Wilson series expan-
sion. On the other hand, for a given number of external
tails, e.g. , the four-tail diagram which we have studied in

great detail here, the degree of the singularity of such a di-

It has been pointed out in Ref. 7 that paramagnon fluc-
tuations are critical for 0& q & 2kF at d =2; then the in-

teraction potentials U2„( q; ) =J2„(q; ) in a Landau-
Ginzburg-Wilson effective Lagrangian for interacting
paramagnons cannot be approximated by their value at
q;=0. If one considers the whole interval 0&q; &2kt
Eqs. (65) together with Eq. (68) show that J2„(q;) is high-

ly singular when q&
——q2 —— . ——q, m &2, q, =2kF,

and q~+& q2„~ ——0, and writing an effective La-
grangian turns out to be questionable. Note, on the other
hand, that when all momenta are equal to zero, J2„=—0 for
n &2 since J2„ is given by the (2n —2)th derivative with
respect to energy of the density of states at the Fermi level

N(EF) with N(EF)=1/2m in 2D, i.e., is independent of
the energy so that all its derivatives vanish identically. '

In such a case the quartic and higher-order terms in the
Wilson Lagrangian will identically vanish and one is left
with a free theory.

agram increases with decreasing dimensionality; more-
over, it depends crucially on the external momenta q;,
i =1,2, 3, through the rank of the 3 X3 matrix

~ ~ q; qj ~
~.

Concerning the four-tail diagram in 2D with first, free
static external legs, the results can be summarized as fol-
lows.

(1) If the momenta of the external legs are all vanishing,
then the four-tail diagram and more generally the 2n-tail
diagram with n )2 identically vanish.

(2) If the momenta of the external legs are not all van-

ishing, the strongest singularity occurs when the nonvan-
ishing momenta are all equal to 2kF.

Concerning the four-tail diagram with two free, external
legs, and the other two linked to each other, in all possible
ways, as for instance, in the lowest-order paramagnon
contribution to the spin susceptibility of the system (either
as a vertex or a self-energy correction), the main results
are the following.

(1) If the free external legs have a finite momentum Q
then the diagram may be singular as

~

2kF —Q ~

' '
but

only for zero momentum of the paramagnon insertion.
Therefore, in the remaining integral over the inserted
paramagnon momentum, the singularity will be confined
to a vanishingly small volume.

(2) If the free external legs have zero momentum then
the diagram is highly singular as

~

2kF —Q'
~

where
Q' is the momentum of the paramagnon insertion. There-

fore, in the remaining integral over Q' one gets a nonin-

tegrable singularity.

An important point is that, whereas we have been able to
extract and study in detail the singular part of the four-
tail diagram thanks to the Brovman-Kagan method, we
have been unable to calculate it in the most general case
for any values of the external legs momenta, even for stat-
ic legs, and neither did Brovman and Kagan. This has the
following important consequences.

(1) We point out that the 2D static uniform spin suscep-
tibility X(q =O, co=0, T) cannot be computed from first-
principles thermodynamics (in contrast to the 3D case) be-
cause strong singularities arise naturally in such a compu-
tation as singularities in the four-tail, and more generally,
the 2n-tail diagram.

(2) We cannot compute the static, nonuniform suscepti-
bility X(q&O, to=0, T) for arbitrary values of the momen-
tum q; in particular, we are unable to conclude, even at
T =0, whether X(q, co=0, T =0), including paramagnon
corrections, is maximum for a unique or a finite number
of values of q, or if it still remains maximum for a whole
continuum of values of q as is the case in absence of
paramagnons for the pure mean-field susceptibility

X (q, co=0)
1 IX (q,to=0)—

as well as for X (q, co=0) itself. This last result is most
frustrating since we are left with the same puzzling ques-
tion we started with: What is the nature of the magnetic
transition in 20? Is the system close to a ferromagnetic
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FIG. 7. Self-energy correction to the paramagnon propaga-
tor; wiggly lines are paramagnons, two closed loops are fermion
lines.

the quartic term in the Wilson Lagrangian. Instead, as we
remarked above, we cannot provide an analytical formula
for that two-fluctuation interaction but we can only study
its singularities; note, in contrast, that Tanaka s interac-
tion is perfectly well defined and not singular. Neverthe-
less, the point to be kept in mind is that such a
momentum-dependent coefficient in the quartic term of
the Wilson's expansion possibly brings in a new type of
fixed point which thus may change a great deal of the
critical behavior of the problem.

instability (q =0 at criticality} or to some kind of antifer-
romagnetic one (q+0 at criticality)' ?

In particular, we have not been able to calculate the
self-energy correction to the paramagnon propagator, for
instance the diagram displayed in Fig. 7, where three (in-
stead of one in Fig. 5) fluctuation lines have to be integrat-
ed over their momenta and frequencies; such a calculation
would be extremely difficul in the general case as one
does not know what the critical momenta are around
which an expansion could be used to render the calcula-
tion tractable. However, the calculation of such a dia-
gram (Fig. 7) would be crucial as one of the contributions
to the renormalization of the paramagnon propagator;
since such a calculation cannot be performed here, one is
still left with a frustrating problem: What is the renor-
malized paramagnon propagator in 207

In any case, we showed that the singularities arising in

2D prevent the use of ordinary perturbation expansion to
account for fluctuation (paramagnon) effects on the sus-

ceptibility (static or dynamic one), or on any property of
the 2D interacting fermion system as well. In particular,
we confirmed what was questioned in Ref. 7(b), i.e., one
cannot assimilate to constants the various coefficients of
the quartic and higher-order terms in a Ginzburg-
Landau-VA'1son expansion describing interactions among
fluctuations, and that expansion itself is most likely mean-

ingless in the light of our study. To our knowledge there
has been another study by Tanaka' of a 3D case where
the coefficient of the quartic term in a Ginzburg-Landau-
Wilson expansion was moinentum dependent and yielded
a new type of fixed point for this problem. However, the
case studied by Tanaka' was easier to handle since he
chose a pnori a well-defined momentum dependence for
the four-fluctuation interaction, i.e., for the coefflcient of

B. Link with experiments

As was shown above, it is not possible at present to
compute, with the usual means, the spin susceptibility in
the presence of fluctuations in 2D, nor to conclude what is
(or what are) the critical values of q or what is the nature
of the magnetic instability. We also showed that all these
problems arise in 2D, from the fact that Xo(q, ai=O) is
constant from q =0 to q =2k+. It can be argued that in
practice and due to band structure effects, such a flatness
of Xo is unlikely to occur in metals. However, such a situ-
ation is perfectly relevant for 2D films of liquid ~He in the
degenerate regime. Several authors' in the past have
studied 20 Fcrlm liquids and have provided analptlcal
formulas for their properties. However, all these papers
ignored the flatness of Xo(q,co=0) between q =0 and
q=2kF, i.e., they all treated the problem of 2D Fermi
liquid, implicitly assuming that, as in 3D, only vanishing

q matter (g —g = V~q in the Landau kinetic equa-k+q k
tloll).

Under such an assumption, Ref. 16, for instance, com-
puted that the inverse spin-diffusion coefficient D
varies at low T like T lnT in 2D, while it varies like T in
3D. Such a T InT result follows straightforwardly from
an integration over q in 2D, instead of 3D, but with the
same form for the dynamical response function that the
one used in 3D which implies q~O as the key value of q.
For instance consider formula (13) of Ref. 17 for D ' and
let us see what happens for d =3 and 2 if we choose to
take the same form for

ImX(q, co, T)—
(1 I+Iq'/12k, ')'—~Fq

T11eil at low T aild settlllg CO = TX, oile filids lil 3D,

r

1 I Do» kF 4 k, o (1—I+Iq'/12k, )' I'Fq

dq(1 ,'q /kp)2——
QC T

(1 I+Iq /12k@}—

which is perfectly well behaved and recovers the well-known result D ' ~ T in 3D with a coefficient enhanced by the
interactions; on the other hand, in 2D with the same ImX as that in 3D, but with one less power of q in integration over
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1 1 1 2kFdq 1q2 „1 T3
2

1 —— 2 x n (x)[1+n (x)] dx
1 —I D11 T kr 4 kr p (1 I—+Iq /12kF)

q 1 —4q-T'
&0 q 1 I+Iq2

Here due to the divergence arising at the lower liinit if
qp

——0, one has to impose a lower cutoff in the q integra-
tion; the natural one at very low T is qp ~T and thus,
one gets immediately the term D ' ~ T lnT found in Ref.
16 or earlier. We insist that such a calculation is based on
the assumption that altogether ReXQ(q, co =0) is maximum
at q =0, like in 3D, and thus ImX is proportional to
co/Vzq, like ImXQ itself, although such a form ought to be
revised in 2D. Indeed, according to Eq. (7b) (for B =0),
IinXQ may be written as

ImXp cx: 2, &
for co&kFq

kpq (1—q /4kF )'~

and co &kF(1 q /4k'—)' together with q &2k+ which is
already different from the 3D ImXpccco/kFq; moreover,
when q =2kF strictly, Eq. (7b) shows that ImXQ is again
different and approximately sgncoV'

I
co I, instead of cp.

However, as is clear from the examination of ReXp, the
whole range 0&q &2k+ is a priori critical and therefore
the use of ImXp ~ cplk~q in 2D is erroneous, and the con-
clusions of Ref. 16 look, to say the least, premature.
Reference 16 mentions on a footnote that Ref. 7(b) of the
present paper questioned the use of the Landau theory in
20. This is not quite correct: As is well known, the Lan-
dau theory gives correct answers in critical phenomena
above 4D; we recalled earlier, as proved in Ref. 5, that due
to quantum effects for T-O, the Landau or the mean-

field theory gives also the correct critical exponents for
3D nearly magnetic itinerant fermions; however, as it was
recalled at the beginning of the present paper and ex-

plained in Ref. 7, the structure of Xp in 2D prevents any
possible derivation of a Ginzburg criterion for the applica-
bility of mean field. Therefore, the Landau theory may or
may not hold in 2D paramagnon problem: in the light of
the present study we show that the question is still open.
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APPENDIX: LOWEST-ORDER SELF-ENERGY
CONTRIBUTION TO THE SUSCEPTIBILITY

One of the lowest-order paramagnon contributions to
the susceptibility is given by the self-energy correction to
one of the fermion lines of the bare bubble, as shown in
Fig. 6. Here we study the singular behavior of this self-
energy correction as was done in Sec. IIIA for the vertex
correction of Fig. 5. Note that the paramagnon propaga-
tor entering the self-energy correction of Fig. 6 has a dif-
ferent structure (i.e., odd number of bubbles or ladder)
from the one shown in Fig. 2 (even number of bubbles)
contributing to the vertex correction of Fig. 5.

The self-energy correction to the static susceptibility
then reads froin Fig. 6,

d q3dcp3
Xi(qi, O)= J f d 1

II'(q3 —qi, co3)J4(qi, q3 co3),(2~)'+'

(Al)

where II'(q 1 cp) is the above-mentioned paramagnon prop-
agator and as in Eq. (16),

~4(q 1 q3'03) =[J4(q 1 q2, q3 CP1 ~2 ~3)]-
q2

——q], N] ——Np
——0

(A2)

Fquation (Al) is the analog for Fig. 6 of Eq. (17) for
Fig. 5. Following the same steps that lead to Eq. (41) we
obtain

ReJ4( q 1, q3, co3)

One of us (A.T.) wishes to express her appreciation to
Professor J. Friedel for his kind hospitality at the Labora-
toire de Physique des Solides, Universite Paris —Sud, that
inade this collaboration possible. The other (M.T.B.-M. )

I

lcd

(2m. )" c)tu
, [4(qi q3 ~3)+ 8 li q3 ~3)]

where as in Eq. (3S) for d =2,

(A3)

g(qi, q3;co3)= f gdp;8(a;+p;) 8 1 —ga; —g p; 8( —,
' —a —p, )8([(p,+p, )q, +p, q, ]' b(cp, )), (A4)

+(c03)= g (al+a2)qi + a3(q3 2c03) kp,

and the a; satisfying the equations

(AS)

—+ ~ 1qi(ai+a2)+'ql 13 3 Tqi

2 — 1 2
qi q3(a1+a2)+'q3a3 Tq3 ~3

(A6)
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Equations (A5) and (A6) are the analogs of Eqs. (32)
and (30), respectively, for q&

——q2. Note that in the
present case, compatibility of the equations does not im-

pose an extra condition equivalent to q~ q2
——0 in Eq.

(33), which implied that the strongest singularity occurred
for either qi or q2 equal to zero.

Analogously to the case discussed in Sec. III 8 for static
tails [Eq. (63)], a singularity will occur only when the rank
s of the 2X2 matrix

~ ~ q; qj ~ ~, i,j =1,3 is equal to unity,
implying colinearity of the momenta. We then set

2
2633

g3
(A10)

and by introducing Eq. (A9) in Eq. (Al) we find the same
type of nonintegrable singularity that we had before for
the vertex correction to the uniform static susceptibility

(q& ——0;co=0) in Eq. (52).
(ii) a, =1—2co3/q3, and from Eq. (A5) we obtain again

in this case,

q)=a) q3,

and we find two solutions for the set of Eq. (A6).
(i) a i ——0, cr3 ——

z
—co /3q 3, and from Eq. (A5),

2
2N3

b, (co3)= —,'q3 1—

From Eqs. (65), (A3), and (A4),

[b(rg)3)] ~ if 6)0
ReJ& sing(0~ q3, c03)= .

0 if 6(0,

(A7)

and the same type of singularity in ReJ4„„g(q&——aiq3,
'q 3 c03) that we had in (A9) for q i ——0. However, here q,
and q3 are not independent and since one will have to in-

tegrate over q3 and ~3 to get the susceptibility, the present
singularity will only occur over a vanishingly small region
of integration.

Therefore, we have shown as stated in the text that
self-energy corrections have the same singular behavior as
the vertex corrections, as expected on general grounds.
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