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A system of weakly interacting bosons and fermions is used as a model to develop a theory of
critical behavior of 'He- He mixtures. The fermion amplitudes and the short-wavelength boson am-

plitudes are eliminated from the problem within the framework of perturbation theory. The result-

ing effective boson Hamiltonian possesses interesting features. It implies an instability of the mix-

ture and of its A, line when certain conditions are fulfilled. The coefficients associated with the

quartic and six-operator terms of the effective Hamiltonian have properties characteristic of the
classical Landau model often used to discuss tricritical behavior. The condition of stability derived

for the mixture agrees with an earlier result of Cohen and Leeuwen for the degenerate phase but is
in disagreement with their results for the nondegenerate phase.

I. INTRODUCTION

The renormalization-group (RG) approach' enables one
to discuss not only simple critical behavior associated with
continuous second-order phase transitions but also mul-
ticritical behavior such as that exhibited by systems pos-
sessing tricritical points. The tricritical behavior of 3He-

He mixtures, in particular, has been discussed by Riedel
and Wegner2 on the basis of a phenomenological single-
component classical spin Hamiltonian which may be con-
sidered to be a generalization of the expansion of free en-

ergy originally introduced by Landau. Justification for
using a one-component classical field to describe critical
behavior in a two-component quantum system is, howev-

er, lacking. In two earlier papers, one of us has shown
how critical behavior in a pure Bose system may be stud-
ied by performing RG transformations directly on the
quantum-mechanical Hamiltonian. The aiin of the
present work is to develop a theory of the critical behavior
of He- He mixtures from a microscopic basis.

A system of interacting fermions and bosons is used as
a model of He- He mixtures. The calculations are per-
formed on the assumption that the interactions among the
particles are weak.

It may be pointed out that several years ago Cohen and
Leeuwen worked out the phase diagram of a dilute
fermion-boson hard-sphere mixture following the methods
of Huang and Yang and Lee and Yang. The results ob-
tained by them were physically very interesting but were
rendered imperfect by the lack of consistency of the calcu-
lations. For example, while they calculated the free ener-

gy of the mixture to the first order in the interaction pa-
rameters, the condition of stability derived from it in-
volved terms quadratic in the interaction parameters in an
essential manner. Later attempts to obtain a Landau-
type expansion for the mixture also proved unsuccessful.
The need is evident for an approach to the problem that
may overcome some of these difficulties.

We aim at developing a comprehensive theory of the
fermion-boson mixture which on the one hand will pro-
vide a starting point for applying the RG method, and on
the other, will lead to a Landau-type description of the
phase transitions involved when suitable approximations
are introduced. The underlying assumption is that, as in
the case of a pure Bose system, the order parameter for
the mixture contained in a volume V is the average value
of (bo/~V ) where bo is the annihilation operator for bo-
sons in the zero-momentum single-particle state. As in
the RG approach, the part of the Hamiltonian of the mix-
ture containing small momentum boson operators is con-
sidered to be of special importance. The fermion field
amplitudes as well as the short-wavelength boson ampli-
tudes are treated as auxiliary quantities and are eliminated
from the problem by taking a partial trace of the density
matrix. This results in an effective low-momentum boson
Hamiltonian which can be studied in a variety of ways us-

ing methods developed for a pure Bose system. '
For reasons of length and convenience in presentation,

the work has been divided into parts. This paper reports
the first part of the work. A brief outline of its contents
is as follows: After formulating the problem in Sec. II, we
carry out in Sec. III a partial trace of the density matrix
within the framework of perturbation theory in order to
eliminate the fermion field as well as the short-wavelength
boson amplitudes. The system is consequently describable
in terms of an effective boson chemical potential p4 and
an effective boson-boson interaction u4, both the quanti-
ties being functions of the fermion chemical potential and
the temperature T. Using the well-known result ' that a
pure Bose system becomes unstable if the interaction
strength becomes negative, we obtain a condition for the
stability of the mixture which, somewhat unexpectedly,
turns out to be the same as derived by Cohen and
Leeuwen for the degenerate phase from their first-order
free energy. Since the effective boson interaction contri-
butes a term (u4M ) to the Landau expansion (cf. Sec. V),
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where M denotes the order parameter, the failure of earlier
attempts that used the bare vertex u4 to obtain a Landau-
type theory is clarified.

When the effective interaction u 4 becomes zero or nega-
tive, the partial trace calculation of Sec. III must be ex-
tended to determine the next nonzero term in the effective
boson Hamiltonian. The calculation of this term, involv-

ing six boson operators, forms the content of Sec. IV. The
associated coupling parameter, denoted by u6, is found to
be positive. The effective boson Haniiltonian thus
posse, ses all the features of the phenomenological model
used by Riedel and Wegner except that the field involved
is a quantum field rather than a classical field. Our ex-
perience in applying the RG method to a Bose system,
however, warrants the expectation that quantum effects
may not be important in regard to critical behavior exhib-
ited by the effective Hamiltonian for the mixture.

Section V contains a discussion of a few important
points of the paper. Although detailed calculations are

planned for later work, we show that, in disagreement
with the results of Cohen and Leeuwen, we get the same
condition for the stability of the A, line whether we ap-
proach it from the degenerate phase or the nondegenerate
phase.

II. FORMULATION

The system under consideration is a mixture of spinless
bosons of mass m4/2 and fermions of mass m3/2 and
spin R/2 contained in a box of volume V=I. . The in-

teractions between the particles are assumed to be of the
following type: a short-range boson-boson interaction of
strength 2u4, a short-range fermion-fermion interaction of
strength 2u3, and a boson-fermion interaction whose
Fourier transform is u&4(p). The range of u3q will be
specified later. Using periodic boundary conditions and
choosing units such that fi= 1, we find the Hamiltonian of
the system in the second quantized formalism can be writ-
ten in the form

H= g bqbq+ g ad~i, ~+ g bq bq bq bq 5(qi+qz q3 q4)
, m, '' „.m, V. . . ,

Qg

kl, k2, k3, k4

~& ~Z ~3 ~4

1+—g u34(p)b b aI, al, +„+H, ,
k, g,p, o'

bo &0
H, = ——V ~-+ ~ (2)

In (1), bq denotes boson annihilation operator for the
single-particle state of momentum q, al, , with o =+1, the
fermion annihilation operator for the single-particle
momentum-spin state (k,o), and 5 stands for the
Kronecker symbol. Following Bogolubov' we have intro-
duced a symmetry breaking term H„h denoting the field
conjugate to the real part of the order parameter
(b, /~V).

The number operators for the bosons and fermions are
(with subscripts 3 and 4 for fermions and bosons, respec-
tively)

t

absolute temperature T.
The thermodynamic potential per unit volume, denoted

by Q is given by

0= P= (13V) '—ln=—(T,p3,p4, h ),
where P denotes the pressure of the mixture. The mean
number densities (n3, n4, ) of fermions and bosons can be
calculated according to

X4——g bqbq,

&3= gas aa
ko

(4) The thermodynamic average M of the real part of the
order parameter is given by

The quantity of primary interest is the grand partition
function " of the mixture, defined by

:"=Tr exp( PH o ), —

&o =& I P'3 pP44 . — —

Here p3,pq denote the partial chemicals, and P is the in-
verse of the product of the Boltzman constant k~ and the

We note that while 0 is a thermodynamic potential of
variables (T,p3, IJ,&,h ), 0' defined by

0'(M) =0+hM

can be considered as a thermodynamic potential of the
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variables (T,p3,p4, M) or (T,p4, b„M) where U1 U4+ U3+ U34 (22)

~=93—P4 (12)

is the variable conjugate to the fermion concentration x.
One may, therefore, talk of the possibility of an expansion
of 0' in powers of M. Another potential function which
involves M is the free energy per unit volume f' defined

by

U4, U3, and U34 denote, respectively, the third, fourth and
fifth terms on the right-hand side of (1). In (18) we have
suppressed the source term since it plays no role in the el-
imination of momenta Ip I &p, . In what follows, boson
momenta less than p, will be denoted by q's and boson
momenta greater than p, by p's. The term U4 in (22) can
be split as

f'(T, n3, n4, M) =0'+n3p3+n4p4 . (13) U4= U4(p)+ U4(q)+ U4(p, q),
If one chooses (T,P,x) or (T,P, b) as independent vari-
ables, as is usually done in the discussions of thermo-
dynamics of He- He mixtures, thermodynamic potential
functions having ( T,P,x,M ) or ( T,P, b„M ) as variables
cannot be constructed. As a matter of fact, it is easy to
check that p4 defined by

p4 =p4+hm

m =M/n,

n =n3+n4,

(14)

(15)

(16)

is a thermodynamic potential of the variables (T,P, b, , m ).
When these four quantities are chosen as independent
variables,

M = n ( T,P, »()., m )m

where

U4(q)= g bq bq bq bq 5(qi+q2 —q3 q4) .
Q4

q), q2, q3, q4

(24)

U4(p) is obtained from U4(q) by replacing each q summa-
tion by a p summation, and U4(p, q) is a term similar to
U(q) except for the fact that, in any particular term of the
suinmation, the four momenta can neither be all q's, nor
all p's.

Similarly, the term U34 in (22) can be broken up as

U34 ——
bq bq ak~k+qi —

q2
q), q2, k, cr

is in general some complicated function of m. These re-
marks have a bearing on the choice of the thermodynamic
potentials appropriate for a Landau-type expansion. If
the correct order parameter, as we have assumed, is M,
proper candidates for an expansion in powers of M are
0 (T p3 p4 M) and f' (T,n3 n4 M)

III. ELIMINATION OF FERMION
AND SHORT-WAVELENGTH BOSON AMPLITUDES

u34(p i
—»») t+ p ) p akcrak+p l

—p~, u
p ),p2~ k, cT

u34(q —p)+ X bqbpakcr k+q —p U+C. C.

q p'
k, cr

For the sake of simplicity, we assume
r

u34
u34(q) =

(25)

(26)
In this section we shall try to eliminate approximately

the fermion amplitudes akim and the boson amplitudes bp
with Ip I

&p„where p, is small compared to the boson
thermal momentum ))(,s '=(m4/4nP)' Retu. rning . to
Eq. (6), we split up H0 as follows:

HO HF +HF (
I p I &pc)+HF '(

I q I &p. )+ UI

(18)

The last term in (25) exists only in a narrow range
(

I q I, I p I
)-p, and will be ignored.

Treating HF '+HF '(p)+HF '(q) in (18) as the unper-
turbed Hamiltonian, and UI as a perturbation, the parti-
tion function can be expanded in powers of UI in the usu-
al manner. ' The Hilbert space of the system can be writ-
ten as the direct product

HF '= X« /m3 p3)akak. , —2

ke
(19) h3(8) h4(p)(8)h4(q) (27)

2

HF'(I»
I &». )= g —p. b,'b, ,

Ip I &p, 4

2

m4

(2O)

(21)

where h3 denotes the Hilbert space on which the fermion
operators act, h4(p) is the space on which the boson opera-
tors bp act, and h4(q) is the space on which the boson
operators b» act. The partition function consequently can
be written in the form

00 P f'

Tr exp[ PH»"(q)]:»(+ $ ( —()"f— f -dr, dr„(U, (r, ) U, (r ))„
Ih4(q) I

0 0

UI(1 ) =expIr[HF '+H) (p)+HF '(q)]] UlexpI r[HF '+HF '(p)+HF '(q)]I (29)
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-"z= p '&+exp —0 P3 g I 1 —exp[ —P(p'Im4 —1u4)]l
k, cr m3

(30)

P
Fj ——— d& U4 q, & +g) q, & (31)

I

and angular brackets ( ) denote thermodynamic average
calculated with Hz '+Hz '(p) over the space h3(3(h4(p).
The elementary vertices appearing in UI(v) are represent-
ed graphically in Fig. 1. The dashed lines represent low-
momentum ( ~q ~ &p, ) boson operators, the solid lines
high-momentum (

I p I
&p, ) boson operators, and the dou-

ble lines fermion operators.
Our aim is to calculate the term in the large parentheses

in (28) in a well-defined approximation scheme, and to
combine it with H~'(q) to obtain an effective low-
momentum boson Hamiltonian. The approximation
scheme will unfold as we proceed.

The graphs corresponding to the first-order term in (28)
are depicted in Fig. 2. Their contribution can be collected
in the form

gi(q, r)= V(2u4n'4+u34n3n4+ —,'u3n3 )

+ g (u34n3 +4u4n'4)bq(r)bcI(r)
q

where

n3 V——'+2Iexp[pe(k)]+1I
k

n'4 V'——g I exp[PE(p)] —1 I
Iul&u,

e(k) =k2lm3 —p3

e(p) =p'~m. —~. .

(33)

(34)

(35)

(36)

It is not difficult to see that the second-order term in (28)
can be written as

(38)

fP tj P
drl f dr2[U4(q&+1)+gl(q~ rl)][U4(qbr2)+gl (qbr2 )]+ f «i f, «2(UI(rl)UI('r2) }c (37)

where the suffix c stands for connected graphs.
We consider first the second-order graphs which give contributions to the four-point vertex U4(q, ~). These graphs are

shown in Fig. 3. The contribution of Fig. 3(a) can be written as
I3

d3( )= —j drV ' g vJq(b~ (v(b~ ~(r(b~ (r(b~ +~(r)

2
Q34 p

v4 ——— g 2n(k)[1 —n(k+q)]p ' f dpi f d~2expI [e(k) e(k+q)]—(ri —r2) I,
k

0 0

n(k) =
I exp[go(k)]+1I

2

E(k)= —P3 .
Pl 3

(39)

(40)

(41)

In writing (38), use has been made of the fact that, by def-
inition, q's are small in comparison with the thermal
momentum so that factors such as exp I p[es(qi )
—ea(qi —q)]] can be replaced by unity. Again if the
temperature is not high [thermal momentum smaller than
the Fermi momentum (msp3)'I ]

FIG. 1. Vertices in the interaction U( [Eq. (20}].
FIG. 2. Graphs corresponding to the first-order term in Eq.

(26).
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(c)

FIG. 3. Second-order graphs contributing to the four-point
vertex u&(q, g).

FIG. 4. Second-order graphs contributing to Hp (Q').

Bn 3
v4(q)=v4(0) = ——,u 34

Bp3

where according to (33)

Bn3 2P g n(k)[1 —n(k)] .
k

The contributions of Figs. 3(b) and 3(c) are of order u4.
We are now in a position to define the scheme of approxi-
mation. We regard u4, u3, and u34 as weak interactions.
If u4 and u34 are considered to be of the same order of
lnagnitude, the contributions of the graphs of Fig. 3 to u4
are in the nature of correction terms, and the effective
four-point interaction will always have the same sign as
u4. On the other hand, if we consider u4 to be of the
same order as u34, the effective interaction [u4+v4(0)]
can be positive as well as negative, provided u4 is positive.
As will become evident later, one needs a four-point in-

teraction of the latter type to describe a tricritical point.
Consequently, in what follows we assume u4 to be positive
and of the same order as u34. As regards u3, it will be

I

P
Ã, =—f Vc2d~,

F
p FBn3

Ã4(b) — d T u 3u 34n 3 g b& (r)b& (r)
0 ~83 4

(45)

The second-order graphs shown in Fig. 5 contribute e-
nulnber terms only. As u34 exists only for small momen-
tum transfers, Fig. 5(f) gives only a small correction to
Fig. 5(e). Ignoring Fig. 5(f), the contributions of the
remaining figures can be written in the form

(46)

collsldcl'cd of tllc salllc ol'dcl' of Illagnltude as u34 ~

lowest-order calculation in this scheme is one where all
quantities are calculated to the order u 34. Figures 3(b) and
3(c) are now seen to contribute terms of order u 34 and will

l3e ignored.
The second-order graphs which contribute terms similar

to HF '(q) in order u 34 are shown in Fig. 4. For contribu-
tions from Figs. 4(a) and 4(b), respectively, we find

p
I3 2 Bn3

K4(, )
——— d7 —u34 n'4+b (r)b (r)

0 e q

2 F
~ 3 Bn3 ~cln3 u34 3 Bn3 F 3

Bn 4
c2 ————,u3(n 3 ) ulu34n—'4n3 — n'4 +(n3 )

Bp3 Bp3 2 Bp3 BIMg

4u3 P 7j

J dq I I dain(kl )n(k2)[1 n(kl —k')—][1 n(kl+k')—] .
PI" k, ,k, , k

Substituting the contributions of the first- and second-order terms in (28), one can write

P
Tr exp[ —()H~'(q)] ( —J [udq, v)+g~(q, ~)—gq(q, ~)ldr

Ih~(q) I
0

P+,«I, «2[u4(q, r[)+gl(q, rz)][u4(q rz)+g[(q rz)]+

(47)

where gl(q, l ) is given by (32) and gz(q, r) denotes the sum
of the integrands in (38) and (44)—(46); the ellipsis
represents higher-order terms.

The connected graphs arising from the third- and
higher-order terms in (28) give contributions to gl —gz in

the second term in (48) which are of third and higher or-
ders in u34. They can be ignored in a calculation up to or-
der u 34. It is, however, important to examine the role of
disconnected graphs arising in the various orders. If we
had calculated a complete trace of the density matrix, the
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:-=:-~Tr exp{ P—H,' '),
jh4)

where the effective boson Hamiltonian H,' ' is given by

2
H(4i

q m4

(50)

(51)

co= V[c2+ p Q3(ii3 ) +Q34ri354+2tl41f g],

FIG. 5. Second-order graphs contributing c-number terms.

Bit
+ (u3gn4+u3u34n3) + V g v4(q),

connected-graph theorem would ensure that the discon-
nected graphs lead to exponentiation of the contributions
of the connected graphs. When only a partial trace is cal-
culated, the contributions of the connected graphs involve
time-ordered products of the uncontracted, small-q-boson
operators, and the usual method of proving the
connected-graph theorem does not work. This problem
arises in quantum as well as classical systems, ' and one
needs to verify whether the disconnected graphs lead to
exponentiation or not. If they do not, the perturbation
method of obtaining a new effective Hamiltonian fails.
Consider, e.g., the third term in parentheses in {48). It
represents disconnected graphs in the second order but has
the form of a time-ordered product of the contributions of
the first-order graphs. To establish exponentiation of the
coQIlcctcd gnph contrlbUtlons g] —g2 Up to second order,
we need to shor@ that the disconnected graphs in the thixd
and fourth order have the effect of adding a term —g2 to
each factor U4+gi in the third term of (48). This is
somewhat tedioUS but easy to check. %c have not, howev-
er, been able to find a general scheme to show that discon-
nected graphs arising in higher orders produce terms in
{48) which may be identified with the terms in the expan-
sion of exp[ P(H~ '+g)], w—here

denotes the contributions of all the connected graphs. An
analysis carried out for the case of a pure boson system'
shows that exponentiation of the connected graphs belong-
ing to the first and second order can be proved to all or-
ders provided the momenta associated with the external

1cgs arc sIQall lIl coIIlparison %'1th thc thcrID81 momentUM.
The analysis is easily extended to the Fermi-Bose mixture
under consideration. The conclusion is that, at least for
low-order connected graphs, exponentiation is valid pro-
vided the external momenta are small. The reason for
leaving unintegrated only small boson momenta while car-
rying oUt 8 PMtla1 trace 1Q th18 section has its gcncsls 1Q

this restriction on the validity of exponentiation of con-
nected graphs.

We may now write {48)as

Bil 3
tl4 = Qg —

p 834 +0(u34) .
p

(54)

It is well known 'o that a Bose system becomes un-

stable when the effective interaction u 4 becomes negative.
We conclude that the Fermi-Bose mixture is stable as long

FBit 3
u4. ——,u34 &0 .

P3
(55)

It is convenient to introduce the Born scattering ampli-
tudes a and b associated with the potentials u4 and u34.
They are given by

(56)

4rrb{1+v)
u34=

Pl 4
(57}

(58)

The stability condition may then be written in the form

Bii 3
(m4a)/[2mb (1+v} ]&

In the low-density fermion limit

exp(Pp3)= —,'n3Aii(T)v ~ gg 1, (60)

denotes the boson thermal de Broglie wavelength. Conse-
quently, (59) becomes

—,
'

n3 As(T)(1+v) [b /aA~(T)] & I .

In view of the inequality (60), we conclude that the stabili-
ty condition is satisfied in the low-density fermion regime
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provided b /a A,z(T) is not too large compared to l.
In the high-density fermion limit

Pp3 (3&n i ) (mikii T) ' » 1

The stability condition in this limit reads

(64)

PF(T,p3)+Ps(T, O)=P (65)

where PF denotes the pressure of the ideal Fermi gas and
Pz that of the ideal Bose gas at zero chemical potential.
In the high-density fermion limit, this can be written in
the form

' 5/3 —2/5
T(P)

1
x

Tp(P) 1 —x
1+a (66)

,/ (2.612}a= —,(m/3)'
' =1.50,
1.341

(67)

where x denotes the fermion concentration defined by

n3

1 —X 714
(68)

taking v= —,.
As we shall show later, the A, line for the mixture at a

given pressure P is approximately given by the ideal-gas
equation

FIG. 6. The series of graphs which lead to the screening of
2

Q 34.

for the condensed phase can be manipulated into the form

F F —1

Bni Bll )
u4 —

2 ui4 I+up &0.
Pi Pi

(72)

Comparison with (55) shows that, notwithstanding the
fact that their calculation of free energy is valid only to
first order in the u's, (72) is the same as (55) to order u 34.

More interestingly, even the factor [1+u 3 (8113 /Bfl3) ]
in (72) is not out of place since it seems to represent, in the
diagrammatic language, a screening of u 34 by the
fermion-fermion interaction. It is easy to check that if
one sums up the series of graphs indicated in Fig. 6, one
finds for the effective interaction u4 the expression on the
left-hand side of (72). In our approximation scheme, how-
ever, the screening of u 34 represents a correction of order
u 34. As shown in Sec. V, the stability condition derived

by us for the nondegenerate phase disagrees with the re-
sult of Cohen and Leeuwen.

2.612

A,s(T)
(69) IV. CALCULATION OF SIX-OPERATOR TERM

and Tp(P) is the Bose-Einstein transition temperature at
zero fermion concentration.

On the A, line, the stability condition (64) becomes
1/3 ' 5/3 1/5

aha(Tp)
& 0. 1806

$2

(70)

We infer that the A, line is stable for x (x„where x, is
determined by the equality sign in (70). The correspond-

ing temperature T, is obtained from (66). Later (cf. Sec.
V) we shall be able to identify (x„T,) as the tricritical
point of the mixture. The experimental value for the tri-
critical concentration for He- He mixture is close to —,.
One gets this value from (70) for

h = b b , b b , b b'~ ~2-~2 3 q3 ~3

I I I

(73)

3
934

Q6= (74)

As pointed out above, when the coefficient u4 in the ef-
fective boson Hamiltonian becomes negative, the system
becomes unstable. It is then necessary to take into ac-
count the next higher-order contribution to the effective
Hamiltonian. Returning to the expansion (28), we find
that in the third order, terms involving six boson opera-
tors arise from the graphs depicted in Fig. 7. As in the
calculation of u&, if the temperature is not high, Figs. 7(a)
and 7(b) contribute to the effective Hamiltonian (51) the
term

ass(Tp)
$2

=4.915 . (71)

The corresponding value of T/Tp is seen to be 0.496 in
comparison with the experimental value 0.405. It may be
mentioned that for x = —,, the high-density condition (63)
is reasonably satisfied.

It is interesting to compare the stability condition (55)
with that obtained by Cohen and Leeuwen from a calcu-
lation of the free energy to first order combined with ther-
modynamic stability criteria. In our notation, their result FIG. 7. Third-order graphs contributing six-operator terms.
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y= y [(1 nk) nk nk(1 nk))
2P2 2 2

It is easy to check that

g2 F
n3

3'=
BP3

(7&)

(76) &,' '-g0 —p4M +u4M +u6M (78)

as pointed out in Sec. I is bolo V which, following Bogo-
lubov, ' can be replaced by a c number M. The operators
bk with k&0 play the role of fluctuations of the order pa-
rarneter. Upon ignoring the fluctuations completely, the
effective Hamiltonian reduces to

In the low-temperature limit ptu3 » 1

2 3
m3u34

24m(3' . n 3 )
' (77)

The coefficient u6 is thus positive. Taking (51) and (73)
together, we have derived an effective Hamiltonian for the
fermion-boson mixture which may be considered to be the
quantum analog of the expansion of free energy intro-
duced by Landau. If one replaces the boson field in the
effective Hamiltonian by a classical field, one obtains the
phenornenological model used by Riedel and Wegner. It
has been shown in earlier works how the quantum nature
of the fields becomes irrelevant in regard to critical
behavior when one applies the renormalization-group ap-
proach to a pure Bose system. One may expect that quan-
tum effects will not be important for the critical behavior
exhibited by the effective boson Hamiltonian obtained in
this paper.

Evidently, contributions of order u34 arise to the effec-
tive interaction u4 also calculated in Sec. III. They arise
from the first of the polarization graphs in Fig. 6 and the
graphs in Fig. 7 when two q lines at any vertex are re-
placed by two p lines and contracted. These contributions,
however, make only small corrections to the stability con-
dition or the tricritical point, and hence will be ignored.

V. DISCUSSION

By starting with a quantum-mechanical model Hamil-
tonian for He- He mixtures, and carrying out a partial
trace with respect to the fermion and short-wavelength
boson amplitudes, we have derived an effective boson
Hamiltonian given by Eqs. (51) and (73). This effective
Hamiltonian involves only small momenta (

~ q ~
(p, ),

and, as usual in renormalization-group theory, " can be
viewed as a "block Hamiltonian" for He- He mixtures.
As pointed out in Sec. IV, if one replaces the boson field

by a classical field in this Hamiltonian, one gets the
phenomenological model used by Riedel and Wegner in
their renormalization-group analysis of the tricritical
behavior of He- He mixtures. The calculations of this
paper consequently enable one to understand how a model
Hamiltonian of the type used by Riedel and Wegner can
arise from a microscopic, quantum-mechanical basis. The
earlier approaches concerned themselves directly with
the calculation of an approximate free energy; the possi-
bility of an equivalent Hamiltonian was not contemplated
in these theories.

In keeping with modern ideas on critical phenomena,
"

our effective Hamiltonian is expected to yield a Landau-
type theory, provided one ignores fluctuations of the order
parameter. For a system of bosons, the order parameter

{0) F
lll4 —tu23 ( 114 ) + u 3411 3 u 3 u 3411 3 +2u 4'n 4

+2u4n4+2u4(n4 —M )

+2u4'[n4 M n4(p &p, )—] . — (79)

In view of the fact that u4 can be positive or negative
while u6 is always positive, (78) is essentially the Landau
expansion corresponding to tricritical behavior. As is
planned to be discussed in a future paper, a slightly better
and physically more meaningful approximation for the de-
generate phase is obtained by treating the kinetic energy

[g (q /m4)bzb&j as the unperturbed Hamiltonian to
take fluctuations into account up to first order. The inter-
section of the I, line (lM4

——0) and the curve (u 4
——0), which

we designated as (x„T,) in Sec. III, can now be identified
as the tricritical point of the system.

For the nondegenerate phase, the above approximation
turns out to be rather poor. We shall consequently use the
self-consistent Hartree-Fock approximation for both the
phases. As will be shown in a planned paper, this approx-
imation leads to a Ginzburg-type criterion' for the validi-

ty of the Landau approximation.
In the light of the above discussion, the reason for the

inability of earlier attempts ' to obtain a Landau theory
becomes clear. In earlier works, corrections to the ideal-
gas free energy were calculated to first order using the
bare vertices (u 4, u 34 u 3 ). Equation (78), on the other
hand, shows that it is the effective or renormalized
boson-boson interaction u4 which governs the stability of
the degenerate phase in the absence of the M term. The
M6 term which was not evaluated in earlier works, plays
an important part in restoring stability when u4 becomes
zero or negative.

We have pointed out towards the end of Sec. III that
the stability condition obtained by demanding the effec-
tive boson interaction to be positive definite agrees with
the thermodynamic stability condition derived by Cohen
and Leeuwen (abbreviated CL hereafter) for the degen-
erate phase using first-order expressions for the chemical
potentials. The agreement implies that corrections of
second order to the chemical potentials somehow do not
contribute anything to the thermodynamic stability cri-
terion for the degenerate phase although second-order
terms make important contributions to the effective
boson-boson interaction u4. In order to bring this point
out in a clear fashion, and also to demonstrate that this is
no longer true for the nondegenerate phase, we give below
our expression for the chemical potential p4. Its deriva-
tion will be presented in a planned paper. Up to terms of
second order, we find



The second term (within large parentheses) in (79) can be
shown to be equal to n3u3. Comparison with the results
of CL shows that (79) differs from their result by the pres-
ence of the last term only.

With the expression (79) for p4, it is convenient to use
the stability condition

Bll4 p3, T
(82)

The same results are obtained if one uses the CL condition

g 0
Bx

In the degenerate phase /tii' ——0 and it is sufficient to
use for n& M—appearing in the last two terms of (79),
thc zero-order Icsult

(n4 —M )=2.612il,ii .

One consequently obtains for stability the CL result

2(u4+u4') &0 (84)

which is identical with the effective interaction condition
used in Sec. III.

In the above equation, /sit
' denotes the chemical potential

of the ideal Bose gas, u4' is the contribution to the bare in-
teraction u4 calculated in Sec. III, viz. ,

pBni
Q4 = —

2 Q34 (80)
p

and n 4 (
I J I &J.) is the density of bosons with

I J I &/.
0

1.C.,

The CL result, on the other hand, is

(0)

+4u4+2u4 &0 .
n4

(86)

The disagreement between (85) and (86) is obvious. We
note that while (84) and (85) give identical conditions for
the stability of the A, line, CL, on the basis of (86), were
led to the conclusion that the A, line when approached
from the nondegenerate phase is stable at every point.

Finally it seems appropriate to add a few remarks on
the model Hamiltonian we have chosen, particularly the
restriction that u4 must be treated as a quantity of the
same order of smallness as u i4. This model is not a realis-
tic representation of the interactions in a He- He mixture
which are neither weak nor disproportionate in strength.
It is, however, a useful model in the sense that it enables a
theory of critical behavior to be built up from a micro-
scopic basis. As a matter of fact, it is not unusual in
many-body theory to consider models obtained by impos-
ing suitable restrictions on the parameters of the Hamil-
tonian to get useful schemes of calculations. A well-
known cxaIQplc 1s thc E-expansion 1Q rcnormalization-
group theory' where 4—d is treated as a small parameter
1Q o1dc1 to match second-ordcI' terms with the f11rst-order
terms to obtain a fixed point. Another example is provid-
ed by Huang's work on hard-sphere Bose gas with a
long-range attractive interaction between the particles. In
order to get physically meaningful results, the strength of
the attractive interaction must bc regarded as a quantity
of second order of smallness to match first-order attrac-
tive terms with the second-order repulsive terms.

In the nondegenerate phase, M is zero; the stability con-
dition becomes

(&)

+4(u4+ u 4') & 0 .
BPl 4
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