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Possible large relative enhancement of the superconducting T, by anisotropy

M. D. Whitmore
Department ofPhysics, Memorial University of¹mfoundland, St Jo.hn' s, Eeuifoundland 3183X7, Canada

J. P. Carbotte
Department ofPhysics, McMaster University, Hamilton, Ontario L8S4M1, Canada

E. Schachinger'
Institut fur Theoretische Physik, Technische Uniuersitat Graz, A 801-0 Grm, Austria

(Received 24 October 1983)

The enhancement of the superconducting transition temperature T, by anisotropy is studied as a
function of tbc Coulomb I'cpulsion p . Numerical solut1ons of thc Rnisotlop1c Ellashbeig cqUat1ons

are presented with isotropic p ranging up to and beyond the average electron-phonon paI'amcter ~,
assuming separable anisotropy. An approximate anisotropic 1", equation is developed, tested

against the numerical results, and used to interpret them. It is found that the dependence of p on
thc Upper pllonon cutoff plRys Rn 1InportRnt I'olc. Further, %within BCS-11kc approximations, R gen-

eral formalism is developed applicable to any anisotropy function. It is applied, in connection with

calculated microscopic parameters in real metals, to develop additional insight into the role played

by p in criteria for superconductivity.

I. INTRODUCTION

The enhancement of the superconducting transition
temperature T, due to anisotropy in the effective
electron-electron interaction has been treated theoretically
in a number of models, most of which require that the an-

isotropy is small, in a scnsc discussed belolv. Thc pri-
mary, although not sole, focus of this paper is a further
discussion of the regime in &which the relative enhance-
ment can bc very large, cvcn foI' IIlodcst anisotropy. Most
of this introduction consists of a brief discussion of relat-
ed earlier work, through which a number of quantities
used later are introduced.

The part of the theory introduced by Markowitz and
Kadanoff' for pure crystals (which are all that are treated
here) is a generalization of the original BCS theory2 to in-
clude anisotropy in the pairing interaction V, in a sim-

ple vray, namely the separable model. The resulting T,
equation differs from the BCS one only in that the aver-
age interaction V is multiplied by the factor 1+(a ),
where (a ) is the mean-square anisotropy of both V--,kk'
and, in this model, the energy gap. The enhancement of
T, relative to its corresponding isotropic value T, is
[N (0) is the electron density of states at the Fermi energy]

which can be expanded to 1+(a )/X(0)V if the argu-
ment of the exponential is small. This enhancement is
generally of order 20% or less for (a )(0.04. This
model unambiguously implies the same criterion for su-

perconductivity as does the isotropic BCS theory, namely
that the average interaction must be attractive; in this for-
malism, V~0.

Numerical solutions of the anisotropic Eliashberg equa-

tions have also been obtained. In this case the underly-

ing anisotropic quantity is [a F(co)]--, which is thekk'
electron-phonon spectral function for scattering of an

electron from k to k ' on the Fermi surface due to a pho-
non of energy co. Again using (a ) &0.04, the enhance-

ment of T, was on the order of 10% for most specific ma-

terials considered, although for a weak coupling case such
as Al it can reach -30% because of the smaller value of
A, , the average electron-phonon mass-enhancement param-
CtCI.

In these treatments, the changes in T, are often evaluat-

ed only to 0((a ) ). This requires that (a ) be small in
the sense that

A, .—p'(co„)
(2)

or in the BCS-like theory, (a )/X(0) V&(1 In Eq (2),
it*(co„) is the Coulomb parameter used in solving the
Eliashberg equations which depends on the cutoff fre-

quency m«, as mill be discussed in the next section. In the
same spirit as Markowitz and Kadanoff, Whitmore and

Carbotte introduced a simple model to investigate quali-
tatively the regime in which condition (2) does not hold.
Because the attractive part of V -, is presumably dom-kk'
inated by the anisotropic electron-phonon interaction

(V, ») and the repulsive part by a less anisotropic
Coulomb interaction ( V, ), a BCS-like theory was

developed with

V-. k ="+'k)V-»"+'k )-Vc

Both V, ph and Vc are positive, and the Fermi-surface
average of a

k
is zero, as in all separable models. In the
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original treatment, both parts of the interaction were trun-
cated Rt tllc 1YlRxllllulil pllonoll cllclgy N~, and p was
identified with N(0) V&. This is easily modified to allow
the Coulomb interaction to extend up to the Fermi energy

p, 'as for tllc isotl'oplc case. Tllc Tq equations, given
in the Appendix [(A8), (A13), and (A14)], are the same as
in Ref. 6, but with p* clearly given by

X(0)Vc
p (co )= (4)1+%(0)Vcln{cp/co )

In the regime of small (a ) [satisfying (2)], this model
glvcs

T, /T,'=1+(~'), (5)

where (a ) is the mean-square energy gap, which in this
case is just (a ) /[1 —p' /N(0) V, ~h]. Thus this is essen-
tially the same as Eq. (1) if the latter is interpreted as
referring to the gap anisotropy. However, when (2) does
not hold, i.e., when p'(u ) approaches N(0)V, ~h, then
the relative enhancement of T, can become very large. In
fact when it equals or even exceeds N(0)V, ~h, T,' van-
ishes, but superconductivity can persist (in this model) be-
cause of the anisotropy.

None of these results were meant to be interpreted
quantitively, primarily because of the use of BCS-type ap-
proximations and the assumption of separable anisotropy.
Leavens et a/. "have emphasized both these points. They
found that using nonseparable anisotropy could either in-
crease or decrease the enhancement within a BCS-like
modd. However, for any form of the anisotropy, a finite
Tq pcI'sists foi' soIIlc p (6)~ ) Q A, .

The rest of this paper focuses primarily on the regime
of large p*(I0 ), by which is meant that p'(ro„) is

suffic-

ientlyy large that most previous work mould imply that
superconductivity Moue Dot stabilize at any temperature.
In addition to specific numerical results, one would ideally
like to derive a "clean" statement of necessary and suffi-
cient conditions for the Eliashberg equations to have a
finite-T, solution, or alternatively to determine T, numer-
ically as a function of p'(m„) for all p*(IO„) until T, van-
ishes. Unfortunately the first alternative has remained
elusive, and the second is not feasible because as p*{co„)
increases, T, decreases, causing a very large increase in the
required computing resources. Consequently, no clear cri-
teria have been established.

Nevertheless, two somewhat different approaches have
been pursued, leading to perhaps surprising results. The
first dcscrlbcd 111 Scc. II, coIlslsts of botll 11Unlcrlcal Rnd
approximate solutions of the anisotropic Eliashberg equa-
tions with separable anisotropy. Solutions are given for
p'(RI ) much larger than the value for which, for exam-
ple, the McMillan equation would predict a finite T, to be
possible, and indeed for p*(co~)&A, for any cutoff fre-
quency greater than 3N~. CoHlplcmenting this, Scc. III
deals with nonseparable realistic anisotropy functions but
only within a BCS-hke approximation. It ls found that
general statements about the existence or nonexistence of a
finite T„hiwhdcepend on the details of the anisotropy in
the attractive part of the pairing potential, can be formu-
lated. Specific examples are considered. In Sec. IV, con-
clusions arc dr&vn.

The main result of this section is the numerical solution
of the anisotropic Eliashberg equations for T, as a func-
tion of p (I0„), which is varied up to and beyond A,.
These equations, written on the imaginary-frequency axis,
ar 12—14

Z-„,(q)
Z-(P)=INST', Q [A,—,(P —q) —P*{a)„)] ' {6)

cu-„(p}=cop+IrT, g (A, „„,(p —q))'sgn(roq),

The roz are Matsubara frequencies, iroz ilrT, ——(2p —1),
and A, is the double average, k=((A,--„,(0))').
sums in Eqs. (6) and {7) are truncated at
N, =(co„/mT, +1)/2, where ro„ is usually some integral
multiple of cl . From Eq. (4) one easily finds that for two
different cutoffs, co„and co,'„ the corresponding Coulomb
parameters are related through

p*(co„)
p'(~,', )=

1+p (coq()}in(cgP~( /Ajar~)

The cutoff frequency needs to be large enough that the
phonon contribution to the sums converges. In practice,
numerical tests using an a F(I0) similar to that of Ga in-
dicated that as long as Q)co% 36k~, T~ divas Inscnsltlvc to
co to within about 2%, provided that p'(co„) was re-
scaled according to (9). Thus the Coulomb parameter is a
well-defined, albeit a complicated, function of the material
parameters and of co„. It is essential to keep in mind its
dependence oD Nco.

For a given cutoff, Eq. (4) also implies an upper limit
on p*(a)„),namely 1jln(cpjro„), even if N(0) Vc were to
become very large. For typical values of s~ and co„, this
is on the order of 0.3 or 0.4 for cutoffs of 3cl~, or the
Inore commonly used 10', respectively. (The effective
value could be larger, for example, because of paramag-
nons, "'6 but probably not by a large amount. )

Computationally, the largest p (r0„) which
treated is limited by the fact that as it approaches ~, +,
decreases by orders of magnitude, so that N, increases by
orders of magnitude. To lilvcstlgatc tllls rcglnic, solutions
have been obtained using the separable™anisotropy Inodcl,
the spectral density a I" (co) calculated for Al by Leung
CI Ql., Rlld R cutoff fl'cqUcllcy of toe&)=36)~. II1 oI'dcl' fo
keep T, reasonable, unrealistically large values of (a )
had to be used, namely 0.09 and 0.16, but we do not be-
lieve this to be significant. To this a F(co) corresponds a
value A, =0.436, and therefore Rli lncleasc of p'(3I'0~ ) just
beyond this A, is near to the limit of physi~ally reasonable
values, barring the effects of pRlaillagllons 01' otllci' pro-
cesses. Thus these choices of a I'{co) and (a ) provide a
coIQputationally accessible I'cglon, Which 18 still within thc
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limits of physically acceptable values of p (3'~~). There
is nothing in the calculations (or the later analysis) to sug-

gest that the results could be qualitatively different for
smaller values of A, or (a ). The main point is the ex-
istence of nontrivial solutions in this regiine, and in par-
ticular the very large relative enhancement of T„as com-
pared with the case of p*(co„)((A,.

With a separable model used for [a +(ca)]--„Eqs. (6)

and (7) can be set in the form of ordinary isotropic Eliash-
berg equations which can be solved numerically in a now
standard way. It is easily seen that the solution of Eq. (6)
has the form b, „(p)=ho(p)+a „Zi(p), with

b i(p) =nT g A(p q)[(rq—+sq )Zp(q)
q

I.O

T, (K)

O. I

0.26 0.56
I

0.47 0.77
I

+(s, +r, )Z, (q)] (10)

and
O.OI— (o~ =0.0

and

M =vrT, g [rambo(q)+s~b, i(q)]
q

(12)

0.20

p". (IO~)

0.25
~ I

0.35 0.40

(13)

In Eq. (10), A, (p —q) is given by (8) using the isotropic
spectral density a F(co). After some simple algebra an
equation for Eo(p) is obtained from (10)—(12),

kp(p)=7TT +[A(p —q)(r +2s +t )

q

p."(&~~&

FIG. 1. Comparison of approximate T, expressions with the
full solutions of the Eliashberg equations, for the isotropic and
separable anisotropic limits. The solid curves are the fu11 calcu-
lations ( ), the dashed curves the Leavens-Carbotte —type
equation generalized to include the anisotropy, Eqs. (A8)—(A10)
of this paper ( ———), and the dotted curves result from the
McMillan equation ( ). The lower curve uses p*(10m ), and
the upper curve uses p*(co ). Using a value p*(3' ) would re-

sult in a curve between these two.

1 mT, g A, (p —q—)(sq+tq)

p~=p (~„)
1 —p (cgqo)'ITT~ g sq

q

(15)

(az) is again the mean-square gap anisotropy, shown by
Carbotte and Daams' to be

(17)

Solutions of these equations are exhibited in Fig. 1

( ). The first thing to notice is that T, remains finite

and well behaved up to and beyond the point p'(3' ) =A, ,

a result consistent with the original BCS-like results of
Whitmore and Carbotte.

In order to compare the results with the corresponding

isotropic limit, an approximate T, equation is derived

which is a generalization of an equation of Leavens and

Carbotte. ' This is done in Appendix A. As one ~ould
expect, the enhancement of T, by anisotropy is quite mod-

est as long as p'(3'~~ ) is small; the enhancement is given

approximately by

(16)

within this model and in this limit. However, for all the
curves shown in Fig. 1, Eqs. (16) and (17) are inadequate
approximations to Eqs. (A8)—(A10), which include the
anisotropy to all orders. Using those equations it is found
that at p'(3' )=A, , the relative enhancement is on the or-
der of 2 orders of magnitude; for smaller anisotropy, qual-
itatively the same results can be expected. As p*(3' ) is
further increased, the relative enhancement becomes much
larger; if it were large enough that p, '(co~ ) also equaled or
even exceeded A, (as could certainly be the case for a small-
er A, than that used in the calculations), T, is predicted to
remain finite in this model, as long as (a ) &0. Note,
however, that the regime p (co~ )=A, has not been treated
in the numerical solution of the Eliashberg equations.
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That the isotropic r,' remains finite for p,'(3' )&A,

may be surprising. It is even more surprising when it is
recalled that for any cutoff co« larger than 3', p*(co„)
becomes larger than p'(3' ). For instance, at
p,'(3' }=0.46, p*(10' ) is equal to 1.03=2.4A, , as is
easily verified by use of Eq. (9). [The p*(10'~~) scale is
included in Fig. 1.] It is critical that what appears in Eq.
(16) is p*(co~ ), which in fact does not exceed the value of
0.3, and which therefore is still smaller than A, .

The prediction of a finite T,' is in sharp contrast with
other approximate T, formulas, at least as they are
conventionally used. The McMillan equation, for exam-

ple, predicts T,' to vanish at p'(oi„) =A, /(I+0. 62K, ). Al-

though the cutoff is not precisely specified, it is generally
taken to be 10'~. This then corresponds to T,' vanishing
at p, '(3'~ }=0.24, much less than A, . From Fig. 1 it is
clear that the McMillan equation with such a high cutoff
in p* grossly underestimates T,' throughout this range.

The use of p, '(co~) somewhat improves the agreement.
A careful examination of McMillan's derivation indicates
that the appropriate cutoff to be used in p' is the Debye
energy divided by 1.4. For small p' (or large I,), this dis-
tinction is not important and generally one uses the tun-
neling value [probably p,*(10' )] or simply 0.1 or 0.13.
However, as seen from the figure, even if the p" appropri-
ate to a cutoff of co is used, the McMillan equation still
grossly underestimates T, . The dependence of T, on the
choice of cutoff has not been emphasized previously in the
literature.

To summarize so far, numerical solutions for separable
anisotropy have been exhibited in the range
0.18 &p'(3' ) & 1.05k, . Furthermore, since p*(co«) is an
increasing function of co«, for any acceptable cutoff used
the corresponding p*(co«) is even larger. The approxi-
mate formula presented appears to be at least qualitatively
correct throughout the range of p'(ro„), which, for this
spectrum at least, is in contrast to the McMillan equation.

Because of the dependence of p"(co«) on oi«, one is also
led to the conclusion that within Eliashberg theory, even
for the isotropic case, no particular significance can be at-
tached to the point p*(co«) =A, , because one could change
ai«, and hence p, '(co ) in a perfectly acceptable way.

As a final point, it is noted that the approximate T, for-
mula derived here for separable anisotropy predicts that
arbitrarily large p'(co~ ) could be tolerated as long as there
is some anisotropy. As a further generalization of the T,
equation used here, the following model anisotropy has
been examined:

rability coefficient. The inodel (18) is not perfectly gen-
eral, but was used by Leavens et al."

III. BCS THEORY WITH NONSEPARABI. E
ANISOTROPY

In contrast to the approach of the preceding section,
within the BCS approximation, nonseparable anisotropy
can be explored in a general way. Although nonquantita-
tive, such a model at least produced the same qualitative
behavior in the new regime [with N(0) V, ~h identified as
A, ] for both the isotropic and separable anisotropic cases,
as did the Leavens-Carbotte —type approximations. This
is in marked contrast with other approximate expressions
which predict T, to variish for much smaller values of
p*(co ).

Two different cases are considered. The first is a gen-
eral analysis which will be used in conjunction with nu-
merical calculations of A, „-,in Pb (Ref. 3) and Al; the

second is more specific and is used with numerical calcu-
lations in the alkali metals.

%ithin the BCS approximations, the T, equation
reduces to

=n.T, g [A,—,—p'(o) )]
k ~ kk'

with the sums truncated at co . The major approximation
of (19) is the ignoring of the anisotropic mass renormali-
zation in co (p), Eq. (7), which can be approximated by

co-(p)=[1+A(1+a-)]co~. The isotropic part of this

term can easily be incorporated by multiplying the eigen-
value f introduced in Eq. (26) which follows by 1+1,,
which would have a large quantitative effect on the for-
mula for T„but which would not alter the qualitative
behavior, in particular, the conditions for a finite T, . The
anisotropic renormalization cannot, unfortunately, be in-
corporated into the present formalism.

For the general treatment of anisotropy, it is convenient
to work in terms of the Fermi-surface harmonics (FSH's)
introduced by Allen, which are a set of functions Pi(v )

k
which are orthonormal over the Fermi surface of interest.
The Fermi surface can consist of N distinct pimes, and a
particular gi is nonzero on only one of them, denoted i (l).
The order of i/i is denoted 0(l). The relative weights of
different regions are related to the partial and complete
densities of states through

[a F(ro)]--,=a F(oi)(1+a-+a-, +ya a-, ),kk' k k' k k' (18)
(20)

for which the separable model is recovered when y=1.
For a certain range of y, a finite p'(co~ ) can drive T, to
zero, but for any y, a finite T, persists for some
p'(co ) & A, . In fact, in the most detrimental case for T,
considered by Leavens et al. ,"which corresponds to nega-
tive y, the condition on p to have a solution is
p' & [(1+

~ y ~
)/

~ y ~
]A,. This condition makes no refer-

ence to the size of the anisotropy but only to the nonsepa-

where the integral in the numerator of (20) is over the sur-
face i(l), whereas that in the denominator is over the en-
tire Fermi surface. The orthonormality of the fi is ex-
pressed through the inner product

(21)
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These are used for expansions

Q-= g A!i)ji(v-„),
l

~ll'

l v- l' vk
p (~) i! Pll'

with coefficients given by

dS-„ dS„

V~ V~

dS- dS-,
V~ l V~,

iu-„, i

k

dS- dS-,

V-+ V~

(22)

(23)
Kll —~&l&! 9i—! (30)

where the a! are the expansion coefficients of (1+a-).
k

The results of two earlier calculations are used; the first
is that for Pb by Daams, and the second is for Al by
Daams and Carbotte. In each case it was found that
A, „„,is almost "sheet constant, " i.e., that as k or k'
varies within any of the four separate sheets of the Fermi
surface, there is little variation in A, „„but when either

switches to another sheet, there is a larger change. As a
consequence, the expansion is dominated by the four
zeroth-order FSH's. The calculations are summarized in
Tables I and II. In interpreting these tables it is worth

noting that for k Ei(l), k 'hi(I'), then to the lowest or-
der,

For a Fermi surface with N distinct pieces, !Lta is an
N XN matrix, but with rank of only 1.

In passing, it is noted that for a separable model, the
kernel, ~, has the form

(25)
p ~ p ll'

A,--,=A, i!Pi(v-)g! (v, )=kk' k k' (pr gr )I/2
(31)

Substituting these into Eq. (19) leads to the following

eigenvalue equation:

(26)

with kernel

+ll' ~ll' I ll' . (27)

1/( W;!t!)'~ for k Ei(l), -
tV~='

0 otherwise,

and the coefficients of the (assumed constant) p'(co ) are

!Lt (to~ )( W&!t!Wi(t!) fol' O(l)=O(l') =0,
Pll =' (29)0 otherwise.

(28)

T, is determined by the largest eigenvalue, say f, ; if
fi &0, then fi ——ln(1. 13co~lT, ), as usual. Thus once the
expansion coefficients are known, the calculation reduces

to finding fi.
From the normalization, the zeroth-order functions are

T, was calculated as a function of p*(co ) for each of
these, with the All truncated to retain only the leading
4)&4 submatrices; the results are illustrated in Fig. 2
(———). To compare with the separable model, for each
set of data (a ) was found and used in the early expres-
sion of Whitmore and Carbotte, Eqs. (A8), (A13), and
(A14); the results are also shown in the figure by solid
lines. The dotted lines are the results for the correspond-
ing isotropic limit.

Two general comments can be made. First, in both the
separable and nonseparable models, the m.odest anisotropy
in A, -, leads to a very large relative enhancement of T,

k k'
as!Lt*(co ) increases, diverging as!Lt*(co ) surpasses A, with
no qualitative differences between the two. Second, the
separable model exaggerates the enhancement for these

+ ~kk'
Particularly in view of the comments of Leavens et al."

it is interesting to ask whether or not a large!M'(co ) could
suppress superconductivity altogether. Within the BCS
approximations, a necessary and sufficient condition for a

TABLE I. Zeroth-order anisotropy calculations for Pb by Daams (Ref. 3). The double —Fermi-
surface average of A, -, is A, =1.33, and the mean-square anisatropy in A,-, is (a') =0.035.

k k' k k'

Regions

1

2
3
4
2
3
4
3
4
4

W;())W,.(( )

0.001
0.014
0.009
0.004
0.258
0.167
0.069
0.108
0.044
0.018

0.0083
0.111
0.100
0.062
0.577
0.393
0.316
0.179
0.213
0.175

P (m ~ll'~P (~m ~

0.032
0.118
0.095
0.063
0.508
0.409
0.263
0.329
0.210
0.134
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TABLE II. Zcroth-order anisotropy calculations for Al by Daalns and Carbottc (Ref. 4) using the
notation of Table I, A, =0.439 and (a I ) =0.011.

1

1

1

1

2
2
2
3
3

0.332
0.079
0.087
0.078
0.019
0.021
0.019
0.023
0.020
0.018

0.619
0.268
0.330
0.242
0.117
0.143
0.105
0.175
0.129
0.094

0.576
0.282
0.295
0.279
0.138
0.144
0.137
0.151
0.143
0.135

finite T, is that the real symmetric matrix II has at least
onc pos1t1vc eigenvalue. Th1S caQ bc investigated us1ng thc
theorem discussed in Appendix 8, which can be summa-
rized as follows.

(1) For a particular value of p'(ol ),
(a) if any diagonal element a'It is positive, or
(b} if any leading principal minor M„satisfies

sgn(M„) = ( —1)",

then there is at least one positive eigenvalue.
(2) If the matrix A= IA, tt I has two positive ejgenvalues,

then superconductivity occurs for arbitrarily large p'(ol )

(as in the separable model}.
Condition (1) suggests that rather restrictive conditions

are necessary to prevent a real materials exhibiting super-
conductivity at son1C temperature, particularly since an
isotropic Coulomb repulsion contributes only to those ele-
ments of p'It for which 0 {l}=0(l') =0. (This assumes no
other critical mIx:hanism such as, perhaps, paramagnons. )
Condition (2) implies that the coefficients A, tt alone deter-
mine whether an arbitrarily large p, '(CI ) can be tolerated.

Returning to the numerical calculations, it is easy to es-

tablish that each of the two matrices whose first 16 ele-

ments are the A, tt hsted in the tables has at least two posi-
tive eigenvalues, independent of what the rest of the ele-

ments are (for example, by the method of Lagrange reduc-
tion ). Thus, just as for separable anisotropy, an infinite

p,'(ol ) would not drive T, to zero. Note also that even

though the magmtude of T, depends very sensitively on
the average A, , this existence of a finite T, does not, but
rather depends only on the anisotropy in A, „-„,.

In the second part of this section, anisotropy in the al-
kali metals Na, K, and Rb is considered. Plane-wave elec-
tron states and a spherical Fermi surface are assumed, so
that, spherical harmonics are the appropriate basis func-
tions, labeled by the set of indices (l,m); the expansions
are modified slightly because the Yt are complex. The
anisotropy enters via the phonons and umklapp processes.

%1thin these Rpprox1Q1at1ons thc clgcnvaluc equation
becon1cs

(32)

&Iml'm'=
1ml'm'

lj'(—ol +Iobro~ o& o

4mtm = I dII- d&-, I"Ip(&-)'Y( (Q-)A. ,k k' k kk'

The first theorem of Appendix B jmpljes that a suffj

S

0.000)
0.0

p."(eu )/g
FIG. 2. Reduction in T, with increasing p, (m ) for the cal-

culated anisotropic A, „-„,of Pb (uppcr curves) and Al {lower

curves) in a BCS-like theory. T, is the transition temperature
found from the eigenvalue problem with p (u )=0. The solid
curves are for the corresponding separable model ( ), the
dashed curves are obtained from the kIp matrices ( ———), and
the dotted curves are for the corresponding isotropic limits

( . ). At p, {Nm) tllc separable IBodci T, agrccs wltll thc clgcll-

value problem T, to about 1%.
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cient condition for a finite T, is that at least one diagonal
element of z be positive. Since A,oooo ——4irA, , the first con-
dition is that A, &p ((o ), as for the isotropic model. If
this is not satisfied, then it would suffice for some other
diagonal element A,l l to be positive, since for I &1, the
p'(co ) does not appear.

Leavens and Carbotte have calculated related quanti-
ties for Na, K, and Rb using fitted force-constant models
for the phonons and a variety of pseudopotentials. What
is of direct interest here is the gi' ~" which are related via

I
e-ph

~lmlm . (35}
4~(2l + 1)(1+X)

In particular, they found that in all cases, g; ""
& 0, so that

&0 for at least one value of m. Hence even if
p*((o ) & A, , as long as it is taken to be isotropic, a has at
least one positive eigenvalue, implying a finite although
presumably very small T, .

In ending this section it is stressed again that the for-
malism ignores the anisotropy in the mass renormaliza-
tion of the m (p) although the conclusions are indepen-

k

dent of the lsotloplc part, I+A, . Because this regime of
large p*(co~} depends sensitively on the anisotropy, it
would certainly be desirable to extend this type of analysis
to include this additional complication.

IV. SUMMARY

The main focus of this paper has been the: regime of
large p" (co, ), in the sense that it is large eno ugh to violate
the condition (a )/[A, —p ((o«)] «1, or in that most
previous treatments of T, imply that superconductivity
would not exist at any finite temperature.

The major calculations presented are numerical solu-
tions of the Eliashberg T, equations, assuming isotropic
p' and separable anisotropy in l--„ into the range

p, (3'~) & A, . It was pointed out that a larger cutoff fre-
quency would require an even larger p*, but should not af-
fect the results. Comparison with the isotropic limit,
through the generalization of a very useful approximate
T, equation, showed a very large relative enhancement of
T, by the anisotropy in this regime, particularly relative to
the usual regime of (a )/[A, —p"(o~„)]&&1. The result
that T, persists for some p'(co ) &A, even for nonsepar-
able anisotropy, within this approximate equation, was
also found.

Results using the McMillan equation were also com-
pared, and at least for this case, found to be far too small
when as is conventional p (10' ) is used; this was attri-
buted to the term p*(10'~)(1+0.62K, ) appearing in the
denominator of the exponential. This suggested an exam-
ination of the dependence of p*{co«) on the cutoff co„,
and the realization that the statement p' ~k is not well
defined, and therefore not likely to provide a criterion for
superconductivity. This is also consistent with numerical
solutions of the isotropic Eliashberg equations using very
large cutoffs. 26

Within a BCS-like approach, anisotropy was examined
in a more general way. Although for certain models of
anisotropy, a finite p (co~ ) can destroy superconductivity,
for the two anisotropy functions for which detailed nu-

All the numerical solutions of the Eliashberg equations
with variable p" were performed on the UNIVAC/
1100/81 computer of the EDV-Zentrum, Technical
University of Graz, Austria. J. M. Daams participated in
the early part of the work on the occurrence of a positive
eigenvalue. One of us (M.D.W.) would like to thank
McMaster University for hospitality during the time
much of this work was done. This research was supported
in part by the Natural Sciences and Engineering Research
Council of Canada.

APPENDIX A: APPROXIMATE T, EQUATIONS

For isotropic superconductors, Leavens and Carbotte'
have produced an approximate T, equation which is at
least as accurate as the famous McMillan equation for
most cases considered to date. Carbotte and Daams'9
have generalized it to the case of small anisotropy using
the separable model, evaluating the enhancement of T, to
0((a )/[& —p*(co~)]). In this appendix it is further
generalized to all orders of anisotropy, and then through
further simplifications it is reduced to simpler equations
referred to in the text. Finally the McMillan equation is
exhibited, for comparison.

The imaginary axis equivalent of the essential approxi-
mation of Leavens and Carbotte is the approximate
evaluation

l(,(p —q) X+Af-
/
(o(q)

/

I+II(,
(Al)

with f=in(1. 13'~/T, ) as before, with l(, the usual
electron-phonon parameter, and X defined in a similar
way,

[For the a F(m) used in Sec. II, A, =0.386.] The cutoff
frequency in all sums is the maximum phonon frequency
co«=co Writing .8-„(n)=ho+a-„bi, then Eq. (6) takes

the form

~o+&-„~]
Ag=k, —y, *(m (f( I+A 1+a

(A3)

((+a-Nko+a-((&()
Zi ——( —X+Af)

1+A, I+a-
k

merical results are available, an arbitrarily large p*((o )

could in fact be tolerated. Finally, a simple analysis of
numerical calculations in Na, K, and Rb suggested that
even in the alkali metals anisotropy may induce supercon-
ductivity. It would be of interest to learn if more sophisti-
cated treatments of the superconducting state, particularly
through the inclusion of the anisotropy in the mass renor-
malization in the normal channel, and more sophisticated
treatments of the Coulomb repulsion, would verify this
conclusion, and if so, what values for T, would be predict-
ed.
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Introducing averages similar to those in Eq. (13),

I Q -+

)+k()+u-„) ' (+A()+a-„) ) '

1+A,(1+a-„)

allows one to express (A3) and (A4) as

[I+p'(oi )rf]&0—[1—(M'(co )sf]b, , =0,

(—r+s)( —A+Af)ho+[1 —(s+t)( —A, +Af]hl ——0 . (A7)

Imposing the requirement of a nontrivial solution on
(A6) and (A7) produces a quadratic equation for f. Tak-
1ng thc larger root, which 1s always pos1t1vc Rs long Rs
A, )(M*(to~) or (a ) )0, and relating r and s to t, the T,
cquat1on 1s

T( =1.13co~e

—b+ [b +4Ap*(co )t[1+A+X{1+t/(1+A)j]I'~z
2Ap" (to jt

(A9)

b=A, 1+
I+A,

b =(1+(a'))A,—p' .

Finally, the isotropic equation of McMillan is

T, =((ro) /1. 20)e

1.04(1+A, )

A, —p'(co„)( 1+0.62K, )

(A14)

(A15)

with (to) an average phonon frequency defined using

The parameter t cannot be related exactly to (a ) without
assuming details about the anisotropy function a-. How-l
ever, this is not significant, because it is given approxi-
mately by

(a') A, (a')
I+~ (1+A,)

and the correction is always small, independent of
p*((o ).

The result of Carbotte and Daams' is recovered by ex-
panding the square root in (A9), resulting in

(a'),1+a+X [~(1+(M*(~ »+X(M*(to )]'
{I+~)[~—(M'(~~ )]'

- (A12)

and then evaluating (AS) to first order in (a ) [provided
that A, —p'(m ) is not too small]. The original Leavens-
Carbotte result is trivially obtained from (A12) by setting
(a') =0.

Another set of equations which keeps the anisotropy to
all orders is obtained as follows. First, X is ignored in
(A2) and (A3). Second, the renormalization 1+A,(1+a „)
is dropped in the normal channel, i.e., r =1, s =0, and
t = (a ). The result of Whitmore and Carbotte is
recovered, wltll A, identified Rs N (0)Vq ph,

b+Ib +4Ap—*{co )(a ) I'~f=, z
—, (A13)

2AIt, '(co )(a )

a F(to). The cutoff frequency is generally taken to be on
the order of 10(o~, so that the denominator of Eq. (A15)
can be much smaller than that appearing in equations
based on the procedure of Leavens and Carbotte.

APPENDIX 8 CONDITIONS FOR PQSITIVE
EIGENVAI. UES

Tllc basis for part of Scc. III ls thc condltlons under
which a matrix has either one, or two or more, non-
ncgatlvc clgcIlvalucs.

A necessary and sufficient condition for a Hermitian
matrix A to be nonpositive definite ' (no positive eigen-
values), is that the leading principal minors M„be either
zero or satisfy sgn(M„) =(—1)"+'. The M„are the lead-
ing subdeterminants, i.e., if the elements of A are a;, , then

Mo ——coo, M) ——
a Io 9))

etc. Note that by a relabeling of the basis functions, any
diagonal clcITlcnt can bc bIOUght 1Ilto thc Qoo pos1t1on.
Thus we have the result that if any diagonal element is
positive, or if even one of the M„satisfy sgn(M„) =( —1)",
then there is at least one positive eigenvalue.

Now a second theorem can be used to determine if a
finite T, persists for arbitrarily large p'(oi ), given a
specified anisotropy in the attractive part of the electron-
electron interactio~. The basis is the Courant-Fisher
theorem, ls which states the following.

If A is a real symmetric matrix with eigenvalues
ei )el ) ' ' ' )e)), 8 ls R 11011-ilcgatlvc dcf1111tc matrix of
rank r, with 1&v &n, and ihe ordered eigenvalues of
2+8 are labeled f1 &fl ) . &f„,then

(1) f;&e;, i =1, . . . , n

(2) f) &e, ), 1 =r+1, . . . , n

Th1s cRn bc cas11y gcncral1zcd to thc case whc1c 8 ls
nonpositive definite of rank satisfying 1 & r & n, in which
case
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(1)f;(e;, i =1, . . . , n

(2) f; &e;+„, i = 1, . . . , n r—.

In the context of Sec. II, p* is assumed constant, so that

piir ts a matrtx of rank 1 (even when there ts more than
one piece to the Fermi surface). This means the largest
eigenvalue of aii must be at least as large as the second
largest eigenvalues of A,ii, so superconductivity would per-
sist, fOX' 8LrbItI'RA@ p
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