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Spatial distribution of vortices and anisotropy of mutual friction in rotating He II
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Accurate measurements of the attenuation of second sound in a rotating parallelepipedic cavity
are reported. The cavity, which is used as a half-wave resonator, can be tilted about one of its sym-

metry axes so that the two large faces make an arbitrary angle 0 with the angular velocity Q. A
continuum model is developed predicting that vortices, at equilibrium, must bend near the inclined

plane walls, and terminate perpendicular to the boundary. The curvature of the vortices, otherwise

parallel to Q and uniformly distributed, takes place over a characteristic depth do ——0.290 ' mm

which is small compared with the dimensions of the cavity. The resulting changes in density and
orientation of vortex lines, though localized near the walls, measurably affect the detailed depen-
dence on both 0 and 0 of the quality factors of resonant modes. Experimental results taken with
two fundamental modes of the cavity support our model. As a by-product of these measurements
we obtain information about the angular dependence of mutual friction. A small but clearly
nonzero attenuation was observed for a second sound propagated in the direction of vortex lines.
This axial attenuation can be described by introducing, besides the first mutual-friction parameter

B, another dissipative coefficient 8" which is about 2.5% of 8 {at 1.9 K). In Hall and Vinen's

equations of motion of He II this 8" should represent the axial component {along 0) of the
mutual-friction force. In this work we have deliberately ignored the intricate problem of metastable
states, trying to get rid of them in experiments; thus reported results all refer to states of {or near)
thermodynamic equilibrium.

I. INTRODUCTION

Except for surface effects such as the existence of a
vortex-free region along the walls parallel to the angular
velocity 0, He II contained in a rotating vessel is expected
to be threaded by an array of vortices parallel to Q and
uniformly distributed with a density n =20/tc, where tt is
the quantum of circulation. ' As a result, the average su-
perfiuid velocity field imitates solid-body rotation:

V, =(v, ) =OX r.
To investigate the dynamical properties of vortices or to

simply detect them, second sound has proved to be a very
sensitive and versatile probe. Our present second-sound
techique has already been described. ' A parallelepipedic
cavity serves both as a second-second resonator and as the
rotating container. By accurately measuring the acousti-
cal response of the rotating cavity for various modes, one
obtains information about the spatial distribution. As
shown in Ref. 2, a by-product of such measurements is a
precise determination of mutual-friction coefficients. By
tilting the cavity off the vertical axis of rotation, we ob-
serve new surface effects in the vortex distribution. Then,
following for these surface effects in the data reduction,
we were able to test the angular dependence of mutual
friction to a higher degree of precision than has been
achieved before.

As the size of the cavity ( —1 cm), and accordingly the
second-sound wavelength, are usually large compared with
the vortex spacing (n 'r -0.1 mm at Q-l sec '), rotat-
ing He II can be regarded as a continuous medium. The

relevant macroscopic equations of motion were first pro-
posed by Hall and Vinen, and later derived phenomeno-
logically by Bekarevich and Khalatnikov' (the HVBK
equations). From this macroscopic point of view the bulk
rotating He II, at thermodynamic equilibrium, appears as
a homogeneous medium with constant density and orien-
tation of vortex lines, to which we refer as standard rotat-
i ng heli um

For a second-sound wave traveling perpendicular to
vortices in standard rotating helium, the attenuation con-
stant due to rotation, according to the HVBK theory, can
be written

where u2 is the second-sound velocity, and 8 here is short
for 8&, the real part of the first mutual-friction parame-
ter. If second sound is propagated at any angle 0 to the
vortex lines, 8 should be replaced in Eq. (1) by
csin 0+8"cos 0. The third mutual-friction parameter
8" was originally introduced in the HVBK equations to
account for a possible small extra-attenuation of a second
sound propagated parallel to vortices. Old experiments
performed by Snyder and Putney have confirmed the
linear dependence of n„as a function of sin 0; within the
limits of experimental error, 8" was observed to be zero, a
result since accepted as being consistent with microscopic
models of inutual friction.

As explained in Sec. II using minimum free-energy ar-
guments, the vortex array, at equilibrium, must undergo a
deformation near the walls that make arbitrary angles
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with Q. Associated vortex bending and low-density ef-
fects are predicted to extend over a characteristic distance
do from the walls, which is typically of the order of
0. 1—1 mrn.

In Sec. III it is shown that such a deformation of the
vortex array in a rotating resonator, as well as the vortex-
free region, should result in small detectable changes in
the quality factors of resonant modes, with respect to
those expected from a cavity presumed to be entirely filled
with standard rotating helium.

In Sec. IV we report accurate measurements of the vari-
ations of second-sound amplitudes in a rotating cavity as a
function of II for various values of 8. Experimental re-
sults agree with theoretical predictions of Sec. II about the
spatial distribution of vortices. Concerning the anisotropy
of mutual friction, the most striking result is that 8", al-
though small, is clearly nonzero. The paper ends with
concluding remarks (Sec. V).

Equivalently, n can be seen as the total length of line per
unit volume. The latter definition is most suitable to a
three-dimensional description. The mean curl of the su-

perfluid velocity, denoted as co,
' is simply related to n and

co =curlV, =nKv . (4)

In standard rotating He II, ~=20 with n =no ——20/K
and v=vo ——n/n

Regarding the normal and superfluid densities p„and
p, as constants, the kinetic energy density in Eq. (2) can be
expressed as

E = —,p, V, + —,p„V„+n AE,

where AE is a vortex energy per unit length of line, '

II. EQUILIBRIUM VORTEX DISTRIBUTION

Just as for an ordinary liquid, the equilibrium state of
motion of He II in a uniformly rotating vessel minimizes
the kinetic "free energy"

F=f (E —M Q)d r, (2)
cavity

where E and M are, respectively, the kinetic energy and
angular momentum density. In this section we shall show
that the general equilibrium conditions for the vortex ar-
ray readily follow from this minimum free-energy princi-
ple by using the HVBK continuum approximation. In
Ref. 2, while carrying out a similar procedure, we only ex-
amined two-dimensional vortex motion. In this work the
cavity walls are not restricted to being either parallel or
perpendicular to the axis of rotation, and hence our prob-
lem is really a three-dimensional one.

Any distribution of vortices in the cavity will be
described locally by two parameters n and v which may
be functions of position: n is the vortex density and v is
the unit vector along the vortex lines. n is usually defined
as the number of lines crossing the unit area normal to
vortices; it is connected to the radial dimension of the vor-
tex cell b by the relation

nlrb =1.

Kps

4~
b 1

ln
a 4

0

Here a is the effective core radius (a=10 A). In squar-

ing the mean superfluid velocity V, one underestimates
the contribution to the kinetic energy of large local veloci-
ties v, around the vortex cores. Hence, AE appears as a
positive correction term, allowing for the finite and
discrete character of vorticity. Upon differentiating Eq.
(5) we obtain

dE =p,V, dV, +p„V„dV„+p,Av dco,

where

where A is taken with the standard value of
b [b =(non )

'~ ] In .the two-dimensional problem inves-
tigated in Ref. 2, the vortex distribution appeared as a uni-
form standard continuum (n =no), leaving along the
walls parallel to 0 a vortex-free layer (n =0) of constant
width. In thermodynamic equilibrium, the calculated
thickness of this vortex-free layer was precisely found to
be do [see Eq. (23) of Ref. 2], in agreement with experi-
ment.

We could have left out the small and commonly omit-
ted terms of order of or less than unity in Eqs. (6) and (8).
In the BK expression for the differential of the internal
energy, the last term of Eq. (7) is written as A, dao, where A,

is, to within logarithmic accuracy, equal to
(p, v/4m)ln(b/a). ' In. the same range of accuracy we may
ignore a small quantum correction in the angular momen-

tum density M, of order p, a/4~, so that M reduces to
macroscopic terms,

M=r &&(p„V„+p,V, ) . (10)

Equilibrium requires that 5F=0 for arbitrary variations

6V„and 5V„ in particular for a 6V, resulting from a vir-
tual change in the spatial distribution of vortices

(5' =curl5V, ). Note that 5V, is not necessarily zero at
the boundaries. Substituting the expressions given above

for E and M in Eq. (2), an elementary calculation yields

5F=p„f5V„(V„—II, && r )d r

+p, f5V, .[V, +curl(Av ) —6&&r ]d r

+p, f 5V, (AvXN)d r,
walls

where N is the unit vector normal to the boundary. Thus
we get the local equilibrium conditions,

v&N=O,

V„=V, +curl(A v ) =0 && r . (12)

Taking the curl of Eq. (12), we obtain an equilibrium con-
dition for n and v,

A= ln(b'/a), b'=be
4m

It will also be useful to introduce the characteristic length

(9)
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nav+curlcuri(AV )=2Q =nolrv„

Equation (11) implies that vortices must end normal to the
COIlfMIlCX' W3,1IS, 8Qd MQCC thC7 hRVC fO bC PMRIIC1 tO Q 1Q

the bulk, the hnes will inevitably be curved (Fig. 1). Note
that Eqs. (12) and (13) no not exclude vortex bending
(curlv@0). Equation (12) is consistent with the fact that
the quantity p, [V,—V„+curl(Av )] appears as an affini-
ty in the BK expression for the dissipative function. '

Equations (11) and (12) can be easily interpreted on a
microscopic scale by considering the behavior of isolated
vortex lines. The quantity V, +curl(A v ) is a macroscopic
expression for the local superfluid velocity v*, induced at
the core of a given vortex by all other vortices and by the
vortex itself if it is curved; v,* coincides with the average

velocity V, only for a regular array of rectilinear vortices
that llldllcc llo vcloclty at their cclltcl". Eqllatloll (12) thlls

states that v,* equals the local normal velocity v„=V„
which is the physical condition for having no mutual fric-
tion. On the other hand, unless normal to the boundary, a
VOXXCX COQUE. I1UCd bp 1t8 0%'Q 1HlRIC bChaVCS RS 8 VMtCX

with infinite curvature. Close to the walls, very large ve-

locities v,' incompatible with equilibrium are induced by
fhC IH13;IC VOr(CX.

Though somewhat more comphcated, Eq. (13) is similar

to the London equation for the magnetic field h in a su-
PCrCOQdQC (OX',

h/A, +curlcurl h=0.
This equation involves the exponential decrease of h to-
ward the interior of the superconductor, h falling off to
the bulk value zero over a penetration depth A,. Similarly,
Eq. (13) implies that v rapidly changes direction from the
normal N to the bulk value v~ over a characteristic depth
of the order of (A/nII)'/ or do, namely a few tenths of
mlihmeters. On the scale of our containers (-1 cm), the
curvRtllrc of vortlccs therefore appeals Rs R surface cffcct.
Everywhere beyond a small layer of thickness do along the
%'3.IIS, AC VMtCX RX'X'3,7 rCCOVCX. 'S 148 S48QdSXd CqmlIbmII
colldltlons (n =no, v= vo).

NOW %'C %'18h tO CIPh8SJZC tlMf, 8 CICCrCISC IIl VOftCX

density is expected to be associated with the curvature of
vortlccs ln thc pclturbcd laycl' do. Collsldcl', for cxalllplc,
the z =0 plane wall of the parallelepipedic cavity shown
in Fig. 1. The vector Q lies in the xz plane and makes the
angle 8 with the wall. The structure of the vortex array in
the vicinity of the z =0 plane will be described in the con-
tinuum approximation by a one-dimensional solution of
Eq. (13},where n and v are functions only of z. For the
vortex lines lying in the xz planes, let P(z) be the angle be-
tween the line and the x axis (v„=cosg,
v, =sing); p(0}=Ir/2 and p{z&do)=8. Upon taking the
z component of Eq. {13)we find

zero, n vanishes as far as P&8, i.e., as far as z & do. Thus
we retrieve as a limiting case the existence of a vortex-free
layer do along a plane wall parallel to Q. This will be-
come quantitatively clear in the calculations of Sec. III.

%'e are justified in neglecting the slight logarithmic
dependence of A on the vortex density. Even for 8=10',
which, except for zero, was the smallest tested angle, the
relative variation of A does not exceed 10%. Therefore,
regarding A as a constant in Eq. (13) (A=Qdo) and sub-
stituting n from Eq. (14) in the x component of Eq. (13),
%'C Obta, 1Q

dP sin[(P —8)/2] 2v 2
dz SInf do

This differential equation for p will be used in the
sccolld. -sollnd Rcollstlcs of Scc. III when calculating the
quality factols of two flllldRnMlltRl Illodes as functions of
Q and 8. From Eq. (16) the profile of the lines can be de-
rived easily in a parametric form, x(p) and z(((t). These
parametric equations, which otherwise are not worth writ-
ing, confirm the rapid change in orientation of the vortex
lines over the distance do. For instance, with 8=20,
which is the case of Fig. 1, /=30' at the distance z =do
fl'onl tllc wall, Rnd /=21 Rt z = 1.7do.

AS do 1S QOt BlUCh 13I'gCX' thRQ fhC 1QtCX'1111C C4818QIC"C, 01M
might question the relevance of the HVBK model. How-
ever, the quantitative agreement between second-sound
data and predictions of the continuum model concerning

It follows that the vortex density near the wall„
n (0)=nosin8„ is lower than the bulk density no. The de-
crease m vortex density appears as a simple geometrical
effect, which is noticed at once in sketching the vortex ar-
ray as illustrated in Fig. 1 for 8=20'. As 8 approaches

FIG. 1, Cl'Qss scct1on of the pax'allclepiped1c fot&tiIlg cavltp
and schcmat1e of the model vortex d1stnbution show1ng the de-
OIcasc ln vortex dcns1tg along the lncllncd vfalls. Thc cavltp J.s
used as a half-wave resonator bp exclt1ng either the 3g 01 the p
fundamental node.
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the vortex-free layers, has given us some confidence in
the present macroscopic approach. Also, we refer the
reader to the paper of Campbell and Ziff, ~here the au-
thors calculate equilibri. um vortex patterns in a rotating
cylinder for relatively small numbers of vortices; by mere-

ly inspecting the stable pattern of 217 vortices shown in
Fig. 5 of Ref. 9, one realizes the physical reality of a
vortex-free region surrounding a uniformly spaced array
Of VOrt1CCS.

The rotating cavity of Fig. 1 is a rectangular paral-
lelepipedic box whose internal dimensions will be denoted
I., I, and h. For the discussion we have taken a coordinate
system attached to the box; the x, y, and z axes are chosen
to be along the L, I, and h sides, respectively, as shown in
Fig. 1. The cavity can be tilted about one of its symmetry
axes so that the xz planes remain vertical. Standing waves
of second sound may be set up along either x or y axis.

F1rst, suppose the cav1ty Is to be driven on 1ts funda-
mental x mode. The amplitude of the temperature field
can then be written as

CO —Q)z
T, =A 1+iQ

CO~

cos I
where m„ is the resonance frequency and Q is the quality
factor of the mode. The wave velocity field, V„&—V, &

~ VTI, lies parallel to the x direction and has nodes on
the faces x =0 and L,

V„&—V„=(p/p, )V„& cc sin(mx/L) .

From the response curve T~(co) measured at x =0 or
I, thc maximum resonant RIIlplltudc 3 and thc qUallty
factor Q can be determined. A is proportional to Q so that
A/Ao ——Q/Qo, where Ao and Qo refer to the stationary
resonator.

In the absence of spurious coupling between the cavity
and the external bath, Q

' is in turn proportional to the
power lost in the cavity. At the working temperature and
sound frequency (T=1.9 K; co/2a-10 —10 Hz) the
normal-fluid viscosity turns out to be the prevailing dissi-
pative mechanism for both surface losses and mutual fric-
tion. In the resonator at rest, volume losses are negligibly
small and power loss takes place at cavity walls within a
thin v1scoUs boUIldary laycI", 1ts th1ckncss 6, 1.c., thc
viscous penetration depth of the normal fluid, is of the or-
der of a few micrometers. In a rotating resonator, small
oscillations of vortices subject to the velocity field of
sccoIld sound cntR11 a local pcrturbatlon of thc normal
flow arouIld thc vortex ovcI' R distance wh1ch again 1s of
the order of 5; the dissipative process of mutual friction is
none other than the viscosity of the dragged normal
fluid. ' Mutual friction interferes with surface viscosity
witkin a negligible fraction, 6 /b —10 ', of the boun-
dary layers. Therefore, within the accuracy of our mea-
surements, Q may be expressed as the sum of two in-
dependent additive terms,

1/Q = 1/Qo+ 1/Q„,

where Qo represents surface losses, such as measured at
—1

0=0, and Q, is the vortex contribution. Q„ is the quali-
ty factor that would result if the only source of damping
was mutual friction. Its experimental value will be ob-
tained from resonance data by the relation

1 ~o —1
Q„QO

The problem then is to calculate, for comparison with
experiment, the theoretical value of Q„by taking into
account the details of the vortex distribution near the
boundaries. This calculation has been made in Ref. 2 in
the two-dimensional case 8=m/2, and has to be general-
ized for any value of the tilting angle 8.

According to the model of Sec. II, the vortex distribu-
tion is expected to deviate from the standard conditions
(n =n, , v = v, ) within a sheath of thickness d, along the
cavity walls. The two vortex-free layers of constant thick-
ness do should form along the vertical faces y =0 and l,
and vortex bending should occur near the other four faces
as shown in Fig. 1. Every element of vortex line contri-
butes to energy dissipation according to its position and
orientation in the standing wave. For lines making an an-
gle a with the direction of sound, the power dissipation
per unit length of line is

1 PnP B( )V2K A
p

(21)

1/Q„=
2N

(25)

As n =0 outside the interval do &y &i —do and is oth-
erwise independent of y, the integration over y in Eq. (23)
yields a factor 1 —2do. On the other hand, vortices close
to the walls x =0 and I., whether curved or not, are un-
detected by the x mode which has nodes there. Therefore,

wherc we have introduced an angular-dependent mutual-
friction parameter B(a) with the short notation

B( G)= Bisna+B"cos a=csin a+B",
where C =8 —8". In the continuum approximation, the
vortex term Q„' calculated for the x mode can be written
in the form

Q„=kJ nB(a)sin (mx/L)d r .

Let us note that 5 «do so that we may ignore the falling
off of V„1 at the boundaries.

By assuming the cavity to be entirely filled with stan-
dard rotating helium (n =n,o, a=8), we must derive the
known classical result such as derived from HVBK equa-
tions,

I/Q„=B(8)II/2co=a~L/n . (24)

Hence, we have k =a/2' V, where V =Lib is the volume
of the cavity. Effects of the vortex-free or perturbed
layers do should consist in small deviations of Q„' from
the standard value (24) of the order of do/h, do/I, or
do/L. In reducing the experimental data it will be con-
venient to define an apparent mutual-friction parameter
denoted as 8* by setting, in any case,
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=8(8)+ f [n (P)8(P) noB—(8)] dP .

After substituting n and dz/dP as a function of P from
Eqs. (14) and (16), a lengthy but elementary calculation
yields

8'=y„[8(8)+(2d,/h)[Cf(8)+8"g(8)]), (27)

where f(8) and g(8) are two trigonometric expressions of
order unity,

f(8)= cos28 —2cos ———+3sin83' 4 2

g(8)=v 2 sin8 —sin
0

4 2
(29)

By systematically neglecting the terms of second order in
the small quantities do/l, do/h, and 8"/»n Eq. (27), we
obtain the following simplified expression for 8* that we
shall use in fitting the experimental data:

8*=8(8) (2do/l)8 si—n 8+(2do/h )Bf(8) . (30)

The first correcting term in Eq. (30) is negative and
represents the effect (of order 2do/l) of the missing vor-
tices along the walls y =0 and l. It should be emphasized
that the last term turns out to be positive [f~o except'
that f (0)=f(m/2) =0]. The decrease in vortex density in
the two perturbed layers z =0 and h, should tend to de-
crease the attenuation of sound just as a vortex-free layer.
However, bent vortices, if shorter than standard vortices,
also tend to become perpendicular to the direction of
second-sound propagation. In other words, while the total
length of lines is decreased, the power lost per unit length
of line is increased. The calculation shows that the latter
effect must prevail.

Now the same procedure can be employed to calculate
the theoretical value of Q„' for the y fundamental mode:

T~ ~cosny/l, V„~~sinny/l. Since the vortices in this
case are normal everywhere to the direction of propaga-
tion of sound, there will be no anisotropy effect (a =m /2),
and we can write

Q„= fBn (r )sin (my/l)d3r .
k

2' V
(31)

The y mode does not "see" the vortex-free layers near its
nodes at y =0 and I. Thus, ignoring the y dependence of
n, the integration over y in Eq. (31) yields the factor l/2.
Compared to its standard value, the quality factor of the y
mode will be affected only by the reduction of vortex den-

we may disregard the x dependence of n and a in the in-
tegral (23), and refer to the one-dimensional solution n (z)
and a=/(z) investigated in Sec. II. It follows that

h
B*=y„ f n(z)8($)dz, (26)

oh o

where y„=l —2do/l is the filling factor introduced in
Ref. 2. The integral in Eq. (26) is readily evaluated by
writing it as the sum of a standard term and two equal
layer corrections,

sity in the four perturbed layers. This amounts to reduc-
ing the apparent value of the mutual-friction parameter,

r

1+ f (n —no)dx dz
noLh

(32)

d, =(0 29+0 01 ).n. (36)

Earlier measurements of B*, in cavities having walls
either parallel or normal to 0, have clearly demonstrated
the existence of vortex-free layers of uniform width d
along the vertical walls. Provided that thermodynamic
equilibrium was achieved, d =do and formula (36) proved
correct. As shown in Ref. 2, however, d can take any
value between two external values d, and d2, depending
on the past history of the rotating sample. Accordingly,
the total number of vortices at constant density no can
fluctuate around its equilibrium value. At 1.9 K for a set
of rectangular resonators we found d ~

—1.6d 0 and
dz-0. 6do. In the tilted resonator of Fig. 1, we must be
aware that metastability still may alter the two vortex-free

where the integral correction is zero outside the four
layers. Neglecting corner effects, which involve terms of
the order of do/Lh & 10, we can calculate the integral
as the sum of four independent terms by using the one-
dimensional solution of Sec. II. This solution applies to
the layers x =0 and I. by simply exchanging x and z, h
and L, and 8 and vr/2 8 —We. thus find for the y mode

=8 [ I+(2do/h)g(8)+(2do/L)g(~/2 —8)] ~ (33)

As is easily seen from Eq. (29), g(8) is a strictly increasing
function of 8 throughout the interval 0&8&m/2, from
g(0)= —1 to g(rr/2)=0. Hence the correcting terms in

Eq. (33) are negative, as they should be. As 8 tends to
zero, Eq. (33) reduces to 8' =8(1—2do/h), which is the
expression to be expected in the presence of two vortex-
free layers of thickness do along the planes z =0 and h.
This confirms quantitively our assertion in Sec. II that the
vortex-free layer can be regarded by continuity as a limit-
ing case of the one-dimensional perturbed layer.

For further reference and comparison with experiment
we collect the results derived for both modes below. The
deviation of the vortex distribution from standard condi-
tions will result in a deviation of Q„ from its standard
value (24), which has been equivalently expressed in terms
of a deviation 68' of the apparent mutual-friction pa-
rameter, such as that given directly by experiment from
the standard value; that is, 8(8) for the x mode and 8 for
the y mode. Equations (30) and (33) can be rewritten as

bB*/8 = —(2do/l)sin 8+(2do/h )f(8),
AB*/8 =(2do/h)g(8)+(2do/L)g(m/2 —8), (35)

for the x and y modes, respectively. All vortex-
distribution effects, whether due to missing or curved vor-
tices, are proportional to do, and according to Eq. (9), van-
ish at large angular velocities. The II dependence of 8* is
that of do. The logarithmic factor A' in do only varies
by a few percent in the investigated range of angular ve-
locities (0.3&0(10sec '), so that it may be approxi-
mately regarded as constant. Expressing do in mm,
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layers along y =0 and I, the first correcting term in Eq.
(34) varying as 2d/l.

The effects of curved vortices near the planes z =0 and
h are contained in terms proportional to 2do/It. in Eqs.
(34) and (35). In order to enhance these effects, the di-
mension h should be taken as small as possible. Typically
with h =3 mm (and do ——0.3 mm at Q=l sec '), ~*/8
should be of the order of do/h = 10%.

In addition to the fact that the investigated cavity can
be tilted to the rotation axis through +180', the experi-
mental technique, from the manner of making resonators
to that of recording resonance curves, is quite similar to
that described in previous papers, ' The angle 0 can be
set to within +0.5' by means of a system of gear wheels
which can be operated without stopping the rotation.

Two parallelepipedic cavities were specially designed
for the present work; their internal dimensions are I. =47
mm, 1=20 mm, and A=3 or 6 mm. The cavity walls were
machined from slabs of epoxy resin, and tightly bonded
with an epoxy-resin adhesive. As explained in Ref. 3,
leaks coupling the helium inside the cavity with the exter-
nal bath, unless placed at nodes of temperature, may
strongly affect the second-sound response and lead to un-
reliable results. The only links between the cavity and the
helium bath are small holes drilled through the walls at
x =L/2, and y =l/2, which is a temperature node for
both the x and y fundamental modes. In the present ex-
periment the observed constancy of Qo (or Ao) to better
than 10, while 0 is varied through +180', was a sensi-
tive test of the absence of external coupling.

All measurements were carried out at the same tem-
perature, T =1.875 K, taking advantage of the optimum
performance at about 1.9 K of our temperature control
system. At this temperature the resonance frequencies
and the quality factors at rest of each of the two cavities
were the following: for the x mode, ~ /2=206 Hz,
Qo ——1260 (h =3 mm), and Qo ——2335 (h =6 mm); for the
y mode, co~/2=485 Hz, Q0=1920 (h=3 mm), and

Qo ——3910 (h=6 mm).
The resonant amplitudes of the x and y modes were

measured accurately for various values of 0 and Q, while
carefully controlling all other parameters involved: the ac
input power, the driving frequency, and the bath tempera-
ture. At given Q and 0, the apparent mutual-friction pa-
rameter 8* was calculated from the amplitude ratio Ao/A
(and Qo, m, and Q) through Eqs. (20) and (25).

We shall first discuss the results obtained with the x
mode. 8 being fixed, 8* was determined for several angu-
lar velocities ranging from 0=0.3 to 10 sec '. In all
cases we observed the predicted linear dependence of 8*
on Q '~ in agreement with Eqs. (34) and (36). Figure 2
shows, for instance, the B*-vs-0 '~ data taken with the
3-mm cavity in the position sketched in Fig. 1 (0=20').
Upon extrapolating to Q=oo we eliminate any vortex-
distribution effects, with the zero intercept of the fitting
line yielding a precise value of the angular-dependent
mutual-friction parameter 8(0). By collecting the values
of 8 (0) obtained in this way and plotting them as a func-
tion of sin 0, it is seen that the data are remarkably ac-

8 =19.5'
mo(Ie

0 (sec )
FIG. 2. Apparent mutual-friction parameter 8, as defined

by Eq. (25), as a function of the angular velocity. The linear
dependence of 8* on Q '~ is predicted by the theory of Secs.
II and III. This figure shows 8*-vs-Q '/ data taken at 1.875
K with the x mode of the cavity measuring 47&20&(3 mm'.
Upon extrapolating the fitting line to Q= 00, we obtain the value
of the angular-dependent parameter 8(6!)=8sin 0+8"cos 8
for 8=19.5', i.e., 8(8)=0.115+0.002. 8 is proportional to the
average dissipated power due to vortices, and would be equal to
8(0) for a standard array of vortices uniformly distributed
throughout the cavity. The increase of attenuation observed
with the x mode [8 &8(0)] is explained by the curvature of
vortices near the planes z =0 and h (Fig. 1), which makes them
become perpendicular to the direction of sound.

counted for by the linear law

8 (0)=0.021+0.834 sin 0,
in accordance with Eq. (22). In particular,

8 (0)=8"=0.021+0.001, 8 (m/2) =8 =0.855+0.005,
at 1.875 K and 200 Hz. Figure 3 shows the low-angle
part of the 8(0) line so as to emphasize the undeniably
nonzero value of 8". The value 8"=0.021 was found to
be independent of the cavity size, as it should be. Note
that small misalignments of the cavity could not affect the
precise determination of 8", especially as sin 0 or 8(0)
has a minimum at 0=0'. The smallness of 8" (2.5% of
8) may explain why it had previously escaped detection. '
In the HVBK theory, 8" represents the magnitude of the
axial component (along Q) of the mutual-friction force.
The existence of 8"&0, however small it may be, should
give rise to serious theoretical problems, and requires fur-
ther experimental investigation (see concluding remarks of
Sec. V).

The slopes of the fitting lines 8* vs Q '~ at various
angles give information on the detailed vortex distribution
along thc boundaries. In this 1cspcct, thc IIlost slgnlf leant
feature of our results is the observation of positive slopes.
Whereas the effect of missing vortices always tends to de-
crease the attenuation of sound (b,8*~0), positive devia-
tions 68*, according to predictions of Sec. III, character-
ize the predominant effect of curvature of the vortices
near the planes z =0 and h. Upon subtracting from the
experimental value of b,8*/8 the calculating negative
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FIG. 4. f{8)for the x mode (upper panel) and G (8) for the y
mode {lower panel) are dimensionless coefficients measuring the
variations of the attenuation of second sound due to the bending
of vortices near the cavity walls. According to Eqs. (34) and (35)
the variation of the apparent mutual-friction parameter 8 asso-
ciated with curvature effects is obtained on multiplying f or 6
by 2do/h, then by 8. The circles are experimental data taken
with the 3-mm cavity {h =3 mm); the arrow marks the point ob-
tained from the positive slope of the fitting line of Fig. 2
(0=20'). The open squares correspond to the 6-mm cavity. The
upper and lower solid lines are theoretical curves deduced from
trigonometric expressions (28) and {29) for f(B) and g(B), and
definition of G(0) by Eq. (39).

0,5
sIn 8

FIG. 3. Anisotropy of mutual friction at 1.875 K. The
angular-dependent mutual-friction parameter 8(0) is plotted as
function of sin 8 for low values of the tilting angle 0 showing

the nonzero intercept of the fitting line. The data are taken with
the x mode of the 3-mm cavity (~/2m=206 Hz). The arrow
marks the point deduced from data in Fig. 2 (0=20'). The
straight-line dependence is predicted by the HVBK theory:
8(0)=8 sin 8+8"cos 0 by taking 8=0.855 and 8"=0.021.

useful to record, around each value of Q, a hysteresis loop
enclosing the equilibrium state. While taking the data of
Fig. 2 we took great care to achieving equilibrium. How-
ever, to save time we had to give up systematic testing.
This explains the comparatively large scatter of the exper-
imental values of f(8). The error bar shown in Fig. 4, for
example, has been calculated on the assumption that the
thickness d of the vortex-free layers could take its exter-
mal values d& and d2 (see Sec. III). Moreover, since the
main term in 8*, that is, 8 sin 8, is strongly angular in-

dependent, small accidental variations of 8 may also give
rise to additional experimental scatter. The relative lack
of precision in the experimental f(8) justifies the approxi-
mations made in deriving Eq. (30) from Eq. (27).

We now consider the results obtained with the y mode.
The situation turns out to be simpler for two reasons: (i)

By restricting ourselves to sound propagating normal to
vortices we exclude anisotropy effects, and (ii) the vortex-
free layers at y =0 and 1 being at velocity modes will be
undetected. Therefore, the distribution effects appear only
in the decrease of the vortex density along the four other
walls. As expected, the fitting lines 8* vs Q '~ for vari-
ous angles 8 all have negative slopes and a common inter-
cept at Q= oo,

8*=0.890+m (8)Q (38)

correction due to vortex-free layers, i.e., —2do//sin 8,
then dividing by 2do/h, we obtain an experimental value

of the angular-dependent coefficient f (8). The f(8) vs 8--
data reported in Fig. 4 for both cavities are in fair agree-
ment with the theoretical expression (28) for f(8) (upper
line in the figure).

We stress that all data reported in this paper refer to
states of (or near) thermodynamic equilibrium. Metasta-
bility may considerably alter the small effects of anisotro-

py and vortex distribution which we are dealing with. We
do not wish to discuss the intricate behavior of metastable
states, here if only to avoid obscuring the simplicity and

the coherence of the results related to equilibrium. How-

ever, we must consider metastability as a possible source
of experimental error. In particular, as stated in Sec. II,
the easy occurrence of metastable states associated with
fluctuating numbers of vortices may scatter the measured
values of 8' speciaHy in the low-velocity range, making
the slope of the fitting line 8* vs Q '~ uncertain. In
each case the rotation was rapidly set to the desired veloci-
ty Q, either starting from zero or decelerating from some
higher value. From previous measurements we know
that such a procedure tends to bring the rotating system
closer to the state of thermodynamic equilibrium.
Nevertheless, to ensure that we actually observe the equili-
brium state, we ought to test its stability against strong
disturbances such as jarring the cryostat or momentarily
feeding a large dc heat flux in the cavity. It would also be
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Hence we obtain 8=0.890 at 1.875 K and 500 Hz. The
difference between this value of 8 and that found with the
x mode is well accounted for by the slow logarithmic
dependence of 8 on sound frequency. According to both
theory" and experiment, ' at 1.9 K.,

8 '=const —5.3& 10 in+ .

Let G(8) be the relative variation 58*/8 expressed in
umts 2do/h. Equation (34) predicts the 8 dependence

(39)

where g(8) is given by Eq. (29). For both cavities experi-
mental values of G(8), in direct ratio to the slopes m (8),
are found to be in very good agreement with the theoreti-
cal expression (39). Note that G(8) is slightly dependent
on the aspect ratio h/L Thu.s, for clarity, Fig. 4 shows
only experimental G(8) taken with the 6-mm cavity; the
lower line in the figure has been calculated from Eq. (39)
taking h =6 mm and I.=47 mrn.

V. CONCI. USIONS

Thc data obtalncd with both modes plovldc, as R whole,
convlnclng cvldcncc that vortlccs near thc wRlls do bchRvc
as schematically shown in Fig. 1. The agreement of our
results with the detailed predictions of Sec. II and III sup-

port the correctness of the basic equilibrium conditions
(11) and (12) underlying them, and of the original A term

in the BK expression for the free energy. It should be
pointed out that the model of Sec. II not only accounts for
the linear dependence of 8* on 0 '~ and the form of the
8 dependence through f(8) and g(8), but also predicts the
actual magnitude of observed changes in 8". If, for in-
stance, tt then A happened to be larger by a factor of 2, a
40% change in all data of Fig. 4 would result. In this
sense our measurements appear as an indirect deterrnina-
tion of the quantum of circulation n.

The major part of this paper deals with vortex distribu-
tion cffccts. HowcvcI', Rn iITlportant result conccrnlng
mutual friction is the clear experimental necessity of in-

troducing R second dissipativc cocfflclcnt 8 . Further lc-
sults on the axial attenuation, including temperature, pres-
sure, and frequency dependence, will be published else-
where. Measurements in variously shaped cavities con-
firm that at thermodynamic equilibrium the axial attenua-
tion is proportional to the vortex density; the relevant
coefficient, such as defined by Eq. (22), reproducibly takes
the value 8"=0.021+0.001 (T=1.875 K, co/2vr=200
Hz). But we also observed metastable states for which the
axial attenuation was strongly reduced. The metastable
states cannot bc attrlbUtcd to thc above-mentioned Auc-
tuations in the vortex number which could affect the ap-
parent value of 8" by only a few percent. We have not
been able to explain this new kind of metastability in the
framework of the HVBK model. We believe that the
problem of the axial attenuation should require more re-
finements than merely introducing a third parameter 8"
in the HVBK expression for the mutual-friction force.
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