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A generalized (D + 1)-dimensional anisotropic Ising model with a combination of multispin in-
teractions in its D dimensions is introduced. A (1 + 1)-dimensional case (D=1) with competing
two- (~J,) and four-spin (~J4) couplings was analyzed through its one-dimensional Hamiltonian
version with the use of the finite-size scaling method. Whereas for small J,/J, the transition is of
the usual Ising type, for sufficiently large J,/J, a first-order phase transition occurs. A comparison
with other models with competing interactions was made.

I. INTRODUCTION

The competing interactions are known to produce a
range of characteristic important effects. The complexity
of their phase diagrams is perhaps best illustrated in two-
dimensional (2D) lattice-gas models.! Such features as in-
termediate, incommensurable phases,” multiphase points
with infinitely degenerate ground states with finite entro-
py,* Lifshitz points,*® and disorder lines”® are common to
a number of theoretical models.

The competing interactions in these studies usually in-
volve central, pairwise forces of different ranges.” Howev-
er, it has been long recognized that such forces are merely
an approximation.!°

Recently, various multibody interactions are receiving
increasing attention'! and are being applied in various
fields. A case in point is the magnetic structure of solid
3He which is thought to be caused by four-spin interac-
tions.!”? Multibody forces seem to play important roles in
many fields such as surface,”!> plasma,'* and nuclear
physics,'> and physics of other quantum crystals.!® Four-
spin exchange models have been successfully applied to
such magnetic systems as NiS, and C¢Eu.!” Judging from
exact results available,'®~2! the multibody interactions
have a profound influence on the critical behavior. The
transfer matrix of a D> 2 Ising model was shown to be re-
lated to a Fermion model with multibody interactions.??
The concepts of frustration,” duality,?*~2% etc., extend
naturally to multibody interactions. An explicit introduc-
tion of such interactions into the field theory appears to be
promising.?’

It is then natural to ask whether multibody interactions
can be made to compete and, if so, what are the effects on
the phase diagrams and the critical behavior. Fhe purpose
of this work is to introduce a new Ising-type model with
competing multispin interactions. The model is then
specified to a 2D version which is analyzed through its
Hamiltonian representation in a particular case. This pa-
per is organized as follows. In Sec. II the model along
with its Hamiltonian representation is introduced. Vari-
ous soluble limits are indicated and the duality properties
are discussed. In Sec. III the phase diagram and the criti-
cal behavior are obtained using the finite-size-scaling
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(FSS) method. In Sec. IV the ground-state properties, the
ground-state energy and the entropy, are obtained. Sec-
tion V contains conclusions and discussions.

II. THE MODEL AND ITS HAMILTONIAN
REPRESENTATION

A possible extension of a conventional Ising model to
include multispin interaction consists in allowing n-spin
interactions in D-dimensional (hyper)planes of a regular
(D + 1)-dimensional system. These D-dimensional subsys-
tems are then coupled by ordinary nearest-neighbor (NN)
couplings. The simplest variant of n-spin interactions is
just a product of n-neighboring Ising spins in a given
domain. Such anisotropic interaction is defined by the
Hamiltonian [B=(kzT)™!]

BH'=-3 |K, 3 ]I S

n>2 R,(D) i€R,(D)

—Ko 2 Sk'SI . (1)
(k1)

In (1), R, (D) is a compact domain in D dimensions con-
taining n spins, and K, are appropriate “n-spin exchange”
integrals. In the second term the neighboring spins S
and S; are in different neighboring domains, and the in-
teraction is in the additional, (D + 1)th dimension only.
The notation of (1) is explained in Fig. 1 for a
(D 4 1=2)-dimensional square Ising model which con-

Jo

FIG. 1. 2D anisotropic Ising model with two- and four-body
interactions.
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tains the chains with two- (~J,) and four-spin (~J,) in-
teractions in one of its dimensions, and the chains are cou-
pled by ordinary NN (~J;) interactions. Such a general-
ized anisotropic Ising model has a quantum Hamiltonian
representation in one dimension which can be derived by
the transfer-matrix method.?® In the following, for com-
putational reasons (see below), we shall consider the above
case of two- and four-spin interactions. Its quantum rep-
resentation reads

H=-J, ZS,FS,;H —Jy 2S,-"S,-"+IS,-”+2S,-"+3 —h 287,
i i i

2

where S; =(S¥,S7,57) is the Pauli matrix at the site i [e.g.,
S?=(} °)] and h is the transverse magnetic field. The
coupling constants of the classical and quantum represen-
tations are related through the limit K,, K4,—0 and
K 0—> 0, lf

L:Kz_lexp(—ZKo) , (3a)
J2
B K lexp(—2K,) (3b)
Jy

are kept constant.?®

It is in this limit that the transfer matrix of (1) can be
shown to commute with (2) and, consequently, the free en-
ergy of (1) for finite temperature corresponds to the
ground-state energy of (2). The natural parameters in
which to discuss the ground-state properties of (2) are
g =h/J, [corresponding to the temperature T of (1)] and
the ratio k =J4/J ;.

The ground state of (2) can be determined exactly in
several limits.

(@) h=0 (i.e.,, T=0). In this limit the model becomes
classical and its ground state depends on the sign of J,.
For J,=0, it is a normal Ising doublet, and for J,=0 and
J4 <0, it is an octuplet consisting of repeating patterns of
S7,

+—__’ _+__, ey —+++7 +_++,---

For 0< | k| <0.5 the ground state is still doubly degen-
erate and for |« | >0.5 it is an octuplet. For |« |=0.5
the ground state is highly degenerate.

(b) J,=J4=0, h£0 (i.e., T— ). In this case the
ground state is a singlet charaterized by S7=1 for all i.
The other limits are displaying phase transitions and are
less trivial.

(c) k=0, hs~0. In this case (2) reduces to the Ising
model in the transverse field, solved exactly by Pfeuty.?’
There exists a phase transition at a self-dual point
(h/J,).=1, where the Ising doublet transforms into a
singlet. The critical exponents are those of the 2D Ising
model (Onsager solution).

(d) J,=0, J4,540 (with arbitrary sign), h==0. This situa-
tion describes a generalized Ising model with four-spin
coupling in a transverse field. Such models were intro-
duced recently’*~2¢ and have been analyzed using the
molecular-field theory and the FSS methods. There exists
a phase transition at a self-dual point (k£ /J4). =1, where
the octuplet transforms into a singlet. This transition is
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most probably of (weakly) first order with large, but still
finite, correlation length.?*

In the following the phase diagram and the critical
behavior of (2) away from the above limits will be ex-
plored using the FSS methods. From now on we assume
Jy=—|J4|, because for J4 > 0 [see point (a)] no competi-
tion between the interactions is possible and the transition
disappears.

Some remarks are necessary, in order to justify the par-
ticular choice of competing two- and four-body interac-
tions. Firstly, there can be no competition between the in-
teractions of the opposite multiplicity parities; i.e., two-
and three-body interactions do not compete—/3 acting as
a longitudinal field and destroying the transition.!!®
Secondly, higher-order interactions can possibly compete,
but cannot be reasonably treated by the FSS methods with
rather limited sizes of finite blocks. Thus (2) seems to be
sufficiently representative for the problem of competition
and is still tractable by the existing methods.

III. FSS ANALYSIS

The method of FSS is a powerful tool to analyze the
critical properties of interacting systems. The most com-
plete review of theory and applications of FSS has been
given recently by Barber.’® The FSS method is particular-
ly useful for complicated interactions, because it does not
generate new terms in the Hamiltonian as the other
renormalization-group methods do. As applied to (2), the
FSS method was used to determine the phase diagram and
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FIG. 2. Energy gap A as a function of h /J, for few values of
k. k=0 corresponds to the Ising model in a transverse field.
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FIG. 3. Critical fields (h /J;) as a function of J,/J, =k, obtained for different block sizes L (L < 16). For k— oo, the critical field
should asymptotically approach the line h /J,=J,/J, (dashed). In the inset the values of the exponent v for different «’s are given.

the critical exponents for general values of g and k. In the
space of g =h /J, and k there should be a critical line be-
tween degenerate and singlet ground states, described by
(h/J,).=F(k), with F(0.5)=0. At (h/J,), a gap A be-
tween the singlet ground state and excited states opens,

h nll®

A~ 2 _ |2
L |,

where s =vz, with v the correlation-length exponent and z
the dynamical critical exponent (z=1).3! For J,=0 or
J4=0, (2) is shown to be self-dual®*?* with (h/J;),=1
(i=2 and 4). Consequently, F(0)=1 and lim,_, ., F(k)=«.
The function F (k) and the critical exponent s =v have
been obtained using the FSS method.

The basic quantity which determines the critical
behavior is the energy gap A~£~! between the ground
and first excited states. In order to obtain A, the Hamil-
tonian (2) was diagonalized for finite systems with L=4,
8, 12, and 16 spins using the Lanczos scheme. The
periodic boundary conditions were assumed. Representa-
tive plots of A for L=12 spins are shown in Fig. 2 as a
function of (h /J,) for various values of k, and are com-
pared with k=0 case (Ising model with transverse field).

The FSS method amounts to calculating the gaps A for
g and « for systems of various linear “sizes” L and L.
The basic FSS assertion is that upon the size change
L — L’ the correlation length & changes as

E1(g,k)=L/L'E(g',K) . 4)
This can be reinterpreted as
Ap(g',k)=bAL(g,k), (5)

with b =L /L’. The fixed points g*(L,L';x) of this rela-
tion, as obtained from

AL’(g*’K)=bAL(g*’K) ) (6)

should tend to the exact values g (k) if L,L’'— o with
L /L'=b fixed.

The phase diagram obtained from the analysis of fixed
points is shown in Fig. 3, and reproduces well the exact
features elaborated upon in Sec. II:

(a) for k=0, (h /J;). =1,
(b) F(k)—«k for k— w0, and
(c) F(0.5)=0.

The critical behavior across the phase boundaries of Fig. 3
was obtained by calculating the correlation exponent vy, -
for different values of « from*

LI
L

il Ap(g*(L,L"K))
T Ape*(L,L'k)

M

with A;.=dA;./dg; see the inset of Fig. 3. For k < 3, the
L — o extrapolated value for v seems to remain equal to
1—its value for the J4,=0 case. This suggests that the
transition stays Ising-like in character up to k=0.5. For
k> 0.6, the extrapolated values of v are very close to 0.5.
This is very suggestive of first-order phase transition as
can be seen from the following arguments. For a quan-
tum system in D dimensions the hyperscaling predicts
(D +z)v=2—a, where z, the dynamical critical exponent,
is equal to 1 [exact equivalence to a (D + 1)-dimensional
classical system®']. At the first-order transition point
a=1,3% and consequently, v=0.5 for D=1. So, for k> 0.6
the critical behavior resembles the J, =0 case discussed in
Ref. 24, and the transition is presumably of first order.

As seen from Fig. 3 for 0.5 <k <0.6, the FSS method
fails to give the transition line and, consequently, no
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values for exponents could be obtained. It is natural to
suppose that there the system enters some sort of modu-
lated phase or sequence of phases and that a transition is
XY-like, very much the same as in the 2D case of the axial
next-nearest-neighbor Ising (ANNNI) model.® In order to
test this hypothesis we have calculated the wave-vector
dependence of A;, i.e., Ar(g,k;q) with ¢ =7m /L with
m=0,+1,...,+(L —1). If the ground state of H
displayed some g, periodicity, then for finite L, in a (g,«)
region in question, a marked minimum

A;(g,k;90)= min A; (g,k,q)
q

should appear, with A _(g,x;q0)=0, where go=gqo(g,x)
and go£m/2.>% We have calculated, using the same cal-
culational procedure, A;(g,x;q) for both H and one-
dimensional quantum representation of the ANNNI
model.>*~3  (For the ANNNI model g=h/Jyy and
k=Jnnn/JInn-) For the ANNNI model very clear abso-
lute minima of A; (g,k;q) appeared in the region in which
an incommensurable phase was predicted. In contrast, for
H no such minima were observed.’® We conclude that,
within the FSS method (with available sizes L < 16), there
is no evidence for the existence of an intermediate phase
for H for 0.5 <k <0.6. However, some kind of crossover
effect is taking place with v (if it exists at all) changing,
perhaps continuously with k between 1 and ~0.5. In the
discussion (Sec. V) a heuristic argument against the pres-
ence of the incommensurable phase for (2), based on the
wall picture will be also given.

IV. GROUND-STATE PROPERTIES

Whereas the correlation properties of quantum models
are related to the low-lying parts of the spectrum, their
“thermal” properties are determined by the ground-state
energy. In this section the ground-state energy E,(g,x)
with its derivatives wil be discussed.

Eo
L
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0.0 0.5 1.0 1.5 _fl
32
FIG. 4. Ground-state energy per spin as a function of 4 /J,

for k=0.3 for blocks of L=4 and 8 spins. The curves for L=12
and 16 are indistinguishable from that of L=38.
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FIG. 5. Ground-state energy per spin as a function of h /J,

for k=0.8 for blocks of L=4, 8, and 12 spins. The curve for
L =16 is practically indistinguishable from that of L=12.

The values of the negative of the ground-state energy
per spin —Eq(g,k)/L are shown in Figs. 4 and 5. In Fig.
4, —E(g,k)/L is plotted as a function of g for k=0.3.
According to Fig. 3 and previous discussion, it corre-
sponds to the Ising-like region. Only L=4,8 values are
presented, since for L=12 and 16 the curves are, on this
scale, indistinguishable from that of L=8. In Fig. 5 the
same quantity is displayed for k=0.8, i.e., in the region of
first-order phase transition. Here, the size dependence is
stronger but again the L=12 and 16 curves coalesce.
Note that in both cases Ey(g,k;L) is an increasing func-
tion of L, showing that the size dependence is not varia-
tional in character.

The use of FSS methods for first-order phase transi-
tions is hampered by the fact that, in principle, the corre-
lation length remains finite and the scale invariance is lost
at the transition point; this is the basic assumption of FSS
methods. A way around this difficulty has been pro-
posed,’? where it has been shown that at the first-order
transition points the size dependence of maximas and
widths of such diverging (in infinite systems) quantities as
the specific heat and the susceptibility is much stronger
than at second-order transition points. Analogous criteria
based on the renormalization-group formulation of FSS
methods were also advanced.3”"3® They are consistent with
the fact that off the true criticality the finite-size free en-
ergy approaches exponentially its L— oo limit.*0 Al-
though such criteria perform rather well for strongly
first-order phase transitions, as in ¢ >>4 Potts model in
2D,¥ it remains to be seen whether they could be useful
for weakly first-order cases with very large, but finite
correlation length.

The model (2) for k>0.5 appears to be an appropriate
candidate because the higher multiplicity couplings ( ~J,
with n>4) almost certainly produce first-order transi-
tions.?*%5 In view of the above considerations we have ex-
plicitly calculated the entropy of the transition for dif-
ferent system sizes. Since the free energy per spin of the
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FIG. 6. Entropy of the system (2) as a function of g =h/J,
for k=0.3 for blocks of L=4, 8, and 12 spins. The curve for

L =16 spins is, on this scale, practically indistinguishable from
that of L =12 spins.

classical system of L spins corresponds to the ground-state
energy (1/L)Ey(g,k) of (2), then the entropy is equal to
0E(g,x)/dg which in turn is equal to —(0|S?|0).

The form of —{0|S?|0) provides additional evidence
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FIG. 7. Entropy of the system (2) as a function of g =h/J,
for k=0.8 for spin blocks of sizes L=4, 8, 12, and 16 spins.
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FIG. 8. Entropy of the system (2) as a function of g =h/J,
for k=1.2 for spin blocks of sizes L=4, 8, 12, and 16 spins.

for a second-order transition for x <0.5 and first order
otherwise. The plot of dE(g)/dg for k=0.3 is represen-
tative for all 0 <k <0.5 and is presented in Fig. 6. In Figs.
7 and 8, the same quantity is shown for k=0.8 and 1.2,
respectively. For k=0.3, there is a weak size dependence
and — (S?) seems to develop an inflection point at g ~0.5
with a weak singularity at higher derivatives and no
discontinuity. This is consistent with the behavior at k=0
(Ising model). For k=0.8 (Fig. 7) a stronger size depen-
dence can be observed, and a discontinuity appears to
build up with the size at g=~0.47. In Fig. 8, an even
stronger size dependence can be seen.

In Figs. 7 and 8, relatively large portions of the curves
are linear in g, suggesting that the bulk entropy near the
transition varies as C4 |g —g. | 1%, where the specific-
heat exponent a=~1and C,#C_.

The FSS method, in general, does not give good in-
dependent estimates of a.3° However, a very strong size
dependence of the results for k> 0.5 (as compared with
0 <k <0.5) is persuasive, and when combined with the re-
sults of Sec. III this size dependence is very strongly sug-
gestive of first-order phase transition in this region.

V. CONCLUSIONS AND DISCUSSION

The phase diagram and critical properties of the gen-
eralized 2D Ising model with anisotropic competing two-
and four-body interactions was obtained by the FSS
method applied to the 1D quantum representation. For
Kk <0.5, the transition is of conventional 2D Ising-model
type. For k> 0.6, the transition is of first order. In the
immediate neighborhood of the degeneracy point k=0.5
(0.5<k<0.6), the FSS method does not give definite
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answers due to the lack of convergence, typical for sys-
tems with very degenerate ground states as, for example,
the antiferromagnetic Potts model.** The character of
transition is consistently confirmed by an independent cal-
culation of entropy of transition. This last quantity
displays a distinctly different size dependence in second-
and first-order transition regions, in accordance with gen-
eral theoretical predictions.

The structure of the phase diagram (see Fig. 3) resem-
bles, with an appropriate reinterpretation of the coupling
constant k, the phase diagram of the 2D ANNNI model.
However, the characteristic thin “tongue” of the incom-
mensurable phase of the ANNNI model does not seem to
appear in the phase diagram of (2). The calculations of
the gap A(gq) for a given wave vector g do not reveal any
anomalies for (2), whereas characteristic minima of A(q)
for gs4m/2 persist for the ANNNI model. An heuristic
argument can be given showing that the four-body in-
teraction ~J, does not favor an incommensurable
phase.#! It is based on considerations of energetics of
walls. Imagine that the system (2) at T=0, initially in the
ferromagnetic state + + + + + +, formed a single
wall + + + |—— —. (These configurations are then re-
peated in a z direction.) It costs E;,=2(J;—2J4) to
create one wall. One can create many walls and calculate
the interaction between them. The peculiar feature of
these walls is that when they get too close to each other
their interaction disappears. That is, a double wall
+ + + =+ + + has precisely the energy
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E,,=2E;,. One may first think that such walls would
define a stripped phase with alternating + and — chains
(p=1 system®). However, the point is that such double
walls do not hang together. The energies of a “kink”

++++ = ++++
+++++ = +++,
and a “split,”

+++ = ++++
++++++—]+,

are equal, and the system can gain a lot of entropy by let-
ting the walls come apart, and there is no reason why the
system should choose an incommensurate phase. So the
behavior can be very different from the ANNNI case.

Another feature different from the ANNNI model is
the first-order character of transition for x>0.6. It has
been conjectured from both correlation and entropy argu-
ments. The precise nature of singularities along this line
is yet to be established as well as the character of transi-
tion for 0.5 <k <0.6.
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