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Commensurate phases of order p > 3 exhibit two or more classes of inequivalent domain walls, re-
flecting a lower than ideal symmetry. These walls compete statistically and undergo wetting transi-
tions. New “‘chiral” universality classes of melting transitions may thereby occur for both 3 X 1 and
V3% V'3 surface phases. The data of Moncton et al. may be interpreted as indicating that such a
chiral transition occurs in Kr on graphite. The melting of p X1 phases is discussed for various
dimensionalities d and values of p. Domain-wall wetting transitions are treated in a semi-
phenomenological fashion; they may be either continuous or first order. Wetting critical exponents

are obtained for a general class of transitions.

The role of dislocations at the uniaxial

commensurate-to-incommensurate transition is examined. For d=2 the crossover exponent for
dislocations is found to be —6,=(6—p?*)/4. For p > V6 the dislocations are therefore irrelevant,
but they introduce singular corrections to scaling at the transition. A phase diagram as a function
of dislocation fugacity is proposed for the case d=2, p=3, illustrating how a Lifshitz point may be

present at all nonzero fugacities.

I. INTRODUCTION AND SUMMARY

Consider a physical system in which one set of degrees
of freedom are spatially ordered and form an essentially
rigid, infinite, periodic lattice, although the full transla-
tional symmetry of this underlying lattice may be broken
by some other set or sets of degrees of freedom. In the
typical case, the first set of degrees of freedom are
represented by the positions of a set of atoms or ions
which provide the “bulk framework” of the system. The
other degrees of freedom, whose ordering transitions are
the focus of interest, might be realized by superimposed
displacements of mass, by the positions of another set of
particles, or by charge or spin and magnetization densities.
The corresponding ordered phases are then represented by
standing waves of mass, composition, charge, or spin den-
sity that form a superlattice within a bulk crystal, a
“reconstructed” surface of the crystal, or an adsorbed
phase on the surface, etc. The resulting superlattice may
be either commensurate with the underlying lattice or in-
commensurate. The simplest situation conceptually, and
the one whose language we will adopt even though many
of the ideas and results are general, is that of a submono-
layer or near monolayer of atoms adsorbed on a surface
which presents a regular array—the underlying lattice—of
adsorption sites.

As one varies the temperature, chemical potential, or
other thermodynamic fields, an ordered, solidlike com-
mensurate phase may melt either into a disordered fluid-
like phase (a “gas”) or via a commensurate-to-
incommensurate transition, into a “floating solidlike” in-
commensurate phase. It is found, particularly in two-
dimensional or surface systems, that both types of melting
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may occur as continuous (i.e., critical) phase transitions, in
contrast to the traditional first-order melting of a bulk
three-dimensional crystal lattice. Both types of transition
are presently of appreciable experimental and theoretical
interest, the nature of the possible continuous transitions
being a central issue. The physical system in which such
phase transitions have been most thoroughly studied is Kr
on graphite.!~® Other experimental systems in which
commensurate melting has been investigated include He
on graphite,” O on Ni(111),®> Xe on Cu (110),° N, on gra-
phite,'® and, in bulk systems, thiourea!' and bromine-
intercalated graphite.!? Theoretical models which have
been devised and studied include the Frenkel-Kontorowa
model,’* the sine-Gordon model,'*~!¢ the axial next-
nearest-neighbor Ising (ANNNI) model,'’ 2! the chiral
clock models,?>~28 and various lattice gases.?’ ~3

Domany et al.® have classified various two-
dimensional fluid-to-commensurate phase transitions into
universality classes on the basis of symmetry rules due to
Landau and Lifshitz and renormalization-group ideas.
They suggest, for example, in agreement with previous
work of Alexander,** that the order-disorder transition of
the so-called V3 X V3R 30° commensurate phase on a tri-
angular array of substrate sites, such as provided by the
ideal surface of graphite, should be a continuous transition
in the three-state Potts-model universality class. This pre-
diction has been confirmed experimentally by Bretz,” who
observed the divergence of the specific heat of He on gra-
phite at or close to the ideal coverage, and obtained a criti-
cal exponent, a, consistent with the accepted three-state,
two-dimensional Potts value,*3¢ a=+. Equally, this pre-
diction is confirmed by Baxter’s exact solution of the so-
called “hard hexagon” model, i.e., a triangular lattice gas
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with infinite nearest-neighbor repulsions.?’

However, it has been pointed out®>’ that the symmetry
of a gas adsorbed on a substrate presenting a surface of
triangular lattice character is, in fact, generally lower than
that of an ideal Potts model. Further, the present authors
have argued that such lower symmetry may lead to new
types of phase transitions, which, indeed, might already
have been observed.’” Thus, high-resolution measure-
ments of synchroton x rays scattered from Kr on gra-
phite* have revealed a transition from a fluid phase to a
V3% V3R 30° commensurate solid phase that does not ap-
pear to belong to the universality class of three-state Potts
models.’” The lower symmetries of such adsorbed gas sys-
tems correspond to Potts or clock models with additional
symmetry-breaking terms that couple the abstract discrete
spin space (of Potts variables) to real space. A principal
aim of the present paper is to explore the consequences of
such a lower symmetry for both V3XV3 and pX]1
phases in physical systems and in model systems. The
first few sections constitute mainly an expanded and, we
hope, more transparent exposition of the ideas presented
in Ref. 37. The role of dislocations at uniaxial
commensurate-to-incommensurate phase transitions in
two dimensions is then investigated. For the convenience
of the reader we summarize our work briefly here.

The fact that the overall physical symmetry of an ad-
sorbate forming a p X1 commensurate phase on a sub-
strate is lower than that of a simple p-state clock model is
made apparent in Sec. II by examining the interfaces or
domain walls separating distinct domains of the com-
mensurate phase. The nature of such an interface parallel
to a given direction and hence its free energy or interfacial
tension, 2, is found to depend on the orientational sense
defined by the two domains it separates: Thus, in contrast
to the situation in the usual discrete spin models, an 4 | B
wall (parallel, say, to the y axis) may have a different ten-
sion than the corresponding B |4 wall. The simplest
models embodying this feature, and thus appropriate for
modeling p X 1 commensurate phases, are the chiral clock
models,**} which contain couplings between the discrete
abstract spin space and real space. To understand the ef-
fect on the melting transition of breaking the full Potts or
clock symmetry in this chiral fashion, the first question
we ask is whether or not the chiral symmetry breaking
constitutes a relevant operator (in the usual renormaliza-
tion group sense) at the symmetric or “pure clock” critical
point. For the p-state (p > 3) chiral clock models we find
that the chiral field is always relevant and causes cross-
over to phase transitions which belong to-different univer-
sality classes than those of the symmetric clock models.
The resulting phase diagrams®>3%3 for the chiral clock
models are discussed for various dimensionalities, d, and
state numbers, p. For p=3 and d =2 a new class of
chiral order-disorder phase transitions is indicated,’” we
expect that a continuous melting transition of 3X1 com-
mensurate surface phase will in general be in this new
universality class, whose properties are discussed in Sec.
IV. (Implicitly we assume here and below that the con-
tinuous melting transition is not preempted by some ex-
trinsic first-order transition). Haldane et al.'® and
Schulz!'® have suggested that 3X 1 commensurate phases
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will not melt directly into a disordered fluid, except at
points of special symmetry; rather, they argue that an in-
termediate incommensurate phase should appear. This
would imply that the chiral transition does not occur for
p=3, d =2. However, their arguments are strictly valid
only in a limit in which the density of dislocations in the
adsorbate layer vanishes, and so have no convincing appli-
cability to systems at typical melting temperatures, where
there are many dislocations present. Furthermore, some
numerical work on the two-dimensional three-state chiral
clock model does suggest that there are direct
commensurate-to-disordered phase transitions over a
range of parameters for p =3.2%7

The chiral symmetry breaking operator appropriate for
systems that form a V'3 X V3R 30° commensurate phase is
of a different (triaxial) form than that introduced in the
(uniaxially) chiral clock models. When expressed in terms
of a Landau-Ginzburg-Wilson Hamiltonian, it is of third
order in the gradient of the order parameter and therefore
appears to be irrelevant at the symmetric critical point.
This irrelevance is confirmed by the exact solution of the
hard hexagon model,?****! which exhibits a melting tran-
sition in the symmetric Potts-model universality class even
though triaxially chiral symmetry breaking is present in
the model. However, we interpret (in Sec. IV) the experi-
mental evidence for Kr on graphite* as indicating that this
and other triaxially chiral symmetry breaking operators
can, if present in sufficient strength, cause crossover from
simple three-state Potts melting to “triaxial” chiral melt-
ing. A plausible phase diagram for Kr on graphite, pro-
posed in Sec. IV,”” contains a new multicritical point
where this crossover occurs.

The crossover scaling exponent, ¢, of the chiral field at
the symmetric critical point of a uniaxially chiral clock
model may be calculated analytically for various values of
p and d.3%3° These exact results are discussed in Sec. III;
all are consistent with a formula, based on scaling argu-
ments supplemented by plausible assumptions, which re-
lates ¢, to the exponents u, and 3, for the interfacial ten-
sion and order parameter, respectively, of the symmetric
model. For the experimentally interesting case p =3 and
d=2 this formula, namely, ¢,=p,—2B,, yields
¢3=11/18~0.61 [if one accepts the conjectured values of
up, and B, for the (p=3)-state Potts model].*>3* Howev-
er, direct numerical estimation based on high- and low-
temperature series expansions for the d =2,p =3 chiral
clock model?® suggests ¢;=0.19+0.06. This value, while
still indicating that the chiral perturbation is relevant,
clearly casts doubt on the generality of the theoretical as-
sumptions made; in addition its surprisingly small magni-
tude probably means that it will be rather difficult to
detect the chiral crossover to new critical behavior in
simulations? or in experimental systems.

As is explained above and expounded in detail in Sec.
II, the interfaces between different domains of a com-
mensurate phase will, for p >3, have different interfacial
tensions, depending on their orientational sense. When
the interfacial tension, or excess free energy per unit
length, of one type of wall becomes large enough relative
to others, the wall will become unstable and split into two
(or more) separate walls of another type while a layer (or
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layers) of one (or more) further domain(s) intrude between
the two domains that the wall originally separated. Such
interfacial wetting transitions?®> change the nature of the
dominant fluctuations near the chiral melting line, thus
playing an important role in the crossover from ordinary
Potts or clock to specifically chiral critical behavior, as is
discussed in Sec. VI.

The phenomenological analysis of the uniaxial
commensurate-incommensurate transition in d dimensions
presented by Fisher and Fisher* is extended in Sec. VII to
obtain scaling forms for the free energy and susceptibility
near the transition. The role of dislocations at this transi-
tion is then examined, particularly for two dimensions.
We obtain, in Sec. VIII, a dislocation-dislocation correla-
tion function in the commensurate phase of the two-
dimensional system and postulate a scaling form that con-
tains both our result and that of Schulz, Halperin, and
Henley,*® who have calculated the same correlation func-
tion in the incommensurate phase for distances large com-
pared to the correlation length. By integrating this corre-
lation function to obtain a susceptibility, we find that the
crossover scaling exponent for the dislocation fugacity is
+(6—p?). For p =2 this means that the dislocations are
relevant; they cause crossover to an Ising transition as was
shown by Bohr.* For the less than realistic cases
V6<p<V8 the dislocations are irrelevant at the
commensurate-incommensurate transition, but are relevant
in the incommensurate phase, which therefore melts into a
fluid.>'>?2 For p> V'8, the dislocations are always ir-
relevant, but they do give rise to critical singularities on
the commensurate side of the transition that are not
present when dislocations are forbidden and which might
be observable.

In the last section we examine the role of dislocations in
the two-dimensional chiral clock model, particularly for
p=3. A microscopic location may be assigned to each
dislocation core in a configuration of the chiral clock
model. Each dislocation core sits within a plaquette so
the core energy may simply be introduced as a controll-
able parameter in the model by adding plaquette (i.e.,
multispin) interactions to the Hamiltonian. The expected
phase diagram for such a three-state chiral clock model il-
lustrates how the Lifshitz multicritical point and new
chiral melting transition, which are not present when
dislocations are forbidden, may appear as the dislocation
fugacity is increased from zero.

II. DOMAIN WALLS AND SYMMETRY

Our analysis addresses systems where, in the commens-
urate phase, the full translational symmetry of an underly-
ing lattice is spontaneously broken. As mentioned above,
a variety of different physical systems exhibit such phases
but we will use the language appropriate to commensurate
ordering of adsorbed atoms on a regular lattice of adsorp-
tion sites; nevertheless, the basic ideas apply quite general-
ly.

In the simple commensurate phases that we will consid-
er, one of p=2,3,..., equivalent but distinct sublattices,
A,B,C, ..., of adsorption sites is preferentially occupied
by the adatoms. One may also consider phases in which

more than one sublattice is preferentially occupied or
where one has molecular adsorbates with orientational de-
grees of freedom, but only the simpler case is addressed
explicitly here. In the fluid or melted phase the various
sublattices are, statistically, all equally occupied. The sub-
lattice structure exhibits an abstract internal symmetry
represented, say, by a group Yp, whose elements permute
the different sublattices. In particular, we will focus at-
tention on p X 1 commensurate phases, where an absorbate
on a rectangular substrate forms an overlayer with an x-
axis lattice constant p times that of the array of adsorp-
tion sites, and on V'3 XV3R30° commensurate phases on
a triangular array of adsorption sites with hexagonal sym-
metry such as occurs in He or Kr on graphite. The
ground states of two 31 phases and the V3 X V3R30°
phase are illustrated in Fig. 1. Dissociated hydrogen on
Fe(110) forms a 3X 1 phase ordered as in Fig. 1(b), with
the large spots representing unoccupied adsorption sites,
or holes.®’

At the fluid-to-commensurate transition the sublattice
symmetry, Y,, is spontaneously broken. One might then
expect that the phase transition is in the same universality
class as the standard Ising, Potts, or clock-model phase
transition where the corresponding “spin” symmetry is
broken.3>* Of course, the symmetry may also be broken
via a first-order phase transition, such as occurs for Kr on
graphite at low chemical potential or vapor pressure."?
Indeed one must anticipate that atoms with sufficiently
attractive interactions will always condense via a first-
order transition at low pressures. However, we focus here
on the possible types of continuous phase transitions that
might occur at higher pressures and coverages.

A continuous transition to a p =2 commensurate phase,
where one of two equivalent sublattices is selected, should
be in the Ising universality class.>* For p =2 this simple
assignment of universality class appears to be quite gen-
erally valid. On the other hand, in the next simplest case,
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FIG. 1. Idealized representation of simple commensurate ad-
sorbed phases of order p=3. The dots represent the adsorption
sites of the underlying, substrate lattice while the closed circles
depict structureless adsorbate particles. Parts (a) and (b) illus-
trate simple rectangular and centered rectangular 3 X1 phases,
respectively, while (c) represents a hexagonal V3xXV3R30°
phase as found in He and Kr on graphite. Dissociated hydrogen
on Fe(110) displays a phase ordered as in (b) but with two sub-
lattices occupied and one vacant (see Ref. 45).
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p =3, where one might expect the continuous melting
transition to always be in the three-state Potts universality
class,3>3* we will conclude, as explained below, that new
types of continuous phase transitions may occur. Similar
conclusions apply for larger p.

The universality class of a phase transition in a given
system is determined to a large degree by the symmetry
and dimensionality of the system. The simple p-state
Potts or clock models have a symmetry that is the direct
product of the internal spin symmetry Y, and the in-
dependent lattice symmetry, say L. However, the
adatom-substrate system has a smaller symmetry group,
say G, that is only a subgroup of Y, X L. The origin of
this lower symmetry may be demonstrated in an instruc-
tive manner by examining walls or interfaces separating
different domains of the ordered phase.®3’ There are p
distinct types of ordered domains: Let us label these by
the corresponding sublattice, 4,B,C, ..., that the ada-
toms in the domain preferentially occupy. A domain wall
oriented in a particular direction may, in general, be one of
p(p—1) types, depending on which domains it separates.
Thus for p=3 and walls parallel to, say, the y axis we
have domain walls of the types 4|B, B|C, C|A4, A|C,
C|B, and B|A. The full S5 XL symmetry of a three-state
Potts or clock model dictates that these walls are all
equivalent to one another so that they all have identical
excess free energies per unit length or interfacial tensions,
2o(T).

On the other hand, for 31 rectangular or v'3X V3
hexagonal commensurate phases the 4|B and B|A
domain walls are intrinsically different, even when orient-
ed parallel to the same direction.%3” This is illustrated in
Fig. 2 for a rectangular phase and in Fig. 3 for a hexago-
nal phase. Note that these figures are schematic with
neglect of any displacements of the adsorbed particles
from the ideal adsorption sites (as well as neglect of any
vacancies or interstitials). With regard to the order-
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disorder phenomena, such displacements may reasonably
be ignored well inside a commensurate domain, but they
must play an important role in the vicinity of a domain
wall where, in fact, they determine the microscopic width
of the wall.¥’ However, the idealization used in Figs. 2
and 3 suffices to reveal clearly the intrinsically distinct
structures of parallel 4 | B and B | A walls.

It is also evident for the 3 X1 rectangular and hexago-
nal phases illustrated that the sublattice symmetries dic-
tate that the 4 | B, B| C, and C | A walls oriented in a given
direction are all equivalent to one another; we will call
them [+ ] walls. The three remaining types of wall are
likewise equivalent and will be called [ — ] walls. It would
seem from the figures, however, that the two types of wall
can occur naturally either in a “heavy” form, as illustrated
on the left sides of Figs. 2 and 3, or in a “light” form as
shown on the right sides. In the idealized heavy walls
presented in the figures the [+] and [ —] interfaces are
denser than the ideal, commensurate surface coverage of
0():% particles per adsorption site, by an amount which
corresponds to a net adsorption on the wall of two-thirds
and one-third of a row of particles, respectively. Con-
versely, the ideal light [ +] and [ —] walls are less dense,
having negative adsorptions (or deficits) of one-third and
two-thirds of a row, respectively. It is clear physically
that an “overpressure” (or excess chemical potential)
which increases the coverage, 6, significantly above the
commensurate value 6,=+, will tend to favor heavy
walls; on the other hand an “underpressure,” and corre-
sponding lower than ideal coverage, will normally favor
light walls. It is important to realize, however, that the
adsorptions quoted are ideal values that represent, at best,
bounds on the actual adsorptions. Thus as the chemical
potential, say &, increases at constant 7" and the mean cov-
erage in the commensurate phase changes from signifi-
cantly below 6, to above 6, the adsorption on, say, a [ + ]
wall, should increase continuously from a negative value,
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FIG. 2. Schematic depiction of 4 | B and B | A walls in a 3X 1 rectangular phase. The idealized walls on the left are heavy while
the topologically equivalent ideal walls on the right are light. At given temperature, T, and chemical potential, {, in a realistic situa-
tion all walls would, statistically, display misplaced particles, vacancies, and interstitials resulting in the same mean structure for all
A | B interfaces and for all B | 4 interfaces: However, the 4 | B and B | 4 structures would remain distinct.
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FIG. 3. Ilustration of domain walls in a hexagonal V3% V/3R30° commensurate phase illustrating two distinct types of wall in
their idealized heavy form on the left and the corresponding idealized light form on the right. Note how the character of the 4 | C
and B | C walls changes as the walls alter their directions. Junctions of three walls also arise in just two distinct forms represented

here by the domain configurations (4CB) and (BCA).

probably greater than —-;—, to a positive value, perhaps
approaching + 3. The absorption on a [ —] wall should
likewise increase continuously. The mechanism for this
is, of course, simply the appearance in the interface of a
statistical distribution, depending on T and &, of vacan-
cies, interstitials, and particles on “wrong” absorption
sites.

It remains true, nevertheless, that at any point the mi-
croscopic structures of [+] and [—] walls will differ.
Consequently, the two types of wall will have distinct in-
terfacial tensions, =, (7,§) and 2_(T,{) which, in gen-
eral, will be unequal. It may happen that over the accessi-
ble range of the commensurate phase one tension will al-
ways be smaller than the other; but if this is not so there
should exist a locus within the commensurate phase, say
&o(T), on which the wall tensions are equal, i.e., 2, =3 _.
The previous heuristic arguments suggest that this is like-
ly to correspond to coverages, 0, near 6= —;—; however, the
details of the interatomic potentials, etc., might change
this. Be that as it may, the adsorptionson a [+ ] and [ —]
wall can be related to the variation of =, (7,§) and
3 _(T,¢&), since by standard thermodynamic reasoning*®
one sees that they are simply proportional to the deriva-
tives —(02, /9&)r and — (32 _ /9&)r, respectively. Thus
when § rises above §o(7T) the wall with the greater adsorp-
tion, i.e., the heavy wall, will be the one with lower inter-
facial tension. 4 priori one cannot be certain that the [+ ]
wall will be the “heavier” one since as demonstrated in
Figs. 2 and 3, both types of wall may actually have either
a positive or a negative adsorption. In fact it is not im-
possible for the two walls to interchange roles, there being
two (or even more) distinct chemical potential values at
which the equality 3, =3 _ is realized for a given tem-

perature. However, this seems unlikely to occur in prac-
tice; rather we expect that there will normally be only a
single locus, §o(T), within the commensurate phase region
of the (T,£) plane on which the wall tensions are equal.
The wall with the greater adsorbate density at §o(T) will
then be the favored, low-tension wall for all §> &o(T).
One must be cautious, however, in calling this wall the
“heavy wall” because, in general, it will not remain the
heavier wall in terms of the adsorption. On the contrary,
since both tensions will vanish, and hence again become
equal, on any portions of the phase boundary where the
melting is continuous, the adsorption on the unfavored,
originally lighter wall must increase and exceed that on
the favored wall.

While there are just two types of domain wall for the
simple p =3 systems, there will, in general be p —1 ine-
quivalent types of wall for p X 1 rectangular phases, with
interfacial tensions, say, 2, 1,2 5,...,2,=2_(,_, cor-
responding to 4 |B, A|C, A|D, ..., walls, etc. Thus for
commensurate phases of order p =2 there is only one type
of domain wall and it seems fairly certain that the simple
Ising or Z, symmetry suffices for a correct description.
However, for p >3 the existence of p —1 inequivalent
types of domain wall demonstrates unequivocally that ad-
sorbate systems have a lower symmetry than the standard
p-state Potts or p-state clock models. For the three-state
Potts model, for example, the internal Y3;=.S; spin sym-
metry and the lattice symmetry, L, are clearly uncoupled.
On the other hand the labels 4, B, and C in a p =3 com-
mensurate adatom-substrate system do not simply
represent the values of an abstract discrete or Potts spin
variable, say n=0,1,2; rather they represent sublattices in
real space. Thus in a general commensurate phase of or-
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der p, the internal symmetry, Y,, and the lattice symme-
try, L, are not independent; instead the full symmetry
group G is a subgroup of Y, X L.

Now if we neglect translations, the p =3 rectangular
lattice system illustrated in Fig. 2 has a symmetry group
of twelve elements. Six consist of the three cyclic or even
permutations of the sublattice labels, A, B, and C, com-
bined with the two symmetry operations of the lattice that
preserve the orientation of the x axis, namely the identity
and a reflection about the x axis. The other six elements
consist of the three antisymmetric or odd permutations of
the sublattice labels combined with the two symmetry
operations of the lattice that reverse the x axis. The sim-
plest discrete spin model that embodies precisely this sym-
metry is the three-state chiral clock model,»* which
should therefore be appropriate for modeling the continu-
ous melting of a 3 X 1 commensurate phase.?>3’

The general p-state chiral clock model?? consists of
Potts or clock spin variables, n;, situated at the sites, i, of
a regular lattice. Each spin variable may assume one of
the p values n;=0,1,...,(p—1). In the simplest version
of this model,?? which should nevertheless be adequate for
modeling the melting of p X 1 phases, these spins are cou-
pled by the Hamiltonian

H=—J cos[27(ni—nj+K'ﬁij)/p] ,
(i,j)

where the sum runs over all nearest-neighbor pairs of sites
and R;; is the vector from site i to site j. (Of course, one
can allow the couplings, J, to be anisotropic in real space,
but this will not affect the qualitative phase-transition
behavior.) When the chiral field, A, vanishes, this model
reduces to the standard clock model,* in which the Z,
spin and spatial symmetries are independent. The chiral
field, A, which discriminates energetically between, for
example, the linearly adjacent spin configurations 012 and
210, couples the abstract Potts spin space to real space,
thereby lowering the overall symmetry of the model.
Varying the chiral field clearly corresponds to varying the
chemical potential in the adsorbate system; the arguments
presented above lead to the identification

(2.1)

| A | ~E—Eo(T) . 2.2)
The chiral field here effectively couples to a uniaxially
chiral symmetry breaking operator that selects a particular
direction in space, namely, the orientation of the vector A.
The consequences of including such an operator in the p-
state clock model are examined in the next few sections.
The underlying triangular lattice in a V'3 X V3R 30° or-
dered commensurate phase has a higher symmetry than a
rectangular lattice, and so a different, triaxially chiral
Potts model is appropriate for modeling the melting of
such phases. The simplest triaxially chiral three-state
Potts model is defined on a triangular lattice with pla-
quette interactions coupling the three spins around each
elementary triangle. There are four possible plaquette en-
ergies in this model: one for plaquettes with all three
spins in the same state, which indicates the three spins be-
long to the same microdomain; one for plaquettes with all
three spins in different states that therefore represent a
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junction of three microdomain walls (such as occurs in
Fig. 3); and two for plaquettes with two spins in one state
and one spin in another state. This last type of plaquette
is evidently crossed by a microdomain wall and its energy
should thus depend on the wall type. An explicit repre-
sentation of this triaxially chiral Potts model is the fol-
lowing: Let the spin at each site, j, of the triangular lat-
tice have the three possible (complex) values ¢;=1,
exp(+2mi/3). If the (horizontal) x axis is parallel to a
nearest-neighbor direction then each elementary triangular
plaquette may clearly be classified as pointing either up-
wards or downwards; let €5 =+1 if the plaquette
comprised of sites i, j, and k points upwards, while

€;jx = — 1 otherwise. Then the Hamiltonian is
#=—J 3 Re({i;)
i,j)
+ 2 [J3Re(1//i¢j1//k)+A€,-jkIm(¢i¢j1//k)] ) (2.3)
(i, j, k)

where the sums run over all nearest-neighbor pairs of sites
and all elementary plaquettes, respectively.

Kardar and Berker® have introduced a rather similar
model for modeling Kr on graphite. They observed the
role of two types of domain wall (heavy and ‘‘su-
perheavy”) but in their detailed treatment each spin is in-
tended to represent an entire domain, whose size is an ad-
ditional parameter in the model. Their basic spin Hamil-
tonian differs from that introduced here in having only
one possible energy for each segment of microdomain
wall, while having two different energies for wall junc-
tions. The energetics of the large heterodomain fluctua-
tions that must play an important role in any continuous
melting transition are determined to leading order by the
energies of the associated microdomain walls. The ener-
getics of wall junctions presumably plays only a secondary
role. Thus in order to study the effects of triaxially chiral
symmetry breaking on continuous three-state Potts model
melting, the coupling of the chiral operator to
microdomain-wall energies should be included explicitly
in the model Hamiltonian, as in (2.3). This model and the
symmetries of V3XV3R30° and other commensurate
phases will be discussed in more detail in future work.
However, some of the consequences of triaxially chiral
symmetry breaking are discussed below.

III. THE CHIRAL CROSSOVER EXPONENT
FOR GENERAL DIMENSIONALITY

The first question to ask about the consequences of
chiral symmetry breaking is whether or not the chiral
field A is relevant, in the standard renormalization-group
sense, at the symmetric Potts or clock critical points. To
study this we consider the scaling properties in the vicini-
ty of the symmetric critical point, T=T. and A =0, of
the p-state chiral clock model (2.1) in d spatial dimensions
(afterwards focusing on the case d =2 and p =3 of partic-
ular interest to us). Thus as the reduced temperature devi-

ation,
t=(T—T/T?,

and the chiral field become small, the free energy per site,

(3.1
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f(T,A), and other thermodynamic quantities such as the
surface tension, 2 (T, A) of an 4 |B wall should be
govemed asymptotically, by scaling functions of the argu-
ment Y=A/|t |¢ where ¢ is the chiral crossover ex-
ponent. 59,50 If ¢ is positive the chiral field is relevant and
we expect crossover to new, characteristically chiral criti-
cal behavior for A+0; conversely, if ¢ is negative the
chirality is irrelevant and, at least for small enough values
of A, we expect no change in the nature of the transition
which should then remain in the pure Potts (p <3) or
symmetric clock universality class. Thus for the singular
part of the free energy above T, and for the surface ten-
sion we anticipate?®*

Fo(T,R) =t W (A/t?) ,
S (T, K= |t|#S(A/]t]|?),

(3.2)
(3.3)

where A= | A| and a and u are the specific-heat and
surface-tension exponents at A=O0; for convenience we
suppose that the chiral field lies parallel to a symmetry
axis, say the x axis, which is normal to the interface. By
differentiating with respect to A we obtain

2
XaalT,A=0)= %2— ~pima—2 (3.4)
and
R)>
aAH ~ |tk ?. (3.5)
A=0

From these expressions we see that ¢ may be determined
by studying properties of the symmetric model. [Note,
however, that we implicitly assume that the appropriate
scaling functions, (d?W /dy?) and (dS /dy), do not vanish
identically when the argument y=A/|t |% approaches
zero, in which case the corrections to scaling would dom-
inate.]

A. Four-state chiral clock model

The simplest case to consider’® is p =4 since the

correspondence

=V2cos[+m(n;+3)], 11=V2 sin[37(n; +3)]  (3.6)
shows that the pure, A =0 clock model with Hamiltonian
(2.1) is equivalent to two uncoupled Ising models with
spins o;,7;=+1. By noticing that the chiral operator for
small A is then proportional to o;7;—7;0;, where i and i’
denote neighboring spins along the chiral axis, one can
readily evaluate the chiral susceptibility X o at A=0 in
terms of Ising-model correlation functions (o;0;) and
(r; *r]) Knowing the scalmg behavior of the Ising corre-
lation functions enables one* to evaluate the divergence of
Xaa and from (3.4) one then concludes, quite generally,
that the crossover exponent is given by

ba=V4—Vs - 3.7

The subscripts here serve as a reminder that p =4, while
the ¥ and v denote, as usual, the exponents of divergence
of the susceptibility and correlation length in terms of the

standard, longitudinal correlation functions
= —;—((aiaj Y+ (7i7;)) forp=4.

G||(ﬁ,~,§j)=(cos[21r(n,-~n
(3.8)

Because of the decoupling ¥ and v take their usual Ising
values, i.e., Y4=Y, and v4=v,. Since, by scaling, we have
¥ —v=(1—n)v where the exponent 7 for the critical-point
decay satisfies 171 <1 for d > 1, we see that the chiral field
is relevant for all d > 1 when p =4.

B. A domain-wall argument

It is instructive to rederive the p =4 result (3.7) by
another route which illustrates the use of domain-wall
concepts and serves as a basis for generalization to other
values of p. To this end consider the interfacial tension
and recall that it is defined as the excess free energy
per unit area. More explicitly, for general p let
F"="+(T,A;L,A4) denote the total free energy of a system
of length L layers along the x axis, i.e., in the direction of
the chiral field, and of (d — 1)-dimensional cross-sectional
area A, where the boundary condition n; =n_ is imposed
on the Potts spins on layer /= ——;—L while on the layer
I=++L the condition n;=n_ is imposed. If a “twist”
of one unit is imposed, so that n, —n_ =1, then an inter-
face of 4 | B or +1 type and area 4 must be present in the
system. Hence the interfacial tension can be defined by*!

3, (T,A)=[F*YT,A)—F*%T,A)]/4 , (3.9)

where it is understood that the thermodynamic limit,
L,A— o« is to be taken.

Since we are considering a phase with a discrete order
parameter and, below T, finite correlation length we anti-
cipate a more or less well-defined interface located cen-
trally within the system. Nevertheless the interface, even
if pinned at the transverse boundaries, is free to roughen
and wander on a scale*? which, for d < 3, diverges with A4.
However, provided we let L diverge sufficiently fast rela-
tive to A, the “collisions” of the interface with the ends of
the system may be neglected.

Let us now utilize the scaling relation (3.5) for
(32, 1/0A),. The total free energy F*%T,A) describes a
system with no interfaces and must be even in A; accord-
ingly (3F%%/dA),_o must vanish identically. (In the ther-
modynamic limit we should exclude T= T0 but this has
no effect on the argument.) From (3.9) and (3.5) we thus

obtain
1 | oF%! < a;V>
— ~|t|*¢,  (3.10)
A | dA |4 3A

where 2 denotes the chiral clock Hamiltonian (2.1) while
the expectation value corresponds to the twisted boundary
conditions with n, —n_=1. By invoking (asymptotic)
translational invariance within the layers, the left-hand
side reduces to a sum proportional to

L—1
> (sin{2#[n(l)—n(

=_1
I=—5L

0= I+1D1/p})o s (3.11)
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where n(l) denotes a typical Potts variable in layer / while
n(l+1) denotes its nearest neighbor in the next layer. The
subscript O indicates the condition A=0 and the super-
script 0,1 has been dropped but must not be forgotten.
Now, as explained, the interface, even if rough, will be
confined to a region, say —L’' <[/ <L’, where, asymptoti-
cally, L' << L. On the other hand, we may allow L’ to be-
come sufficiently large that we are assured that the layers
around /=+L’ lie well within spatially uniform homo-
geneous phases within which the averages (n(l)),,
(n3(1))o, (n¥(Dn(I41)),, etc., are constant. Finally, the
contributions from the end wall regions at /~++L can be
seen to cancel out by the o —7 or end-to-end symmetries.
It follows, therefore, that when L — « the limits of sum-
mation in (3.11) can be replaced by —L' and L' —1, where
the summand at these points effectively vanishes.

Now let us return to the case p =4 and notice that the
boundary condition n(—+L)=n_ =0 translates via (3.6)
into o(—yL)=m(—5L)=+1, while the condition
n(yL)=n, =1 yields o(3L)=+1 but 7(3L)=—1.
The sublattice of o spins will, therefore, be uniformally
magnetized (except near the ends) so that {a(l)), is in-
dependent of / for |/| <L’ and equal to the Ising spon-
taneous magnetization My(T), which vanishes as |t |.
The sublattice of 7 spins evidently contains an interface so
that {(7(l)), is nonuniform. However, by the arguments
presented above, we have (7(—L'))o=My(T)
=—(7(L’))o. Upon using (3.6) the sum in (3.11) becomes

L'—1
Q=13 [oDrl+1))o—{r(Dall+1))o]
=—L'

1=

1
2

K
(a(2k) Yol {T(2k +1))o—{7(2k — 1) )o]
k=—K'
1 X
+3 3 (7(2k))o[(a(2k —1))g—(o(2k +1))] ,
k=—K'

(3.12)
where we have factored the correlation functions of
decoupled o and 7 spins, rearranged the first sum, and, for
simplicity, assumed that L’'=2K’'+1 with K’ integral.

Since (a(])), is constant for |/| <L’ the last sum van-
ishes identically while the second sum simplifies to yield

Q=1My(T[{r(L")Yo—(1(—L"))o]

=[My(T)?~ |t |%. (3.13)

WD) = [ d% | 3| VYD) | +uy | 9(D) | >+A

— hy[$P(E)+9*" ()] + i u2k|1//(f’)|2kJ ,
k=2

where A is parallel to the x axis, and u, ~(T—T,) is to
be regarded as the thermal field.

The classical phenomenological theory is generated, as
usual, by approximating the free energy by the minimum

This unexpected reduction of (82 {/3A), for p =4 to the
square of the spontaneous magnetization has been checked
by explicit computation of the first few terms of the low-
temperature expansion for 2, (T,A) (using the tech-
niques of Ref. 28).

Finally, by comparison with (3.5), we obtain the scaling

relation

¢=p—28.

At first sight this seems quite different from (3.7). How-
ever, we may invoke Widom’s general scaling argument®
for the interfacial tension which yields

(3.14)

u=2B+ys—vs . (3.15)

The subscripts = have been introduced to emphasize that
the compressibility and correlation length entailed are
those directly involved in the free energy of formation of
an interface.’”> For systems with Ising-like scalar order
parameters these are just the normal, longitudinal suscep-
tibility and correlation length and so ys=¥ and vs=v;
however, for systems like the clock models where the vec-
torlike order parameter can “twist” as it varies through an
interface the transverse susceptibility and associated corre-
lation length are the relevant ones as we will shortly
demonstrate. Accepting ¥s=Y4 and vs=v, for p =4 one
sees that (3.15) and (3.14) reproduce the original result,
¢4=7v4—v4. It is worth emphasizing that Widom’s rela-
tion (3.15) is independent of hyperscaling relations™ such
as dv=2—a or u=(d —1)v which fail when d >4. Con-
sequently, we expect (3.14) to be valid for all d as was
(3.7.

C. Phenomenological theory: Large dimensionality

It should be possible to obtain correct results for large
d, specifically for d > 4, by invoking classical phenomeno-
logical or Landau theory. To this end we may introduce a
discrete complex scalar order parameter,

Y; =exp(2min; /p) , (3.16)
as an alternative representation of the clock models and
then approximate this in the critical region by a continu-
ously variable complex scalar field ¥(T). An appropriate
Landau-Ginzburg-Wilson Hamiltonian which should be in
the same universality class as the p-state chiral clock
model is then given by

= OYT) Y* (1)
(o ox ¥D dx

(3.17)

[

of 27 over fields (7). When A=0 this yields the stan-
dard classical, mean-field results for the usual exponents,
namely, a=0, B-——%, =1, and v= %, the latter two ex-
ponents pertaining, as previously, to the longitudinal



29 COMMENSURATE MELTING, DOMAIN WALLS, AND DISLOCATIONS 247

correlations {¢*(T)Y(T’)). The results are independent of
p but it must be recalled that classical theory leads to a
first-order transition, rather than a continuous Potts tran-
sition, when p = 3.5 For the moment, then, let us consid-
er only p >4 and examine the uniform transverse response
below the critical point. Upon putting ¥=1e’? with real
¥ and @, minimizing, and differentiating twice with
respect to @, one finds the transverse susceptibility is
given by

Xy o 1/pPhppf 2~ |1 |~ =272,

so that y,=3(p—2). Note that for p=4 we have
y1=v=1. The linear spatial dePendent response follows
in the usual way and yields v, =57, =+(p —2) which, via
the scaling relation y,=(2—m,)v,, reflects the standard
classical result that , =% =0. It is clear for p >4 that the
classical profile of an 4 | B interface, in which the phase @
of the order parameter ¢ changes from 0 to 27 /p, be-
comes asymptotically just a simple arc, || =1, when
t—0. In the Widom argument,*? which is exact classical-
ly, we must thus take ys=v, and vs=v, in (3.15). This
yields the surface-tension exponent

(3.18)

po=5(+2), p>4. (3.19)

Of course, this may be checked by solving for the profile,
say ¥s(T), in more detail. Likewise it is easily seen to
hold also for p =4, as indicated, where it yields p=1+.

In order to determine the chiral crossover exponent ¢ it
is clear that some property involving a spatially nonuni-
form order parameter must be examined [since, otherwise,
this term in (3.17) vanishes identically]. Accordingly, let
us ask for the effect of the chiral field on the interfacial
tension 2. If the profile is decomposed into real and
imaginary parts as

YT =¢'(T)+iy" (1),
we obtain from (3.10) and (3.17),

-1— d - a II('I—:F) _ . a l(‘f’) >0,1 _ l‘_¢
y fad r<¢(r)—3”——ax ¥ (r)—’L—ax t

A=0

(3.20)

b

(3.21)

where the expectation value denotes, here, merely the
minimization of the appropriate free energy subject to the
unit twist boundary condition denoted, as before, by the
superscript. Now for p >4 and t—0, we can write the
profile in the scaled form

P3P = (N '~ | 1| PP, (x™®) , (3.22)
where we leave open the identification of vz, while P,(w)
is a universal scaling function. Upon substituting in (3.21)
and noting that all fluctuations ({4B)— (4 ){B)) vanish
classically we obtain

dP;(w)

dP, (w)
1£1% [ dw Py (w)—E-—=— P/ w)—E— | ~

th—9
dw
(3.23)

The integral here is independent of ¢ so that, unless it

should happen to vanish, we recapture the result (3.14).
Note also that the argument is actually independent of the
value of vs (although it depends on the assumption, fully
justified in the classical theory where we have seen that
vs=v,, of a single relevant length scale). Substituting the
classical values in (3.14) yields

$p=75(p—2), p>4. (3.24)

Note that this result which should hold generally for d >4
agrees, as it must, with the general result (3.7) for p=4
(where ;=7 and v,=v). It also coincides with the value
that can be inferred from other approaches.!”-?!:3

D. General scaling argument

A perusal of the steps leading from the Hamiltonian
(3.17) through (3.20)—(3.22) to the conclusion ¢=p—283
reveals that the arguments may well transcend the classi-
cal phenomenological context, particularly for p >4. The
four crucial assumptions needed are the following: (i)
that, following Widom,? some sort of “intrinsic” interfa-
cial profile, ¥5(T), can be defined; (ii) that this profile
scale with a single divergent correlation length; (iii) that
one may neglect the correlations between the real and ima-
ginary parts of ¥(T) or, equivalently, between the longitu-
dinal and transverse order parameter fluctuations; and (iv)
that the integral over the scaling functions in (3.23) does
not vanish identically.

Owing to roughening fluctuations (i) is open to question
for d <3 but does not invalidate the Widom argument for
the exponent u even when d =2. Assumption (ii) is very
plausible for p >4, where the profile should still be
characterized asymptotically by a constant amplitude
| (¢(T)) |, but is open to more serious question for p <4
(unless the model decomposes as discussed above) since
the classical picture tends to suggest that the mean profile
(if one can be defined) will probably entail a significant
variation of amplitude and hence might possibly involve a
second correlation length. It might be possible to address
the issue of two distinct correlation lengths for
d =2, p =3 by some analytic means but we have not at-
tempted that. Regarding assumption (iii) all that is re-
quired is that the neglected fluctuation terms vanish faster
than |t |?A. Since coupling between the transverse and
longitudinal fluctuations is primarily associated with the
hy (PP + ¢**) term which, upon e-expansion grounds seems
likely to be irrelevant for p >4, this is also plausible.
However, the conclusion is more dubious for p <4 and
might even fail for p >4 in low dimensions. Assumption
(iv) is very plausible in the absence of some special reason
of symmetry, etc., dictating a vanishing integral, and that
should be equally reflected in (3.5).

A rather naive but direct scaling argument that capital-
izes particularly on assumption (iii) above can be based
directly on the form of the chiral term in (3.17) which,
schematically,is A f d% ¢'(F)Vy"'(T). If we take the stan-
dard scaling postulates A~t% r~t—" and V~t" and, in-
voking (iii), separately set ' ~t? and ¥’ ~tP, we may in-
voke the overall scale-free character of the term to con-
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clude that ¢ —dv+v+2B=0 or
o=(d—1v—-28.

The Widom hyperscaling relation®? u=(d —1)v leads

again directly to (3.14) while dv=2—a =2+ yields the

equivalent form ¢=y —wv of (3.7). The danger of this ap-

proach is evident since one might likewise conclude that
the energy | |2 scaled as t*# whereas in reality it scales

as t1—%

(3.25)

E. Low dimensions

The chiral field is relevant for all p >3 at the symmetric
critical point, A=T =0, of the one-dimensional p-state
chiral clock model. This may be shown by an exact
renormalization-group treatment of the model,?® or by ob-
taining the multicritical scaling form (3.2) for the free en-
ergy. The latter calculation is presented in Appendix B.
Because there is no low-temperature ordered phase, the
chiral crossover-exponent relation ¢=pu—2f cannot be
checked explicitly for d =1; however, it can be checked as
d— 1+, in which limit the Migdal-Kadanoff approximate
renormalization group®>>* is believed to be exact. In
terms of the thermal and chiral renormalization-group
eigenvalues, Ay and A, (or yr and y, in Kadanoff’s nota-
tion), at the appropriate fixed point, one has ¢=~A,/Ar.
To first order in e=d —1, one finds (e.g., following Ref.
23) the eigenvalues Ay=A,=¢, while for the uniform
field one gets A4 =1+¢€. These values lead to ¢, =1 for
all p>2, to B=0, and via u=2B+y—v, to u=1, thus
confirming the general scaling argument for (3.14).

It is appropriate to sound a note of caution here, since
for p >4 and 2 <d <4, and for p >4 and d > 4 the field 4,
in (3.17) is irrelevant so that the symmetric clock transi-
tion is governed by the XY-like fixed point®®>* (which is
not the case for d <2). In these cases the surface-tension
exponent and the effective chiral crossover exponent are
determined not only by the renormalization-group eigen-
values A; and A, (which has the value unity in these
cases) but also by the irrelevant or correction-to-scaling
eigenvalue A, associated with 4,, as seen from the

analysis of Aharony and Bak.3®
F. Series analysis

The chiral exponent ¢ for the two-dimensional three-
state clock model has been estimated numerically®® using
low-temperature series expansions for (82, /0A),_o and
also high-temperature expansions for the cross derivative
(8%x /3q 0A);_a—0 where X(T,A;q) is the usual
momentum-dependent susceptibility which is expected to

scale as
]
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(3.26)

A
)t -TY |2 4
X(T,A;q) ~t Xlt¢’:v

The resulting estimate®® ¢=0.19+0.06 (d =2), describes
well both high- and low-temperature series. However, it is
significantly smaller than would be concluded if the rela-
tion ¢=p—2f3 were accepted since, on the basis of the
proposed exact Potts exponents,>>3¢ and Widom’s hyper-
scaling relation” p=(d —1)v, it yields ¢=1~0.61.
(The Migdal-Kadanoff renormalization group on a Berker
or fractal lattice with d.=2 yields ¢;=+.%) It may be
significant that a similar difference of about 0.4 was
found between the low-temperature series estimates®® for
v and ¥, the longitudinal and transverse susceptibility ex-
ponents of the three-state Potts model.

The disagreement between the series estimate ¢;~0.2
and the scaling-relation prediction ¢3;~0.6 leads us, for
p =3 and d =2, to doubt some of the assumptions needed
in the scaling argument. We believe those most suspect
are, first, the neglect of correlation between longitudinal
and transverse fluctuations and, second, the assertion that
the integral over the profile scaling function in (3.23) does
not vanish identically. However, we have no suggestions
for going beyond these assumptions in general. For the
special case p =4, d =2, which reduces to the relatively
well-understood Ashkin-Teller model in the absence of
chiral symmetry breaking, Schultz!® has recently calculat-
ed the chiral crossover exponent ¢4 along the entire criti-
cal line. His result,

v 1 Vv
b= e T 1
as parametrized by the correlation length exponent v,
agrees, of course, with the above analysis at the decou-
pling point, v=1.3° However, our simple scaling relation
(3.14) does not work anywhere else along the critical line
of the two-dimensional Ashkin-Teller model. Thus the
general scaling argument leading to (3.14), which is cer-
tainly valid for d >4 and probably remains valid for
d =3, has a very restricted applicability for d =2. It is
worth noting that for the four-state Potts model, where

v= %, Schulz!® finds that chiral-symmetry breaking is ac-
tually irrelevant, with ¢,= — -117

G. Hexagonal phases

A Landau-Ginzburg-Wilson Hamiltonian with symme-
try appropriate for modeling the melting of a commensu-
rate V'3 X V3R 30° phase of a general triangular lattice gas
is

K Y(T)]= f dF(1 | VU | 24 uy | 9(0) | 24+ ALY (F)V, VY 58(F) — (F)V, Vo V39 (7))

+h3[ PO+ D+ usg | WD) |44},

where A now represents a triaxially chiral symmetry
breaking field. The spatial gradient operators V;, V,, and
V3 act at mutual angles of 27/3 parallel to the nearest-
neighbor directions specifying the triangular lattice. The

(3.27)

I
form of the lowest-order chiral symmetry breaking opera-

tor here makes it evident why we have dubbed it “triaxi-
al”. (Note that operators of the schematic form
V¥V ¥V3h, etc.,, may arise in higher order; see also
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Hornreich et al.’”) If the previous scaling arguments are
applied, most readily in the naive form leading to (3.25),
the triaxial chiral crossover exponent is found to be

¢=—v—2B=p—2v—28, (3.28)

for which the accepted Potts values®>?¢ yield ¢= — 5.

This is strongly negative, suggesting that triaxially chiral
symmetry breaking is irrelevant at the three-state Potts-
model critical point. This conclusion is consistent with
Baxter’s exact calculations?®***! for a gas of hard hexa-
gons on a triangular lattice where such terms should ap-
pear in the Landau-Ginzburg-Wilson Hamiltonian but
pure Potts exponents are found. (See further in Sec. IV
below.)

IV. SCALING AT CHIRAL PHASE TRANSITIONS

In the preceding section we have demonstrated that uni-
axially chiral symmetry breaking is a relevant perturba-
tion at the p-state clock-model critical point. This means
that for any nonzero chiral field the melting of the com-
mensurate phase must, in a renormalization-group picture,
be governed by a different fixed point than that which
controls the pure, symmetric clock-model critical point.
The symmetric critical point is therefore multicritical and
the chiral field induces crossover to a melting transition
which is expected to belong to a different universality
class. As is discussed in detail in the following section,
the crossover should be to a commensurate-
incommensurate transition for most values of p and d.
However, for one case of physical interest, namely the
three-state chiral clock model in two dimensions, there is
some numerical evidence based on Monte Carlo simula-
tions”> and series expansions?’ that the commensurate
phase melts directly into the disordered phase for suffi-
ciently small, but nonzero chiral fields. Since the chiral
field, A, is relevant, melting in the presence of a nonzero
chiral field should be in a different universality class than
that of the pure, A=0, three-state model. (Although it
should be recalled that examples of multicritical crossover
are known where the “new” transition is actually in the
same universality class as the original transition, for ex-
ample, in Ising models of two coupled layers.*®)

Indeed we have proposed’’ and argue in more explicit
detail in Sec. VI below that such melting of a p =3 com-
mensurate phase directly into a disordered, fluid phase in
the presence of uniaxially chiral symmetry breaking
should be in a new chiral universality class. In this sec-
tion we discuss scaling at such chiral phase transitions in
order to emphasize how they should differ from phase
transitions in the usual, nonchiral universality classes and
how they might thus be detected experimentally.

Since we are interested in continuous transitions let us
consider the behavior of the structure factor S(q;7,£) in
the disordered phase, where ¢ might again stand for the
chemical potential of adsorbate particles or represent
changes in the uniaxial chiral field A in clock models or
the triaxially chiral field in models appropriate for hexag-
onal phases (see Sec. II). In the vicinity of the critical line
T.(£), the structure factor will exhibit peaks which reflect

the incipient commensurate ordering which is established
below the transition. Let us focus on one of these peaks
located in momentum space in the neighborhood of the lo-
cation, G, of a Bragg peak of the commensurate-phase su-
perlattice and write

G=G+£Aq, 4.1)

where the unit vector X in reciprocal space is chosen so
that the peak appears sharpest in scans taken in directions
parallel to X. The width, «,(T,&), of the peak observed,
say at “half-height,” represents a measure of the corre-
sponding correlation length. Thus as

t=[T —T.(&))/T.(E) 4.2)
becomes small, we expect the behavior
k()= | £ |V /a~1/€, 4.3)

where v is the appropriate (in the case of interest, say,
chiral) critical exponent, while the amplitude a is, general-
ly, a length of order of the underlying lattice spacing.

For many systems, including most of the simple lattice
models (e.g., Ising, Potts, n vector, etc.) the structure fac-
tor is symmetric about G and one finds the maximum
occurs at ?]’=E[max=(§. In the chiral systems in which we
are interested, however, we must expect this symmetry to
be broken so that qp..(7,&) may be significantly incom-
mensurate with the underlying reciprocal lattice. It is
then appropriate to measure the incommensurability by

T =] Gual ,E G| , (4.4)

which, as the transition is approached, should vanish so
that we may write

g(T,)~ |1 |B

(compare with Ref. 42 and references cited therein.)
More generally, as t—0, we expect the structure factor
to scale asymptotically™® as

S(q;T,5)~ || “"D(Aga/|t]%),

(4.5)

(4.6)

where y is the appropriate susceptibility exponent, while
the scaling function D (w) should be universal. Now for
all the normal universality classes, namely Ising, Potts,
clock, etc., the scaling function will be symmetric about
w =0 with a maximum at w=0. Thus any asymmetry
about q’:é observed in S(q;7,§) near a transition in
these universality classes can be due only to corrections to
the leading asymptotic scaling behavior. For such transi-
tions, therefore, one must observe that g vanishes more
rapidly than naive scaling might suggest. In other words
the inequality B>v should be satisfied and the ratio
q(T,8)/kx(T,£) of incommensurability and width should
vanish asymptotically as —0.

An exact theoretical calculation which bears out this
conclusion has been presented by Baxter and Pearce,*
who studied the correlation functions near the melting
transition of hard hexagons on a triangular lattice. The
original arguments®*3* which overlook the coupling of
spin and lattice symmetries, suggest the transition should
be of three-state Potts character. This is supported by our
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analysis in Sec. III G, which indicates that the asymptotic
triaxially chiral symmetry breaking operator should be ir-
relevant at the pure (p =3) Potts point so that, at least for
sufficiently small triaxial chirality, the universality class
should not change. Baxter and Pearce*! found, in the first
place, vz%, which agrees with the anticipated Potts ex-
ponent®>3¢ (the calculated thermodynamic exponents?®*°
also agree). In the second glace, they obtain an incom-
mensurability exponent S= 7 ; this evidently exceeds v in
accordance with our conclusions.

On the other hand, for a transition in a chiral universal-
ity class we must expect that the critical fluctuations giv-
ing rise to the near-commensurate peak in .S (q) should re-
flect the chirality in an intrinsic scaling manner. Thus in
a renormalization-group picture, chiral behavior will be
characterized by a nonvanishing value of the chiral sym-
metry breaking field present at the fixed point itself. In
more physical terms, the preference for, say, “heavy”
domain walls in the chiral commensurate phase (as dis-
cussed in Sec. II but see also Sec. VI below), should be
mirrored in the disordered phase. Heavy walls resemble
discommensurations as observed in incommensurate,
floating phases,>!*~162 and hence naturally impose a
nonzero incommensurability g(7,5). We conclude that
the scaling function, D (w), should, for a chiral transition,
be asymmetric with, furthermore, a maximum at a
nonzero value of its argument, say, w =w.

It follows from these arguments that a chiral transition
should be signaled rather unambiguously by the nornvan-
ishing of the scaled incommensurability g/k, as t—0,
rather we expect

g( Tyg)/Kx( T,g)*wo#() »

as t—0, where, for a given chiral class, wy should be a
universal number. As a consequence of this the incom-
mensurability exponent should satisfy

B=v. (4.8)

(4.7)

Such scaling behavior is, indeed, found in the chiral clock
models and appears to be at least consistent with the data
in one experimental study.

To be specific, near the T =0 ordering of the one-
dimensional p-state chiral clock model in the presence of a
chiral field (As£0) the structure factor does indeed scale
as in (4.6), as shown in Appendix B. When T—0 the
scaled incommensurability, §/k,, is found to approach the
universal limiting value

wo(p)=sgn(A)cot(w/p) , (4.9)

for 0< |A| <5. This yields wy(2)=0, as it should, and
wo(3)=1/V3~0.577, wo(4)=1, etc. In addition to this
exact result for d =1, a Migdal-Kadanoff approximate
renormalization-group®>>* treatment of the three-state
chiral clock model for d >1 showed explicitly that for
der <2 the chiral (As£0) portion of the continuous
commensurate-to-fluid melting transition was governed by
a simple fixed point with only one relevant eigenvalue.?’
This eigenvalue served in the standard way (entailing
hyperscaling®™) to determine both the correlation length
and incommensurability exponents so confirming the rela-
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tion B=v. (The analysis again yields a positive value for
wq of order unity.)

On the experimental side, Moncton and co-workers,* us-
ing high-resolution synchrotron x-ray techniques, have
studied the behavior of Kr on graphite near the apparent
commensurate-to-incommensurate transition. The com-
mensurate V'3 XV 3R30° phase extends® up to tempera-
tures of about 130 K. In constant-filling scans, in which
T and & change together, they found, on crossing the com-
mensurate phase boundary near 95 K, a narrow interval in
which a highly correlated fluid phase (with £ > 100 A)ex-
ists between the commensurate and incommensurate
phases as indicated schematically in Fig. 4. (The existence
of such an intervening fluid phase has been explained
theoretically on the basis of domain-wall arguments.’) In
the corresponding profiles of the diffraction peak the in-
commensurability, g, is clearly observable, as is the width
Kkx. The results of Moncton et al.* suggest that the ratio
g/k, approaches a nonzero limiting value of, say,
wo~1.010.5 at the fluid-commensurate phase boundary.

The nonzero value of the limit w, seen in these experi-
ments is, as explained, indicative of the intrinsically chiral
nature of the transition. At first sight this is paradoxical
theoretically because we have argued that the triaxial
chirality appropriate for the corresponding hexagonal
V3x V'3 phases should be irrelevant at the pure Potts
point. However, as stressed, the conclusion that the melt-
ing transition should remain in the pure Potts universality
class is valid only if the triaxially chiral field is not too

T
( K) Fluid
Potts
130+
95
Incomm.
p or § ;

FIG. 4. A somewhat schematic phase diagram of Kr on gra-
phite showing fluid, V3xV/3R30° commensurate, and incom-
mensurate phases. The bold line indicates a first-order melting
transition, while the remaining phase boundaries represent con-
tinuous melting. The tricritical point T; separates the first-
order and continuous portions of the commensurate melting
boundary, while the proposed new multicritical point, M,
separates the continuous portion into segments in Potts and
chiral universality classes, as indicated. The dashed line indi-
cates (schematically) the path taken in the Moncton et al. exper-
iment, which we interpret as indicating chiral melting in that re-
gion. The dotted curves emerging from M represent (again
schematically) expected loci of constant §/k, for 0<g/k, <wy
(see Secs. IV and V).
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large. The experimental data, if accepted at face value, in-
dicate a chiral region on the melting curve as shown in
Fig. 4. One must thus conclude’’ that the triaxial symme-
try breaking exceeds a threshold corresponding to a mul-
ticritical value, represented by the point M in Fig. 4. For
symmetry breaking below this threshold the melting tran-
sition is governed by the pure Potts fixed point. This
question is taken up again in the next section.

Moncton and co-workers* also report an estimate of the
incommensurability exponent, namely, [—3:% However,
much of the data used to obtain this estimate lies as far as
5 K away from the transition, and therefore well outside
of the asymptotic scaling regime, which must be very
small because of the close proximity of the fluid-to-
incommensurate phase transition. The width of the scal-
ing regime, in which the asymptotic power laws provide a
reasonably accurate representation, may be estimated by
observing where the scaling law §~k, is approximately
obeyed. This range appears to be less than 0.5 K in the
available data.* Thus the fitted exponent S~+ must be
regarded as an effective exponent, presumably determined
to some extent by properties of the incommensurate phase.
In general, the true asymptotic incommensurability ex-
ponent at the fluid-to-commensurate transition should, if
one accepts the scaling arguments, satisfy the inequality
B> % This follows from the conclusion S>v and the
fact that on rather general grounds one expects v> % for
d=2. This bound on v arises from hyperscaling,
v=(2—a)/d, and the requirement that a <1 because the
energy density, which varies as ¢! =%, cannot diverge.

We turn next to a more extensive discussion of the anti-
cipated chiral phase diagrams.

V. PHASE DIAGRAMS

A plausible phase diagram for Kr on graphite, based on
the present experimental evidence'’>* and the preceding
analysis, is shown in Fig. 4. The V'3 X V3R 30° commens-
urate phase exists only for temperatures below about 130
K and then only for an intermediate range of vapor pres-
sure (or chemical potential or coverage).’ The
commensurate-phase boundary on the low-vapor-pressure
side of this phase represents a melting transition into a
fluid; this transition is of first order for temperatures
below the tricritical point, marked T, but continuous for
higher temperatures.”?> On the high-vapor-pressure side
the commensurate phase still melts continuously into a
fluid at sufficiently high temperatures;* for lower tem-
peratures there may well be a direct commensurate-to-
incommensurate transition and corresponding multicriti-
cal point (not shown).>*® The intrusion of the fluid phase
between the commensurate and incommensurate phases
was observed by Moncton et al.* and explained by Cop-
persmith, Fisher, Halperin, Lee, and Brinkman® on the
basis of an instability of the weakly incommensurate
phase to dislocation-mediated melting (see also Ref. 19).
Recent molecular-dynamics simulations by Abraham
et al.*’ also indicated the presence of such an interval of
fluid phase at approximately 100 K.

It was argued in Sec. III that the triaxially chiral sym-
metry breaking present in a V3 V'3 phase such as Kr on

graphite is irrevelant at the pure Potts critical point. Thus
the commensurate melting transition should remain in the
universality class of the three-state Potts model for suffi-
ciently weak symmetry breaking. As explained in Sec. II,
the pressure or chemical potential must couple directly to
the chiral symmetry breaking terms so that weak symme-
try breaking should correspond to low or intermediate
pressures, on some appropriate scale. Thus we expect the
continuous melting transition of the V3 V'3 commensu-
rate phase to be in the Potts universality class near the tri-
critical point T3 and over some segment of the high-
temperature portion of the phase boundary, where the
melting is clearly not pressure-driven. On the other hand,
our scaling arguments lead us to interpret the data of
Moncton et al.* as indicating that commensurate melting
on the high-pressure portion of the phase boundary near
95 K is in a chiral universality class. The simplest phase
diagram consistent with these expectations must contain a
new multicritical point, labeled M in Fig. 4, where cross-
over from Potts to chiral melting occurs.

This postulated multcritical point might be detected in
an experiment or simulation by observing the behavior of
the ratio g/k, in the fluid phase as discussed in the
preceding section. This ratio should vanish on the Potts
portion of the commensurate-phase boundary but attain a
nonzero limit w, at the chiral portion of the phase boun-
dary. Thus in the vicinity of the multicritical point the
ratio must vary rapidly. Furthermore, loci of constant
G /Ky, for all values of the ratio satisfying 0<g/k, < wy,
must emerge from the multicritical point, as illustrated by
the dotted curves in Fig. 4. Such behavior might be ob-
servable in either Kr on graphite or, possibly, in the triaxi-
ally chiral Potts model embodied in the Hamiltonian (2.3).

Let us now discuss the phase diagrams of the uniaxially
chiral clock models defined by (2.1). As the dimensionali-
ty, d, and the state number, p, are varied, the phase dia-
gram of the p-state chiral clock model or any other system
exhibiting a p X 1 commensurate phase, may take on vari-
ous forms as is discussed by Ostlund®> and by Aharony
and Bak.’® Some of the possibilities are illustrated in Fig.
5. As above, we assume that no first-order transitions
occur. (In experimental realizations this assumption may
well fail in various regions of the phase diagram.) In all
cases with p >3 the symmetric (A=0) melting point of
the commensurate phase is multicritical, as is demonstrat-
ed in Sec. III. Commensurate melting for As40 is there-
fore in a different universality class. Near the multicriti-
cal point the melting line, Ty,(A), should, by (3.2) or (3.3),
have a contribution varying as | A | %> Thus for ¢, <1
we expect the commensurate-phase boundary to be
smooth at the symmetric multicritical point, while for
#, > 1 it should have a cusp as shown in Figs. 5(a) and (b),
respectively.

In mean-field theory, which should apply for d >4, the
commensurate phase melts directly into the fluid only
when A=0. The relevant chiral field causes crossover
from this simple direct transition to a double transition,
consisting of a lower commensurate-incommensurate tran-
sition and followed, at a higher temperature, by an
incommensurate-fluid transition.!”2"3® The chiral cross-
over exponent is ¢, =(p —2)/4, so Fig. 5(a) should apply
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FIG. 5. Schematic phase diagrams for the p-state chiral clock
model with Hamiltonian (2.1) for various dimensionalities, d,
and values of p: (a) d >4, p=4 or 5 and, possibly, p =4, d =2
or 3; (b) d >3, p>6and d=3, p=6; (c) Probable phase diagram
for d=2, p=3 with a wetting line (dashed); (d) d=2, p >5.
Each phase diagram is invariant under A => —A and contains
fluid, commensurate, and incommensurate (IC) phases as well
as a multicritical point at A=0. A Lifshitz multicritical point,

L, occurs in (¢).

for p=4 and 5. (Recall that p =3 yields a first-order
transition in mean-field theory.) Likewise, Fig. 5(b)
should describe the behavior for p>6. A
renormalization-group €=4—d calculation by Aharony
and Bak®® indicates that ¢, increases for all p as the
dimensionality is reduced below d =4. Thus in three di-
mensions we expect Fig. 5(b) to apply for p >6. For p =5
it is unclear from the € expansion®® whether or not ¢s
exceeds unity at d =3; thus either Fig. 5(a) of Fig. 5(b)
might apply. For p =4, d =3 it is known®® that ¢4,~0.6,
so Fig. 5(a) is appropriate; however, for this case we know
of no argument that rules out the possibility of a Lifshitz
multicritical point occurring and thereby leaving a direct
commensurate-fluid transition for small, nonzero A, as in
Fig. 5(c).

For two dimensions the chiral clock-model phase dia-
grams have already been discussed by Ostlund.?> He
points out that for p>5 the symmetric (A=0) clock
model should no longer have a direct commensurate-to-
fluid transition.** The incommensurate phase, which is
“accidentally commensurate” for A=0 (see José et al.*®),
separates the commensurate and fluid phases for all A as
illustrated in Fig. 5(d). The commensurate melting transi-
tion at A=0 should be of the Kosterlitz-Thouless type*
and the relevant chiral field causes crossover to a
commensurate-incommensurate transition of the type dis-
cussed by Pokrovsky and Talopov.!4—16

Finally, for p =3 and 4 in two dimensions the com-
mensurate phase does melt directly into a fluid for A=0
and we have ¢p < 1, as demonstrated in Sec. III, hence ei-

ther Fig. 5(a) or Fig. 5(c) should apply. For p =3 the nu-
merical evidence??’ suggests that a Lifshitz point, at
which commensurate, incommensurate, and fluid phases
meet, occurs at nonzero A, as in Fig. 5(c). For the
ANNNI model, which has p =4 near its decoupling
point,*® phase diagrams with (see Ref. 20) and without®
Lifshitz points have been proposed on the basis of numeri-
cal studies. If the Lifshitz point does actually occur, as
certainly seems likely for p =3, then the commensurate
melting transition boundary between the symmetric mul-
ticritical point and the Lifshitz point should be in a new
chiral universality class as discussed in the preceding sec-
tion.

How might a chiral melting transition, in which the
commensurate phase melts directly into a fluid, be dif-
ferentiated from a double transition with a narrow inter-
val of weakly incommensurate phase? The analysis of the
preceding section suggests that the most obvious differ-
ence is in the behavior of the ratio §/k, in the near-
critical fluid phase. If the fluid orders first into an in-
commensurate phase, then x, will vanish before § does
and the ratio will diverge. This should be contrasted with
a chiral transition, at which the ratio §/k, should go to a
constant. Such studies of both model and experimental
systems might help answer the question of the existence of
a Lifshitz point for p =3 and 4.

VI. DOMAIN-WALL WETTING TRANSITIONS
AND CROSSOVER

In a system with p distinct commensurately ordered
domains equivalent under cyclic permutation, such as the
chiral clock models with Hamiltonian (2.1), there will, as
discussed in Sec. II, be p —1 inequivalent types of domain
wall with tensions 2,(7,A;6). Here A=| A | represents
the magnitude of the chiral field which we may associate,
as in (2.2), with the deviation, {—&o(T), of the chemical
potential, etc., from the ideal, effectively zero-chirality
locus &o(T), while 8 represents the orientation of the wall
as specified, say, by the angle (or angles for d > 2) deter-
mining the mean normal to the wall. As before, the sub-
script ¢ =1,2,...,p —1is defined by

g=n,—n_ (modp), (6.1)

where n, and n_ represent the predominant Potts-clock
spin states in the domains on the “right” or positive side
of the wall and on the “left” or negative side, respectively.
We will discuss the variation of the tensions 2,(T;A;6)
in the (7,A) plane demonstrating that wetting transitions
of the domain walls may occur and, indeed, should occur
if the commensurate phase undergoes continuous chiral
melting. Thereby we will also see microscopically
why chiral melting represents a new universality class.

A. Stability considerations

Let us observe first that to ensure the thermodynamic
stability of a q wall its tension must satisfy the inequality
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3,(T,48;0)< 3, (T, 8;0)+ 3, (T, A;6)
©+3, (T,4;6)

with ry+ry+ -+ - +r,=q (mod p), (6.2)

for all ¢ and all possible decompositions {r;}. This fact,
which simply generalizes the analogous inequality for the
interfacial tensions in three-phase fluid systems,*® may be
illustrated most readily by considering the simplest case
g =2 which corresponds to a wall separating, say, an
n_ =0 domain from an n =2 domain. The system with
just these two domains and the orientation of their boun-
dary asymptotically specified must certainly assume the
configuration of overall lowest free energy. One candidate
for such a configuration is that in which a layer of no=1
domain exists between the n_ =0 and n =2 domains as
in Fig. 6(b). Clearly, this would entail two g =1 walls
with a total excess free energy per unit wall area of 23,.
Thus a ¢ =2 wall might, in its actual structure, consist of
two q =1 walls separated by an intruding layer and, in
fact, it will do so if that state yields the lowest total free
energy. This immediately yields the inequality 3, <23;
the obvious generalization of the argument leads to (6.2).

B. Wetting transitions

When, for some decomposition {r;}; the equality holds
in (6.2) over some range of T and A, we must con-

clude that the putative g wall has in fact decomposed into
two, or possibly more, walls of greater stability separated
by one or more (as the case may be) intruding layers: In
such a case the g wall is said to be “wet” (by the intruding

layers). A locus in the (7,A) plane on which equality in
(6.2) may be changed to inequality by infinitesimal
changes of T and A, clearly represents a line of wetting
transitions.5%%!

For simplicity let us examine further the simplest case
p =3 for which there are just the two independent ten-
sions 2,=2, and 2,=3_. In the absence of a chiral
field (A=0) the full Potts symmetry dictates
2,(T,0;6)=2_(T,0;6). Now we introduce a chiral field
A parallel to the x axis. If the walls are oriented so that
they are transverse to the chiral field (i.e., so that the x
direction does not lie in the “plane” of the walls), the ten-
sion 2_ will increase as A rises from zero while 2 de-
creases. The difference (22, —=_) therefore falls quite
sharply from its A=0 value, £, =3_. This in turn
lowers the cost in free energy of a fluctuation in the struc-
ture of the [ —] or ¢ =2 wall in which it splits locally into
two [ +] or ¢ =1 walls. Some such fluctuations are illus-
trated schematically in Fig. 6(a).?® As A is further in-
creased such fluctuations become more frequent still and
may well eventually diverge as the [ —] wall becomes un-
stable against splitting over its entire length (or area) into
two [+] walls with the intrusion of a layer of new, inter-
mediate, ng=1, domain [see Fig. 6(b)]. This phenomenon

C+]

y A [+
[+]

3
il
\V)

[+]

(a) " (b)

(c)

FIG. 6. Portrayals of dominant fluctuations in domain walls. (a) A [g=2]=[—] wall in a uniaxial p =3 system undergoing fluc-
tuations into double-stranded bubbles of [ + ]=[1] wall leading, ultimately, to a wetting transition with, (b), complete intrusion of the
intermediate phase characterized by the predominant occupation of the microstate no=1. (c) Fluctuations in a [¢g =3] wall in, say, a

p =4 system in the form of g-stranded “bananas.”
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then represents a continuous, or critical wetting transition.
A detailed analysis of the (p =3)-state chiral clock model
at low temperatures on a (d=2)-dimensional lattice
shows that such a continuous domain-wall wetting transi-
tion does, indeed, occur?® Furthermore, one finds that the
wall wetting transition occurs inside the commensurate re-
gion of the (T,A) plane, well away from the bulk melting
line as illustrated in Fig. 5(c) (dashed locus). This is
analogous to critical wetting transitions predicted on the
basis of mean-field and classical phenomenological argu-
ments for bulk fluid mixtures which should, likewise,
occur independently of bulk criticality.®?~% The explicit
calculations of Ref. 28 reveal the critical exponents
describing the wetting transition for the case p =3,d =2.
We will shortly present more general phenomenological
arguments that yield the same values for this case but
show that, in certain other circumstances, two-
dimensional domain-wall wetting transitions may be of
first order (as also anticipated®®—% for fluids with
d >3). Before that, however, let us return to the case of
general p > 3.

Consider, for example, a [g =3] wall in a p =4 system.
At a wetting transition such a wall might decompose into
a [q=2] wall and a [¢g =1]=[+] wall (in two possible
ways) so that the equality 2;=3,+ 2, will hold at and
beyond the transition. Alternatively, the predominant
fluctuations, as illustrated in Fig. 6(c), might lead it to
decompose into three [g =1] walls, the equality 2;=33,
applying thereafter. The former, twofold decomposition
can, clearly, occur only if the X, wall is not already wet or
at its wetting transition. Similar considerations for a
p =5 system reveal just three possibilities for a ¢ =4 wall
which might decompose (i) into two g =2 walls, (ii) into a
g =3 and a ¢ =1 wall (in two ways), or (iii) into four ¢ =1
walls, or symbolically,

(i) [4]—2[2], (ii) [4]—[3]1+[1], (iii) [4]—4[1].
(6.3)

An examination of the simple chiral clock model with
Hamiltonian (2.1) for general p indicates that at low tem-
peratures the actual transition of a ¢ wall as A>0 in-
creases will be into ¢ distinct walls separated by ¢ —1 in-
truding layers or

[g]—q[1] (A>0,2<g9<p—-1), (6.4)
yielding the relation 3,=¢Z2, at and beyond the transition
(see further below). However, we cannot rule out the pos-
sibility that, at sufficiently high temperatures, entropy ef-
fects might, for example, stabilize a [2] wall, and so allow
the transition [3]—[2]+[1] to occur before the transition
[2]—2[1]. Indeed, if the cosine function in (2.1) is re-
placed by a more general coupling form one can arrange
that such “inversions” will occur. Nonetheless it is
reasonable to expect that the normal transition for a [g]
wall will correspond to transformation into ‘“elementary”

or most stable walls which for A20 will be the walls
[+1]=[+] and [ —1]=[—], respectively, with tensions
EIEE+ and ZP_IEZ_IEzw.
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C. Wetting near the melting line

Now consider the approach from within the commensu-
rate phase to the melting line, T3/(A), in a region where
the transition is continuous and of positive chiral charac-
ter (A >0). Since all differences between distinct domains
must vinish at the transition, the elementary wall tension,
=, (T,A;0) must also go to zero. If v is the appropriate,
chiral exponent for the divergence of the correlation
length, hyperscaling arguments (see Sec. III above) indi-
cate 2, ~t# with u=(d —1)v for d <4, so that =,
vanishes continuously as t o« [T —Ty(A)]—0. On the
other hand, consider a [g > 1] wall which, by hypothesis,
has not suffered a wetting transition as t—0.2%37 This is
clearly less favored by the chiral field and hence, one
might argue, its tension would tend to vanish only at some
larger T or A; but this is a contradiction since the wetting
condition 3,=¢3%_ would necessarily have been encoun-
tered before the melting line was reached. This argument,
which is at best heuristic, thus suggests that wetting tran-
sitions should have taken place in all but the elementary
walls before any portion of chiral melting line is reached.

Various consequences follow from this conclusion.
First, since at A=0 [or {={,(7T)] chirality is absent, one
has 2, =3_, so that if the melting is still continuous, as
it is for p=3 and d=2, the wetting transition
[p —1]=[—1]—(p —1)[1] will not take place until ¢ van-
ishes. It follows that the corresponding wetting locus in
the (T,A) plane must meet the melting boundary at the
symmetric multicritical point A=0, as illustrated in Fig.
5(c) (see also Refs. 28 and 37). We expect that the
“higher-order” wetting lines for p >4, corresponding to
[g1—¢q[1] for ¢ =2,3,..., will also meet the multicriti-
cal point. (See further below for possible exceptions.) To
obtain the form of the wetting lines near the symmetric
multicritical point, we may generalize (3.3) to obtain the
scaling hypothesis

S (T,A;0)~1HS,(A/1%;0), (6.5)

where the nonlinear thermal scaling field has the form
t=t—c A2+ 0 (13, tALAY) .

The scaling functions S, (y;6) must all vanish at y=+y,,
on the commensurate phase boundary, given by
T =Ty (A), or equivalently, by A=A(T), which thus
has the asymptotic form

Ay (T =+py,t?.
The wetting lines should have a similar form, namely,
AP(T;0)=p B O)F?,

where pi# is, in fact, the smallest value of the scaled vari-
able y for which one has

Sq(»;60)=¢S1(y;0) .

It is worthwhile to consider the higher-order wetting
lines in a little more detail. Consider a [q] wall with
g**1 (mod p) in a symmetric clock model (i.e., at A=0).
The stability relation yields, in particular, £, <¢=, and
3, <(p —q)Z_. If either of these inequalities holds as an

(6.6)

(6.7)

(6.8)

(6.9)
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equality we may presume that the [g] wall is wet. One
possibility is that the [q] wall is always wet, even at A=0,
being decomposed into g elementary [ + ] or p —g elemen-
tary [ —] walls, depending on which configuration yields
the lowest free energy. At low temperatures this is, in
fact, the situation in the simple clock model with Hamil-
tonian (2.1); for p =4 this remains true at all temperatures
and we suspect this also occurs for p >4. When this is the
situation there are, physically, really only two types of
wall, namely, [ +] walls and [ —] walls. The basic transi-
tion that takes place in a [q] wall when A increases from
negative values is then really a wet-to-wet transition
described by

lql=p —g)[—]—q[+].

The associa’g:d transition line is determined by
(p —q@)=_(T,K;0)=¢3 (T, A;0) and so, by the previous
arguments, it will certainly run to the multicritical point
at A=0 in accord with (6.8). Notice that when p is even,
a [%p] wall at A=0 can, by symmetry, have a structure
corresponding either to %p [+] walls or to 5p [ —] walls:
it follows that the wetting line for the transition
[3p]=+p[—1—3p[+] in such a wall coincides with the
A =0 axis.

On the other hand, it is possible that some of the
[g£=*1] walls become intrinsically stable at higher tem-
peratures for A=0 in the simple clock model or, if the
cosine coupling in (2.1) is suitably generalized, even at
T =0. This stability might persist up to the multicritical

(6.10)

point or wetting might occur at some intermediate tem-
perature. A variety of increasingly elaborate wetting
phase diagrams can thus be imagined and most are prob-
ably realizable in appropriately extended models. We ex-
amine some possibilities at the end of this section.

D. Nature of chiral melting

Our conclusion regarding the necessity of all walls un-
dergoing wetting transitions as the chiral melting boun-
dary is approached is also relevant to the question “what
is the nature of the chiral melting transition, and, in par-
ticular, how does it differ from symmetric clock melting?”
In the vicinity of the chiral melting line any wall of signi-
ficant length must be an elementary, say a [+] wall.
Now the diverging critical fluctuations that characterize a
continuous commensurate melting transition (chiral or
nonchiral) may be envisaged’’ as microscopic hetero-
domains, i.e., subdomains of wrong phase within an other-
wise uniform domain (with, otherwise, only relatively
small deviations of adsorbate atoms from their ideal sites,
etc.) as illustrated in Fig. 7. Consider now, for concrete-
ness, a uniaxial p =3 surface phase. For a given total
length of wall in the symmetric or neutral limit
(A=0, £={,) where 2 =3 _, the boundaries of the most
probable domains will form simple loops enclosing one of
the p —1 heterophases, even though, as illustrated in Fig.
7(a), there will, statistically, be some two-loop or com-
pound subdomains in which two or more distinct hetero-
phase regions share a boundary.

A

, &

\

B

-

A
J
/
AT\ SN

W

A A

C‘§

B(C

(a)

(b)

FIG. 7. An illustration of the dominant types of fluctuation near melting of the commensurate phase of the three-state chiral
clock model for d =2, or, more generally, of a 3 X 1 uniaxial surface phase. For A=0, i.e., on the locus {=¢(T) of effective symme-
try, the fluctuations involve both [ —] walls (double lines) and [ + ] walls (single lines) as shown in (a); off the symmetry locus, with
A >0, only [ 4+ ] walls may, asymptotically, occur as in (b) so that single-loop subdomains are suppressed.
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In a chiral region, however, one side of each single-loop
microdomain will represent an unfavored wall with ten-
sion £_ >2, (shown as a double line in Fig. 7). Upon
crossing the wetting transition any such subdomains of
large size will thus decompose into compound, two-loop
form with only elementary walls, as shown schematically
in Fig. 7(b). Notice, by the same token, that only chirally
favored two-loop subdomains, say of A(B | C)4 character,
will be present asymptotically for A >0, whereas in the
neutral, A=0 case the opposite, 4(C | B)4, subdomains
will appear with equal frequency. This picture of the
drastically different nature of the dominant critical fluc-
tuations driving the melting transition in the two cases
provides a direct answer to our question: It seems most
unlikely that the symmetric, Potts melting exponents can
be preserved in the chiral regime. Similar arguments ap-
ply for the uniaxial case with p > 3.

It is much harder to answer the question: “In which
direction do the exponents change?” The crude approxi-
mation of regarding the critical fluctuations as described
by an ideal gas of (noninteracting) microdomains leads to
the suggestion that the chiral specific-heat exponent, a,
should be smaller (i.e., less positive) than for the sym-
metric model, essentially because the two-loop domains
have relatively less entropy because of the constraint that
both loops must close (see also below). However, such a
conclusion must remain highly speculative as regards the
critical behavior.

In the next two sections we examine the transitions be-
tween uniaxially commensurate phases and the associated
uniaxial or “striped” incommensurate phases using, as in
previous studies,”*>*} the approximation that the system
may be described simply as a collection of fluctuating
domain walls, with only one class of domain walls, the
[ +] walls, allowed. The wetting transitions described
above help justify this approximation; since long segments
of the other classes of domain wall will not occur beyond
the wetting transitions, they cannot play an important role
in the critical phenomena.

Similar arguments regarding the stability of various
sorts of domain wall can be brought to bear in triaxially
chiral Potts models and hexagonal commensurate
V3xV3 surface phases and should play a role in the
crossover from Potts to chiral universality classes that
occurs at the postulated multicritical point M in the phase
diagram of Fig. 4. Thus, on the Potts section of the melt-
ing line the tensions =, (T,¢) and =_(T,{) should ap-
proach one another asymptotically with =, /2_— 1. In
the vicinity of M, contours of constant 2, /Z_ should
represent scaling loci converging on M, mirroring those
shown in Fig. 4 as dotted curves in the disordered region.
Such considerations might also serve to justify the approx-
imation of allowing only one class of wall in the study of
the incommensurate-commensurate transition in hexago-
nal phases as initiated by Villain® and developed by Cop-
persmith ez al.> However, in a V3XV3R30° commensu-
rate phase a [ + ] wall in a given natural orientation be-
comes a [ —] wall on rotation through 60°, and vice versa;
this can be verified with the aid of Fig. 3. By contrast, a
rotation of 180° is needed to effect this interchange in a
uniaxial p X 1 system. This fact complicates the analysis
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of the way in which walls in a hexagonal phase may
transform under variation of 7 and A. For this reason we
defer discussion of hexagonal phases until another oc-

casion.

E. Nature of the wetting transition in two dimensions

It is clearly of interest to understand the nature of the
basic wall wetting transition illustrated in Fig. 6. Answers
in closed form for the chiral clock or similar models seem
unattainable although, as mentioned, some progress can be
made analytically at low temperatures for the p =3 chiral
clock model.?® However, a more or less complete analysis
can be made for two-dimensional systems on a semi-
phenomenological basis>*? in which a wall segment is re-
garded as a random walker diffusing along the x axis (i.e.,
in a direction parallel to the chiral field, A) but which
proceeds “forward” in the timelike, y-axis direction.
Within this approach the theory of the wetting transition
represented in Fig. 6 is completely analogous to theoreti-
cal treatments of the denaturation of a double-stranded
biopolymer such as deoxyribose nucleic acid (DNA).%

To develop the theory (see also Ref. 28) let us introduce
the Boltzmann weights

w4 =exp(—04) with 0y=04/ksT, (6.11)
for a unit length of [ 4 ] or [ —] wall projected on to the y
axis, where o (T,A) and o_(T,A) represent the semimi-
croscopic, “intrinsic” or “fluctuationless” wall tensions
which vary smoothly with 7" and A. In renormalization-
group language, o, and o_ would be the microscopic ten-
sions renormalized to the chosen ‘“unit” length scale. A
single strand of length n of, say, [ —] wall (see Fig. 6) has
a Boltzmann factor w” and, hence is described by a gen-
erating function (or propagator)

G(w_;x)=1/(1—w_x),

in the expansion of which the coefficient of x” represents
the weight of all wall configurations of length »n or, in
walk language, of all n-step random walks. There will,
similarly, be a generating function &,(w,;x) that de-
scribes the “bubbles” or double strands of [ + ] wall which
start at a common junction point and meet again n steps
later without having crossed in the meanwhile. If we con-
sider the more general wetting transition (6.4) in which a
[q] wall dissociates into g [ + ] walls, the simple bubbles
in Fig. 6(a) should be replaced by “bananas” (or “water-
melons”) of g-fold strands as shown in Fig. 6(c) for g =3.
There will be a corresponding generating function,

(6.12)

G,y x)= glwBx", (6.13)

n=1
in which g\ measures the probability that g walkers who
start together proceed to walk without meeting or crossing
paths until they finally all reunite together on their nth
step.

Note that the junctions between single-stranded sections
of wall and double- (or g-fold)-stranded sections will have
a distinct microscopic structure and an associated excess
free energy which may be accounted for by introducing an
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activity, z, for each junction. [When ¢ =(p —1) we will, in
Sec. VII below, identify the “junctions” as dislocations in
the configuration of the local order parameter defined via
Y, =exp(2min,/p).] The generating function for the
“full” or “dressed” [—] or, more generally, [g] wall is
then given by?%¢7

G(w_;x)+ G 4wy ;x)

1_2291(w_;x)9q(w+;x) '

G(w,y,w_;x)= (6.14)

The desired full domain-wall tension, 2, (w, ,w_), is then
determined via

exp[ 2, (wy,w_)/kgT]=x0(w ,w_), (6.15)

where xo is the nearest (necessarily, real) singularity of
% (x) which lies closest to the origin x=0. Evidently x,
represents the radius of expansion of the series for ¥ in
powers of x.

Now x, is determined either, using (6.12), by the exteri-
or condition,

l—w_x=z*9 (w,;x), (6.16)

corresponding to the vanishing of the denominator in
(6.14), or by the nearest real, positive singularity x,, of
& 4(w 4 ;x), provided this generating function approaches
a finite limit as x — x, —. It is not hard to conclude from
(6.13) that x, =w ;7 so that the interior condition is

xo(w,w_)=wi?. (6.17)

(See also Appendix A.) Via (6.15) this yields 2, =qgo; it
follows that the interior condition describes the wet phase
where [¢q] has decomposed into g [ + ] walls with indi-
vidual tensions = =o . (This oversimple expression for
3, clearly results from failure to include fluctuations in
the structure of a [ + ] wall; however, since the [ + ] wall
will not, itself, undergo a major structural change at the
wetting transition, its singularities at this transition should
be weaker than those in the [q] wall.)

To decide if a wetting transition occurs or its character,
if one does occur, it is necessary to know the singularity in
the g-walker generating function at x,. This problem,
which turns out to be central for many applications of the
domain-wall—random-walk theory is solved in Appendix
A. As xw?— 1— we find

G, /(1—xw?)3=972 ¢ V3

G (w,x)~ {GIn(1—xw?~!, ¢=V73, (6.18)

G, —Gy(1—xwC’ =372 V3 g V5

and, for ¢ > V5 but g2 not an odd integer,
G (w,x) =G, —G(1—xw?)+G,(1 —xw9)*+ - - -

—G(1—xw®) =324 ..o (6.19)

where the positive coefficients G;, G, G, etc., depend on
g. When ¢? is an odd integer a factor In(1—xw9)~! ap-
pears in the G term.

In using these expressions in the exterior condition

(6.16) it is appropriate to regard w_ as the control vari-
able which decreases as T and A increase. Then, consider-
ing continuous g for generality, we see that there is no
transition for ¢ < V/3; this correctly recaptures the absence
of a transition in a single strand of alternating character.
For g > V'3, however, a sharp transition always occurs at

w_=w(w,)=w?% (1-2%G,) . (6.20)
If we put

t=w_—w,(w,)~Ty(A)—T, (6.21)
we find this transition is described by

3,(T,A)—¢2 (T,A)=0, £<0, (6.22)
and, as f— O+ (with z5£0), by
Eq—q2+z—AstA2/("2‘3’, g<V3,

z—A1?+AS?(q2_3)/2+A2?2+ e q>\/§ ,
(6.23)

where 4; can be expressed in terms of z, G, g, etc., and
the 4, term gains a factor (In#)~! when ¢? is an odd in-
teger [so that k =(g?—3)/2 is an integer]. Evidently the
transition is continuous for ¢ <V'5 and, in particular, for
g=2 which corresponds to the basic wetting transition
[—]—2[+] in a p=3 system. The critical exponent for
the domain-wall tension or interfacial free energy may be
written

2—ay=2, p=3, (6.24)

and evidently corresponds precisely to a classical, Ehren-
fest second-order transition.?®3” This result is also in con-
cordance with Abraham’s®® exact calculation for an analo-
gous wetting transition at a rigid wall in a two-
dimensional Ising model. Our approach can be adapted in
a straightforward way to the rigid-wall problem and yields
the same results for exponents since the appropriate gen-
erating function for a bubble “stuck” on a wall has the
same form as given by (6.18) with g=2. (This provides
yet another heuristic derivation® 7% of Abraham’s exact
result.) The agreement with the exact exponent values en-
courages us to believe that, as regards universal features
such as exponent values, our result for general g will be
correct for the chiral clock and similar models.

On returning to (6.23) we see that the wetting transition
is of first order for g >V'5 and hence for the basic transi-
tion [—]— (p—1)[+] in a p-state system with p >4.
There are, however, singular corrections at the first-order
transition which, for integral g, take the form th+172 o
t*/Int (with k an integer).

It is of interest to enquire after further properties of a
[q] wall near its transition. To this end notice that
Y ,(w, ,x) is essentially a partition function for bubbles
(or g-fold bananas). It follows that the mean length of a
bubble (or banana) is given by

(n(q))=§;ln9q(w+,x) . (6.25)

On using (6.15), (6.19), and (6.23) one finds that (n'?)
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remains bounded for q2> 5, where the transition is first
order, but diverges as

(n @) ~1/765-a/a* =3 (6.26)

when 7— 0 for 3 <g?<5. For the case g=2 (or p=3) this
yields {n‘?) ~7~! as the critical wetting transition is ap-
proached. A similar calculation using & (w_,x) shows
that the mean length of the single-stranded sections
remains bounded right up to the transition, as might have
been guessed.

Owing to the fluctuations, the width of a wall should
diverge on approaching criticality. Now, because of the
diffusive, random-walk character of a bubble, the mean
width, #7,, measured normal to the wall should vary as
n'/? for large n. However, to calculate the mean width of
the wall itself each bubble must be weighted by its own
length n. Upon recalling (6.13) we can thus write the

mean-wall width as
2 n 3/2gn w Z',f’x n

(m¥' )y -————— (6.27)

? > ng,w’ix"
n

The denominator can be calculated, as in (6.25), by taking
a first derivative of &, (w, ;x) with respect to x. The
numerator essentially requires a three-halves derivative
but may be calculated alternatively by noting that the re-
sults (6.18) and (6.19) actually imply [and, conversely, fol-
low from (see Appendix A) the asymptotic result

gn=8o/n' "V (n> ). (6.28)

Using this in (6.27) and estimating the sums asymptotical-
ly as w9 x— 1— yields

(m@)~1/(gS, -3 )~ 1/t V4D (6.29)
for g2 <5, where the transition is continuous. For ¢=2
(p=3) the width and, hence, the adsorption of the inter-
mediate phase’®’® on the wall, diverges simply as 1/7.
(See also Ref. 28 for a more explicit calculation.) For
g”> 6 the width of the [¢] wall remains finite at the tran-
sition as would be expected. (In the unphysical region
5<g% <6, the transition is of first order but {(m ) still
diverges. This is just a reflection of the singular fluctua-
tions still present near the transition.)

Finally, one may estimate the longitudinal wall correla-
tion length §ﬁ( T,A), for correlations measured along the
length of the wall, and the transverse correlation length,
EX(T,A), describing correlations across the width of the
wall, by the same methods. (Note that these wall correla-
tion lengths are distinct from the corresponding correla-
tion lengths &) and £, observable in the bulk of a domain;
see the following sections.) Within a bubble of length n
the correlations are locally of magnitude n parallel to the
wall but, appealing to the diffusive character, of order
n'/2 across the wall. However, the probability that a
given point near a wall is actually within a bubble of
length n is proportional to n. It follows that the trans-
verse correlation length, £7, is given by the same weight-
ing expression (6.27) as yields the wall width (which might
be anticipated on general grounds). For &f the factor n3/2
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in the numerator of (6.27) is to be replaced by n2 For
g% <5 we thus obtain

Ef~(ED ~(m3)?~1/(g3,—3,) . (6.30)
Finally, for the practical case ¢ =2 (p =3) we obtain
vl =2, vip=1. (6.31)

Note that the result for vi}, agrees via hyperscaling for a
(d =1)-dimensional system (i.e., a wall) with (6.24). The
result for v}, is the same as the analogous exact result
found by Abraham® for the wetting transition at a rigid
wall in the two-dimensional Ising model, again confirming
the validity of the simple random-walk approach.

F. Wet to wet transitions

As explained above, the basic wall transition in a uniax-
ial system with p >4 should be described by (6.10) in
which a [g] wall with 2 <q <p—2 decomposes either into
(p—¢q) [ —1 walls or transforms into ¢ [ + ] walls. How-
ever, there remains the possibility that a g wall can, for
some T and A, have a coherent, “bound” or “dry” struc-
ture with fluctuations consisting of alternating g-stranded
bananas of [+ ] walls and (p —gq)-stranded bananas of
[—1 walls. One might wish to allow also sections of mi-
croscopically intrinsic [g] wall: These can be accounted
for by generalizing the junction activity, z, to a renormal-
ized activity Z=2z% 1(wy;x). This modification will, how-
ever, not affect the main qualitative results so we shall ig-
nore it here. The appropriate generating function for a
[g] wall is thus obtained from (6.14) merely by replacing
I(w_;x)by G p,_,(w_;x).

There are then two separate interior conditions, namely,
xow% =1 as before, and xow? ~?=1, where the smallest
value of x; must be chosen. These solutions evidently
describe the two distinct wet regimes: one with only [ + ]
walls in which 3,=¢2 =qo and one with only [—]
walls in which 2, =(p—¢)=_=(p—q)o_. On the other
hand, the smallest singularity may arise from the exterior
condition

229, _q(w_;x0)G 4wy 3x0)=1, (6.32)
which describes a coherent wall structure which might ex-
ist in a dry region of the phase diagram.

There are clearly two relevant parameters in the prob-

lem, say,

A=In(w% /w? ) =(p—qlo_—qo, , (6.33)
which, loosely, may be regarded as corresponding to A or
&, and the activity z which, again loosely, may be regarded
as increasing with the temperature 7. Following the pre-
vious analysis one sees, first, that for g <V3 and
p—g<V'3 only a coherent wall or dry phase is possible.
Conversely, the [ +] and [ —] wet phases exist only for
g>V3 and (p—gq)>V3, respectively. The coherent-to-
dissociated, [ + ] walls or dry—to—[ + ]-wet transition is
again continuous with exponent 2—ay =2/(¢?—3) for
g<V'5 and first order for ¢ >V'5 with correction ex-
ponent 0y = +(g*—3); likewise for the dry—to—[ — ]-wet
transitions. When both g and (p —q) exceed V'3 there is
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either a bicritical point, a critical endpoint, or a triple
point at

A=0, zy=[GP~9GP]~1/2, (6.34)

using the critical values defined in (6.18) and (6.19). For
z <z, there is always a simple first-order wet-to-wet tran-
sition on the A=0 axis (with no singular corrections).
The dry phase or coherent regime exists only above z,.
The possible phase diagrams in the vicinity of the multi-
phase point for realistic (i.e., integral) values of p and q are
illustrated in Fig. 8. In the bicritical case (a) p=4 and
g =2, the critical lines depart quadratically from the A=0
axis; in (b) there is a discontinuity in the curvature of the
first-order boundary at the critical endpoint.

The possibility of stabilizing a coherent higher-order
wall revealed by these figures was alluded to previously.
One may reasonably doubt, however, if the appropriate
junction activity, z, can ever become sufficiently large in
the simple clock models to realize such regimes.
Nevertheless, this feature could well arise in more com-
plex models or real systems.

VII. COMMENSURATE-INCOMMENSURATE
TRANSITIONS

In this section we reexamine the random-walk or
“wall-wandering” model for the transition between com-
mensurate and uniaxial or “striped” incommensurate
phases™'* as expounded by Fisher and Fisher,*>’* in order
to obtain various further critical exponents. The need to
consider dislocations is discussed.

In the wall-wandering picture the incommensurate
phase is assumed to consist simply of more or less parallel
domain walls that may fluctuate in relative position.

A
4 coherent

[2]
dry

(4]
wet wet (‘;i)

2[-] 2[+] -]

O
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When the system has dimensionality d <3 the dominant
interaction between the walls at large average wall separa-
tions (as relevant near the transition) arises from the
reduction of each wall’s freedom to fluctuate caused by
collisions with the other walls. (It is appropriate to as-
sume an effective “hard-core” repulsion between walls.) If
the average wall separation is /, one may estimate** the
number of collisions per unit (d —1)-dimensional “area”
of a single wall as

Ao/A;=By(b, /DM4—V/C=d) (1d <3), (7.1)

where B, is a numerical coefficient, Ao=bﬁ‘l is a suit-
able reference area, while the scale b, which represents the
diffusivity or elasticity of the wall is set by

bYUT)=cakpT/S(THE 2, (7.2)

in which 3(T) represents the wall stiffness.*>’ By choos-
ing A so that each collision reduces the wandering entro-
py of a wall by an amount kp one obtains*>74® an expres-
sion for an effective wall-wall interaction potential which
decays with wall separation as / ~" where

T=2(d—-1)/(3—-d),

yielding 1/1? for d =2.

The thermal fluctuations of the walls give the incom-
mensurate phase the character of an elastic medium and
lead, for 1<d <3, to correlations in the local order pa-
rameter,

¥(T)=exp[27in(T)/p],

which decay algebraically with distance, |T|; for d >2
there is also long-range order present. [Compare this defi-
nition of the order parameter with (3.16); here 7 (T)

(7.3)

(7.4)

[2] [4]
dry \

wet

(p—q)
]

wet

2[+] q[+]
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FIG. 8. Phase diagrams for wet-to-wet domain-wall transitions in two-dimensional uniaxial systems for a [2] wall in a system with
(a) p=4 and (b) p>5, and (c) for [g >3] walls with p —g >3. Bold lines denote first-order transitions; classical second-order transi-
tions are shown by light lines. A single coherent wall, or dry regime, exists only for z > z,.
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represents a local but coarse-grained value of the p-state
clock variables.] The wall fluctuations, however, are lim-
ited by the presence of the adjacent walls and the lengths
characterizing these limits may be viewed as correlation
lengths setting the scales beyond which the algebraic decay
laws become asymptotically exact. These correlation
lengths will, in fact, diverge as the incommensurate-
commensurate transition is approached. (We assume the
C-I transition is continuous here.) Normal to the walls,
the length limiting the fluctuations is clearly just the aver-
age wall separation, /. This in turn determines the incom-
mensurability, §=(d(argy)/dx) which vanishes at the
transition. Thus we may write

=27 /pq(T,E) =E, .

Likewise the average spatial separation between neighbor-
ing wall collisions sets the scale of the correlations parallel
to the wall so that, by (7.1), we can conclude

£~ 120D L g2/3=d)

(7.5)

(7.6)

For d =2 this yields §|, ~ &2 which is reminiscent of the re-
sults of the last section for the correlation lengths, &7 | and
£7, within a single wall in the commensurate phase: Note,
however, that we are here discussing correlation lengths
which characterize the bulk incommensurate phase.

In the commensurate phase, the domain-wall tension,
3(T,{), is positive and walls do not spontaneously appear.
However, as the commensurate-incommensurate transition
boundary, say {c(T) or Acy(T), is approached this wall
tension vanishes. Following Ref. 42 we assume 3(T,{)
varies smoothly through the transition and thus write

3=—0'8 withd={—Cc/(T)~A—Ag(T). (7.7)
We will, here, also add a p-component field, H, that cou-
ples separately to each of the p different domains (see
more explicitly below). This field will be supposed infini-
tesimally small so that it has negligible effect on the fluc-
tuations of the walls. Now we construct*? the free-energy
density in terms of the mean wall separations but we allow
different wall separations, I, for the p different domains,
the overall mean wall separation, /, then satisfying

p—1

k=0
The free-energy density functional consists** of a sum of
terms arising from the wall tension, the wall-wall interac-

tions, and the field h, namely,
1rg!

—--——+—— 2 "= 3 hly s
pl (=,

(7.9)

F&,0;{1})~

where B=kp TAoB;b]). As indicated, this expression is
valid for dimensionalities in the range 1 <d <3.*

The system will choose the configuration of minimal
free-energy density. For the incommensurate phase § is
positive (by definition) and it is then convenient to write

(7.10)

I;=(0'8/B)"7l; and 147 =7,
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so that the free-energy density becomes

£(8,B)~ f‘
~]/1'
gt hili 1
Xmin | — __——— —_— =
0y | pl kzo T (a®) I

This shows that the free energy has the scaling form

f(8,0)=~|8|> Y. (h/|8]|2) (7.12)
with exponents
2—a=A=1+4+7"'=(d+1)/2(d—-1), (7.13)

which give =5 and A=1+ for d =2.

In this description the commensurate phase of the
system is inert, being composed of a single domain of in-
finite width; the free-energy density is simply
f=—max {h;}=—h; where j determines the nature of
the domain present. The order parameter ¥(T) is constant
throughout the domain and the susceptibility and all fluc-
tuations vanish identically. This cannot be a fully realistic
description but we will return to this point shortly.

In the incommensurate phase, at >0, the zero-field
critical behavior of the commensurate-incommensurate
transition follows directly. The susceptibility for the field

h diverges as’®

X~87Y withy=(d+1)/2(d—1) . (7.14)
The incommensurability vanishes as*?

7(8)~8F with B=(3—d)/2(d—1), (7.15)
so that

~E ~8"" with vi=8, (7.16)

while the longitudinal correlation length diverges as

£ ~8~"" with vll=1/(d—1). (7.17)

Note that the bulk hyperscaling relation for anisotropic
scaling is obeyed, namely,

2—a=vitd—1pl.

The results for B=v' and for v!! in the case d =2 agree
with the more microscopic analyses of Pokrovsky and
Talapov'# and Schulz.”®

One reason for the inertness of the commensurate phase
in the description presented is obvious: By choice we have
adopted a semimicroscopic (or semimacroscopic)
viewpoint in which the properties of a uniform domain
are treated as known and smoothly varying with intrinsic
microscopic fluctuations purposely ignored. More signifi-
cant from our present perspective, however, is that we
have not allowed for the possible existence of thermally
excited dislocations (or vortices).

Let us now focus attention explicitly on #wo-
dimensional systems. We say a single dislocation is
present in a given simply connected region if, on tracing a

(7.18)
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path along the boundary of the region the phase of the or-
der parameter, ¥(T), as defined in (7.4), changes by 27.”’
In terms of walls separating distinct domains this means
the path must have crossed p elementary (An==+1) walls
and, hence, that a dislocation represents the junction of
precisely p distinct walls.

It is worth stressing that because of the coarse graining
or, at least, time averaging, needed to define an appropri-
ate local order parameter, the existence of a dislocation in
the sense described, i.e., a semimicroscopic or order-
parameter dislocation, need not imply a corresponding
dislocation or topological defect in the microscopic
description in terms of a lattice of particles adsorbed on a
substrate. In a p X1 phase, such as illustrated in Fig. 2,
there will be such a correspondence in the case that all the
walls closely correspond to the ideal heavy A4 | B wall on
the left of the figure. However as { varies across the com-
mensurate phase and the presence of vacancies, etc.,
changes the nature of the wall, this strict correspondence
will normally break down. We remark parenthetically
that the situation is more complex in the case of hexago-
nal phases even if only ideal walls such as shown on the
left of Fig. 3 are involved.”®

It is clear that a consistent treatment at the domain-wall
or random-walk level, must allow for the spontaneous
creation of dislocations. A typical pair of dislocations, as
might appear in the commensurate phase of a p=4 sys-
tem are shown in Fig. 9. (Compare with Fig. 6.) The bal-
ance of our discussion in this and subsequent sections is
devoted to the question of how such dislocations affect the
commensurate-incommensurate transition in two dimen-
sions. We will, in particular, show that allowing for such
dislocations constitutes a relevant perturbation of the wall
wandering description only for p < V6.

Note, however, that the model in which dislocations are

(x,y)

(0,0)

FIG. 9. Illustration of a configuration of a commensurate
p =4 phase containing a pair of dislocations. Four (elementary)
domain walls emanate from each dislocation. More generally, p
elementary walls meet at each dislocation.

strictly forbidden may be appropriate for modeling fluc-
tuations in a simple face of a cubic crystal oriented near,
say, a (100) orientation.” Such a crystal surface will con-
sist of plateaus at different levels, relative to the precise
(100) axis, separated by steps: The former may be regard-
ed as domains, the latter as domain walls. Modeling the
steps simply as fluctuating domain walls makes sense if
each step consists of an addition of just one atomic layer
and the steps repel one another. The field § that now cou-
ples to the step free energy is conjugate to the orientation-
al angle of the crystal face. A dislocation in the p-state
model may arise because after crossing p walls one returns
to the domain one started in. For a crystal face, however,
one cannot ever leave and return to a given level simply by
stepping upwards. Thus there can be no dislocations in
the present sense on the face of a perfect crystal. (In an
alternative view such a system may be regarded as realiz-
ing a p— o model.)

Dislocations play a role in the equilibration of an in-
commensurate phase similar to that of vortices in the de-
cay of superfluid flow.’® Indeed, domain walls may be
added or removed from the system in a ‘“continuous”
fashion only by the nucleation and growing separation of
dislocation pairs or by the annihilation of approaching
pairs. Thus, as the dislocations illustrated in Fig. 10
separate, the upper one moving higher and lower one still
lower, they leave behind p=3 new domain walls and
hence change the mean separation of walls through the
system and so may serve to bring the incommensurability
g(T,&) to its equilibrium value.

For d =2 and h =0 the free-energy density (7.9) may be
written as a function of the wall density or incommen-
surability, g, as

F(8,§)~ —(pa'8/2m)g+Bg° , (7.19)

FIG. 10. Two dislocations in a uniaxial or striped weakly in-
commensurate p =3 phase. Domain walls separate, successive-
ly, A, B, and C domains and so on. Note that if the two disloca-
tions approach they may mutually annihilate to leave only a reg-
ular, more or less parallel array of walls. Conversely, if their
separation increases, in a vertical direction, one eventually ob-
tains a state in which p =3 extra domain walls cross the system
with consequent change in the incommensurability, §(T',§).
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with B=p2B/87>. Equilibrium will be established at the
incommensurability

30(8)=~(pa'8/6mw*B)!/? .
If the actual, nonequilibrium incommensurability is g the
extra free energy per unit length arising from adding a
domain wall is

(7.20)

%‘? ~—(po'8/2m) +3B7 2= 387273 . (1.21)
q

Now Schulz, Halperin, and Henley*’ have found that the
excess free energy at equilibrium due to a dislocation pair
in the incommensurate phase varies as the product of the
temperature, 5p> and the logarithm of the separation.
Thus when two dislocations separate, moving parallel to
the domain walls and introducing p new walls, the associ-
ated net excess free energy is given by

V(y)=~2Eq+~kgTp2iny +3Bp(g>—gd)y (7.22)

for longitudinal separation y, where E|, represents disloca-
tion core energy. When g < g, the dislocation pair must
thus cross a nucleation barrier of height

Vmax =2Eo+ +kp Tp*[In(ky Tp /68)—In(g3—5 %) —1/p]
(7.23)

in order to introduce p new walls across the entire system,
thereby lowering the total free energy and moving g to-
wards the equilibrium value §,. The rate of such nu-
cleation should be proportional to the Boltzmann factor
exp(—PBVmax)- Consequently we expect that 8g/6¢,
the rate of approach to equilibrium, should vary as
R | 73—77|?"/% however, the rate constant, R, which cer-
tainly depends on E, T, p and B, will probably also entail
a further factor |75—g?|* where A is determined by the
details of the nucleation process (but might not depend ex-
plicitly on p). Such a rate law leads to the decay
of g(t)—g, as an inverse power, 1/t? with
©p=2/(p*—2+2A). For p>3 and if A> —1 this yields
®, <0.4 so that rather slow decays are to be anticipated.
This may well lead to observable hysteresis in some sys-
tems.

VIII. DISLOCATION INTERACTIONS
IN TWO DIMENSIONS

Let us now consider the theory of the transition from a
uniaxial commensurate phase to the corresponding striped
incommensurate phase in two dimensions with disloca-
tions allowed. If, as in Sec. VI, the dislocation activity or
fugacity is z, the singular part of the free-energy density in
zero field should scale for small z and |8 as

fom |81 Wo(z/|8] %),

where the crossover exponent for dislocations in a p-state
system has been called —6,. The dislocations represent
relevant perturbations at the =0 transition point if
6, <0; conversely, if 6, is positive only singular correc-
tions to scaling are implied. Assuming that the scaling
functions, W.(w), are analytic at the origin, we may ex-
pand as

(8.1
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9p+3/2

fo=18|3WL(0)+ |8] ZW'(0)

201’+3/222WL_1(0)+ e (8.2)

+718]
Note that inside the incommensurate phase the disloca-
tions are known>!® to be relevant when p% <8: Further-
more, because of the algebraic decay of correlations within
that phase when z=0 the corresponding scaling function
might well be singular at w =0 so that a simple Taylor ex-
pansion might not be justified. However, we will make
use of the expansion only in the commensurate phase
(86 <0), where it should be well behaved. As shown in the
preceding section, the singular part of the free energy in
the commensurate phase vanishes identically when z=0,
i.e., in the absence of dislocations. Furthermore, configu-
rations with only a single dislocation present cannot con-
tribute to the equilibrium free energy of the commensu-
rate phase since, in the thermodynamic limit, such a con-
figuration must contain p semi-infinite domain walls.
Thus in the commensurate phase the singular part of the
partition function of a system of area 4 with, say, periodic
boundary conditions, takes the form

260,+3/2_,

Z,me™ s 14 LaW” (0)(—8) 2240(z% . (83)

The term of order z? must arise simply from summing
over all configurations in which only two dislocations are
present. To obtain the dislocation exponent, 6,, we may
thus examine the restricted partition function, Z?(8)
which represents a sum over all configurations of two
dislocations; when 8— 0— its singular part should vanish

as (—8) %"

A. Dislocation correlations

To study Z®(8) we must calculate the dislocation
correlation function C,(x,y;8), which, as defined, for ex-
ample, by Schulz, Halperin, and Henley*® derives from a
still further restricted partition function, namely, a sum
over those domain-wall configurations in which one dislo-
cation is located at the origin (0,0) while the second one is
at the point (x,y). Schulz et al.*® have calculated the
asymptotic form of C,(x,y;8) in the weakly incommensu-
rate phase for distances much greater than the correlation
lengths &)| and £, introduced in Sec. VII. Here we will ob-
tain the scaling form and critical exponents for C,(x,y;8)
in the commensurate phase. However, the scaling form
for C,(x,y;8) also applies in the incommensurate phase
with the results of Schulz et al.* serving to provide a lim-
iting form for the scaling function.

A typical configuration in the sum for C,(x,y;8) is il-
lustrated in Fig. 9. It consists, in the random-walk pic-
ture, of four walkers who start initially at the origin, i.e.,
in the dislocation core, and then walk upwards for
n=y/b| steps, where by is of the order of the underlying
lattice spacing in the y direction.*>”> The walkers’ paths
never meet or cross but finally they all reunite at x =mb,,
where b,(T), which is given more explicitly in (7.2),
represents the root-mean-square transverse displacement
of a walker in a single step.*>"*

If there is only a single walker, the problem posed is
standard and for n =y /b, >>1 one has
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Cl(x,y)ze‘iye_"Z/ZD"’/(217'Dy)1/2 , (8.4)

where =3 /kp T is the reduced tension for a wall parallel
to the y axis, while the diffusion constant for a walk is
given by

D(T,£)=bl/b , (8.5)

which is presumed to be smoothly varying and nonvanish-
ing throughout the transition region. Note that e >
represents the total weight of all (single) random walks of
n=y /b steps from the origin. The remaining factors in
(8.4) represent the fraction of n step walks which ter-
minate at x =mb,.

Now recall, from (7.7), (7.16), and (7.17) of the preced-
ing section, how the correlation lengths at the transition to
the commensurate phase vary; specifically, we may write

£ =kpT/0"|8| =~ |Z| 7", & mcob/|8]'*, (8.6)
where we have introduced the dimensionless ratio
cy=bo'/kpT . 8.7)

Thus, anticipating our general result, we see that the form
of C(x,y) obeys the scaling law

C,(x,9)~ | 87720, (x /ELy /€))

for y >>b||; the superscript minus simply serves as a re-
minder that the commensurate phase, i.e., 8§ <0, is under
consideration.

To our knowledge the general case of p walkers reunit-
ing has not been discussed in the literature. As we show
in Appendix A, however, it may be handled by diffusion
theory methods; the case p =2 is analyzed in detail in Ref.
28. The answer is surprisingly simple: We find the scal-
ing function is given by

Qp—(X7 Y)=(Cp /b,)e —p(Y+X2/2Y)/(27ry)p2/2 ,

(8.8)

(8.9)

where ¢, is a numerical coefficient.

The results for C,(x,y) embodied in (8.8) and (8.9) are
valid in the commensurate phase for distances x and y
large compared with the dislocation core dimensions of
order b, and b)), respectively. Schulz, Halperin, and Hen-
ley, in a similar calculation,*’ have studied the same corre-
lation function inside the incommensurate phase for
separations large compared with the correlation lengths &,
and &) (which, near the transition, are much larger than
b, and b))). For even integral p and y =0 they obtain, in
our notation,

C,(x,0;8) ~c (86, /x P*/*

where c‘,l is a constant. (The Fermi momentum kjp in
Schulz et al. corresponds to 1/&,~8'/2) Notice that this
is again consistent with the scaling form (8.8), although
the complementary scaling function Q;’(X ,Y) for §>0
must now be used: This must match Q, (X,Y) appropri-
ately in the limit X,Y— O which corresponds to §— 0 at
fixed x and y. Note, however, that the scaling function
(8.9) has an essential singularity in this limit so that the
behavior as Y— 0 is nonuniform. For p=2 Schulz et al.
actually found the exact result which then yields the scal-
ing form

(8.10)

Q5 (X,0)=c3X ~%(1—X ~2%in%X) . (8.11)

By employing a continuum limit Schulz et al. also ob-
tained

Cp(x,338) ~[(x /€, +(y /€12,

valid for general y >>§| and x >>§,. However, they did
not find the behavior ofl the prefactor as §— 0. We may
anticipate from scaling that this should vary as |§ |1’2/ 2
and thence that the incommensurate dislocation-
dislocation correlation scaling function behaves asymptot-
ically as

QO (X, Y)~(X2+Y2) P/

(8.12)

(8.13)

when X,Y— o. The result (8.12) confirmed a previous,
indirect analysis of the dislocation interactions based on
the elastic constants of the incommensurate phase in the
absence of dislocations.>!® Recall now that the incom-
mensurate phase exhibits algebraic decay of correlations
and hence is a critical phase. One can thus appeal to the
Kadanoff-Wegner criterion for the relevance of a pertur-
bation: Specifically,® an operator A(TF) represents a
relevant perturbation of a critical point if its correlation
function {(A(T)A(T’)),, evaluated at criticality, decays as
1/|7'—7| ™ with w<d. This follows® because the
associated renormalization-group eigenvalue A =d —w
and crossover exponent, ¢,(=A,/Ag, where Ay is the
thermal eigenvalue) are then positive. One thus concludes
that a weakly incommensurate uniaxial surface phase is
unstable to dislocations if +p%<2d=4, i.e, if p<V3.
This agrees, as it must, with the analysis>!® based on the
Kosterlitz-Thouless and Halperin-Nelson-Young cri-
teria.>1°

B. Singularities in the commensurate phase

Now, by the arguments following (8.3), the behavior of
the two-dislocation partition function, Z‘?, as the thermo-
dynamic limit is approached is given by

ZP/4~ fb:bﬁldy [ dx G x,y;8) (8.14)

and has a leading singular part varying as |6 | 264372
The lower cutoff on the y integral recognizes the finite
size of a dislocation core. On using the scaling form (8.8)
and (8.9) one hence finds that the singular part varies as

[8) < ZP(8)~ |8 P~V or 8]~/ n|8| !,
(8.15)

where the second form applies only when p?> 1 is an odd
integer. We thus conclude that the dislocation crossover
exponent is determined by

6,=75(p*—6). (8.16)

It follows from this that dislocations are relevant at the
two-dimensional uniaxial commensurate-incommensurate
transition when p2<6. This is consistent with Bohr’s*
calculations for p =2 where dislocations were found to in-
duce crossover to a phase transition in the Ising universal-
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1

ity class. Our result gives a crossover exponent —6,=-
and the singular part of Bohr’s expression for the free en-
ergy does indeed asymptotically fit the scaling form (8.1)
with scaling functions (for suitably normalized § and z)

Wy (u)= fo“’ dg{q®F1++u>—[(g*F1)+q%u1"?} /21 .

(8.17)

These scaling functions display the Ising-like logarithmic
singularities expected for §— 0 with z > 0, namely,

3
wow="=1s L2y, 0]1 ” (8.18)
u

1
27 |3 u? ut

for u=z/|8|12— . Note that when this is substituted
in (8.1) the free energy has analytic terms in 8 (for § small)
plus a 8In|8| singularity. The incommensurate phase
present for z=0 and 8 >0 also melts in an Ising-like tran-
sition as the dislocation fugacity z is increased from zero;
the scaling function for small u behaves as
W+(u)=~217[—%+%u2lnu+0(u2)]. (8.19)

In the commensurate phase (8 <0) the scaling function in
the limit of small dislocation fugacity behaves as
W_(u)~u’=z%/|8|, reflecting the fact that all possible
fluctuations involve at least two dislocations.

For this p =2 system Bohr* also finds that the correla-
tion function in the x direction,

G(x)= (( _ l)n(O)—n(x)) _ (( _ l)n(0)><( _ 1)n(x)> , (8.20)
decays asymptotically as
G(x)~Re(e*"x) (8.21)

as long as 840 and zs40, where k* is the nearest zero
above the real axis in the “single-particle” spectrum of the
transfer matrix

E(k)=[(86—k?)?*+2%2]12 .

A correlation length and incommensurability may thereby
be defined via

k*=q+l/§x ’

and both will scale in the same fashion as the free energy,
namely,

(8.22)

(8.23)

Ex~ 8|7V X4(2/]8]|'), (8.24)

T~ |8|%Q4+(z|8|1). (8.25)
The scaling functions are easily found to be

X_(u)=(14++u>"’++u, Q_(u)=0, (8.26)

X, (w=5u+(5u*—~1"2 Q. (u)=0 foru>2,
(8.27)
X, (w)=2/u, Q (w)=(1—3u®"? foru<2.

In contrast to this soluble p=2 case, for p?>> 6 and, in
particular, for p >3, dislocations prove to be irrelevant so
that, for sufficiently small but finite dislocation fugacity
or density, the transition remains in the same universality

29

class as in the absence of dislocations. However, the dislo-
cations still mediate divergent fluctuations in the com-
mensurate phase, somewhat reminiscent of droplet fluc-
tuations at a first-order transition,®! and thus induce criti-
cal singularities on the commensurate side of the phase
transition. These new singularities represent corrections
to scaling that are absent unless dislocations occur and,
therefore, are weaker by a correction to scaling exponent
equal to 26, than the corresponding singularities on the
the incommensurate side of the transition. Thus the
specific-heat singularity which, by (7.13), is given by
a=+5 on the incommensurate side, follows by this rule or
directly from (8.15) as

ap=75(7—p?), p>v6. (8.28)
This describes a cusped, |8|In|8| ! singularity for
p =3. Likewise, the susceptibility X =3%f/3h? considered
in (7.14) diverges with an exponent == in the incom-
mensurate phase but displays only a weaker singularity
with exponent

Yp=7(9-p%, (8.29)
in the commensurate phase. For p =3 this corresponds to
a divergence of X as In| 8| ~! but represents no divergence
in X, or even in 09X /38, for p >4. Despite their weakness
these commensurate phase singularities might be observ-
able in sufficiently precise careful measurements.

C. Phase diagrams

It is interesting to consider the evolution of the (§,z)
phase diagram of this system of fluctuating domain walls
with dislocations as p varies. Our expectations are embo-
died in Fig. 11. In the absence of dislocations, i.e., for
fugacity z=0, the phase diagram is independent of p, con-
sisting of a critical point, marked F, separating the inert
or frozen commensurate phase with no critical fluctua-
tions at all from the incommensurate phase. The phase
transition at F is in the free-fermion universality class
since the transfer matrix may be modeled as a nonin-
teracting one-dimensional Fermi gas,** which has a phase
transition when the chemical potential of the fermions
passes through the band edge. In this fermion representa-
tion the spatial y axis is again to be thought of as a time
direction and the domain walls correspond to the world
lines of the fermions. Allowing dislocations of fugacity z
corresponds to adding terms in the fermion Hamiltonian
which create and annihilate p fermions near one another
with coupling constant z.*>**

For p? <6 the dislocations are relevant at F, which is
therefore a multicritical point. The incommensurate
phase present for zero dislocation fugacity is unstable to
dislocations for p? < 8 and so, as is illustrated in Fig. 11, it
melts immediately into a disordered phase as the disloca-
tion fugacity increases from zero.>!° Note that the
relevance of the dislocations at the commensurate-
incommensurate critical point, F, and inside the “critical”
incommensurate phase are two distinct issues. When, for
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FIG. 11. Phase diagrams for the two-dimensional domain-wall wandering model with dislocations allowed. When z=0 the field 8
is proportional to the individual domain-wall tensions which are positive for 8 <0 but change sign at §=0 allowing an incommensu-
rate phase to appear for 8 >0. The activity or fugacity, z, controls the density of dislocations. The free-fermion critical point, F, is
unstable to dislocations for p <V'6. A new multicritical point, K, splits off at p =6 and becomes a Lifshitz point, L, at p =Vs.

p2<6, the dislocations are relevant at F, the
commensurate-disordered phase boundary at nonzero
dislocation fugacity is in a different universality class than
F;, for p=2 this is just the standard Ising universality
class.* At p?=6 the dislocations become marginal at F
and a preliminary analysis indicates that they are, in fact,
marginally relevant. Thus as p increases beyond V'6 a new
multicritical point, say K, emerges from F; this new mul-
ticritical point becomes a Lifshitz point, L, for p*>8
when the incommensurate phase becomes stable to dislo-
cations. The phase boundary between L and F is in the
same free-fermion universality class as is F, however, as
discussed above, corrections to scaling give critical singu-
larities in the commensurate phase that are not present at
F. The commensurate-disordered phase boundary beyond
L is presumably in the p-state chiral universality class in-
troduced in Sec. IV. The scenario presented in Fig. 11 is
certainly consistent with other treatments, namely, the an-
alytic results* for p=2 and Monte Carlo® and series-
expansion?’ results for p=3. What happens to the
Lifshitz point beyond p =3 is a matter of speculation and
certainly depends on further details of the system. In a
chiral Potts model (as against clock model) examined by
Kardar?$ the Lifshitz point persists even for p >4 where
the commensurate-disordered phase transition becomes
first order. However, as is discussed in Section V the
Lifshitz point in the chiral clock-model phase diagram
must disappear when p exceeds 4 since the incommensu-
rate phase then completely separates the commensurate
and disordered phases as shown in Fig. 5(d).

IX. DISLOCATIONS AND THE CHIRAL
CLOCK MODELS

The dislocations discussed in the previous few sections
and illustrated in Figs. 9 and 10 are topologically stable:
As explained in Sec. VII the existence of a dislocation
may be discerned from the behavior of the order parame-
ter on a closed contour surrounding it.”” If successive
domains are identified by the spin state,
n=0,1,...,p —1, that the clock model spins within the
domains preferentially occupy, then upon crossing each
elementary domain wall, n changes by én==x1 (mod p).
The line integral of 6n along a closed contour oriented,
say, clockwise and enclosing a single dislocation, will take
the two possible values,

Pdn=1p, 9.1)
but will vanish if no dislocation is enclosed.

Such a topological definition of a dislocation may be
extended in the context of the chiral clock models (2.1) to
ascribe definite microscopic locations to dislocations in
any configuration of spins in the model. Thus on a square
lattice each elementary square may be assigned a disloca-
tion state by performing a sum analogous to (9.1) over its
four perimeter bonds. The change in n upon traversing
the bond from a site i to its nearest neighbor j is defined
conveniently for the present purpose as

(8n);j=n;—n; (mod p) with |(8n);| <5p. (9.2)
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For odd p this determines each (8n); uniquely but for
even p a further convention is needed to fix (8n); in cases
where |(8n); | =+p; the convention adopted is not cru-

cial provided it respects the antisymmetry relation
(6n )ij =—(6n )ﬁ .

Then the number of dislocations or “vortices” vy con-
tained in the square comprised, in, say, clockwise order, of
sites 7, j, k, and [ is

Vit = | (81 )3+ (8n ) ji +(8n )iy +(8n )y | /p .

9.3)

(9.4)

The dislocation density may thus be expressed as a local
operator that couples the spins around each elementary
square (or “plaquette”) of the lattice.

In order to study the effects of varying the dislocation
fugacity, z, on the behavior of the chiral clock model one
may simply introduce the dislocation core energy,
Eyg=—kpTlnz, as a parameter by extending the Hamil-

tonian to

H=Ho+Eo 3, Vijia »
(ijkl)

9.5)

where J7 is the original chiral Hamiltonian (2.1) and the
sum runs over all the elementary squares of the lattice. In
the limit of no dislocations (Ey— o ) the phase diagrams
of this model for various p should resemble those obtained
recently from an exact solution of the one-dimensional
quantum sine-Gordon model by Haldene, Bak, and
Bohr.!S For p > 5 there are no free dislocations in the vi-
cinity of the commensurate phase since the disordered
fluid, which is characterized by a density of free disloca-
tions is completely separated by the incommensurate
phase. Thus increasing the dislocation core energy, E,
from zero should not produce any qualitative changes in
the phase diagram shown in Fig. 5(d). As the core energy
is sufficiently decreased, however, the nature of the phase
diagrams must eventually change from those shown in
Fig. 5 for all p because for Ey << —J the ground state will
no longer be ferromagnetically ordered, but will rather be-
come some sort of “vortex glass” that contains the max-
imum possible density of dislocations: Compare with the
discussion of Swendson®? who considers a related two-
dimensional model based on continuous XY spins.

Let us consider, in particular, the case p=3. The sine-
Gordon analysis of Haldane, Bak, and Bohr should yield
the correct phase diagram for the chiral clock model in
the limit of zero dislocation fugacity, i.e., Eg— + 0.
Their results are embodied in the (7,A,z) phase diagram
presented in Fig. 12. In the absence of dislocations, i.e., in
the z=0 plane, only two phases occur, namely a low-
temperature commensurate phase and a high-temperature
incommensurate phase, separated by the critical line QC,
in Fig. 12. The point Q on the A=0 axis has a multicriti-
cal character as will shortly become even more evident.
As we have discussed above, the commensurate-
incommensurate transition for p=3>1/6 is stable under
the introduction of dislocations. Thus as z increases from
zero the critical line QC, develops into a critical surface,
namely, QC,CL in Fig. 12, separating commensurate and
incommensurate regions. However, the z=0 incommens-
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urate phase becomes unstable to dislocations above a
locus, QI, of the form shown by the dotted curve in Fig.
12, as was shown by Haldane et al.'> Thus the locus QI
develops, for small z, into a critical surface, QI,IL, which
separates the incommensurate phase from a disordered
fluid phase which exists everywhere at high temperatures
except when z=0.

Now the dislocations are also relevant at the symmetric
(A=0) multicritical point Q.*>' In addition, however,
the numerical evidence®>?” suggests the presence of a dis-
tinct Lifshitz point at A >0 when dislocations are allowed.
The simplest phase diagram consistent with these various
conclusions has the form shown in Fig. 12. It contains a
line of three-state Potts critical points, QP and a line of
Lifshitz points, QL. These lines both emerge from the
multicritical point Q and they bound a critical surface,
QPL, in the p =3 chiral melting universality class. Note
that the incommensurate phase at z=0 is stable to dislo-
cations in the region bounded by the lines QI and QC,, a
region that extends all the way to the symmetric multicrit-
ical point Q. Thus even if a line of Lifshitz points (QL in
Fig. 12) also goes to Q, as we suggest it may, this will not
be revealed by calculations carried only to leading order in

Disordered

Z
Incomm.

Commensurate

FIG. 12. Anticipated phase diagram of the two-dimensional
three-state extended chiral clock model, (9.5), as a function of
dislocation fugacity, z. Broken curves represent the phase boun-
daries at fixed values of z. The disordered fluid phase fills the
region above the surface QPLII,, except for the z=0 plane,
where the incommensurate phase persists above the line QI,.
The commensurate phase lies below the surface QPLCC,. The
lines QP and QL represent Potts and Lifshitz multicritical
points, respectively, and bound a critical surface in the new
chiral melting universality class.
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the dislocation fugacity such as reported by Haldane
et al.’® and by Schulz'® who argue that the Lifshitz line is
not present for small dislocation activity, z.

A similar phase diagram to Fig. 12 might apply for
p =4 but then the line QP of symmetric (A=0) multicriti-
cal points is expected*’ to have exponents varying continu-
ously with z. This suggests that the Lifshitz line for p =4,
if it exists at all, might, in contrast to Fig. 12, possibly ter-
minate at a point on the line QP of symmetric multicriti-
cality at which z is nonzero. Thus Lifshitz points might
exist for p =4 only at sufficiently large dislocation fugaci-
ty. Further analytical work is clearly necessary to check
this speculation and to test our expectations for p =3.
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APPENDIX A: THE REUNIONS OF p WALKERS

In this appendix we discuss the problem of p identical
walkers, initially close together, that walk on a line
without passing one another and we ask for the probabili-
ty of a “reunion” after a long time. More concretely, let
x;=x;(t), with j=1,2, .. ., p, denote the coordinate of the
Jjth walker at time ¢ and let x;=x;(0) denote the corre-
sponding initial coordinates which we suppose satisfy

(A1)

where a is a fixed bound. (In our current application to
domain-wall systems x; represents the x coordinate of the
Jjth domain wall at a level y o« ¢, while a measures the size
of a dislocation core.) We desire the probability distribu-
tion, W,(Xo,=>X;t), that the walkers proceed without
passing, i.e., maintaining the inequalities

—aA<X1,0<X20< """ <Xpo<a,

xj_(t)<x;(t), j=2,3,...,p fort'<t, (A2)

from their initial positions specified by Xo=(x,,...,
X,,0) to final positions given by X=(x,, ..., x,) at time .
Perhaps the most natural setting for the problem is on a
lattice with discrete time where, on every tick of the clock,
each walker takes a nearest-neighbor step to right or left
with equal probabilities and the walkers start only on even
numbered lattice sites.?® However, since we are here in-
terested only in long times, we shall consider, from the
outset, the simpler case of the continuum limit (i.e.,
Brownian motion) in which the probability distribution
for p free, unrestricted, or independent walkers is simply

—| X =%y|2%/2Dt
0 /

WXy =>X,t)=e QmDtP”? . (A3)

Here the diffusion constant D sets the scale since the

mean-square displacement of a single walker is just
((x_, —Xj’0)2> =Dt.

Now if we regard (A3) as describing the motion of a
single, compound walker who moves in a p-dimensional
space with position coordinate X, the restrictions (A2)
mean that the compound walker must not cross any of the
linear manifolds x; =x,, X, =x3, ..., or X, _;=x,. This
restriction may be viewed as posing an absorbing boun-
dary condition requiring that W,(X, = X,t) vanish iden-
tically on all these manifolds. Because the manifolds are
linear the corresponding diffusion problem can be solved
by the method of images: Specifically, unrestricted walk-
ers of positive and negative weights are started at X, and
its mirror images and proceed to walk according to (A3).
Provided the initial weights are chosen so that the total
distribution is antisymmetric under reflection in each
manifold x;_;=x;, the subsequent distribution will van-
ish on each manifold for all times and, hence, solves the
problem.

To obtain an analytic expression let g denote an element
of the permutation group on p objects, S,, which permutes
the components v;=(V); of a p-vector V. Then, to gen-
erate W,, we must start a walker with weight e(g) at each
mirror-image point gX,, where €(g)=+1 for even permu-
tations (i.e., for an even number of reflections) and
e(g)=—1 for odd permutations (and hence for an odd
number of reflections). For X satisfying (A2) this yields

W,(Xo=>%,t)= 3 e@WigXo=>%,1). (A4
gESp

Under the permutations we have |gX,|%=|%,|? and so
the result can be written

—(| X234 Xy12 /2Dt

W, (X =>X,t)=U,(X,,X%;t) , (A5)
pro oo (27Dt P2
where the antisymmetrized sum is defined by
U,(Vo,V,t)= 3, e(glexp(V'gVo/Dt) . (A6)

gES,

Now we wish to focus attention on the asymptotic
probability, for long times, of a reunion at X, which we de-
fine by the condition

X—a<xi<x;< " <x,<X+a, (A7)

at time ¢ where, with no loss of generality we also suppose
that

ﬁ Xj0= ﬁ (xj—J'c')=0 »
j=1

j=1

(A8B)

so that the origin is placed at the mean starting position
and X denotes the mean final position. From this we have
2
X-gXo= 3, (x;—X)(g%o);=0(a?) . (A9)
j=t1

To evaluate the factor U,(V,V;t), notice, first, that
V-gVo=g " UV:gVy)=Vog !V so that U, is symmetric
under the interchange Vo< V. Second, note that the ar-
gument of the exponential may, by (A9), be considered of
order a?/Dt so that an expansion in powers of Vj is justi-
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fied. The nth term in the expansion is evidently a homo-
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ficient u, is determined by the identity

j=1

geneous polynomial of degree n in the p variables v;. 1 n
However, only totally antisymmetric polynomials can sur- u, Vo (Vo)V, (V)= =1 2 e(g)v-gvy)? . (A13)
vive the sum over g. The lowest order such polynomial is P’ gES,
of degree To use this consider the differential operator
1
n=n,=5pp—1), (A10) 0 2 p—1
p =3 ' p=%—(£‘£7"'j‘T_T, (A14)
and may be represented by a Yalndermonde determinant of dvi dvy dv3 dvg
order p, with elements ¥ =v; ™", namely, which is of order n,. One finds, recursively,
. P .
V,(¥)=|Vy|=|vi"",= 1 (vj—vi) - (A11) dar—tvit
P ij i ip j =Sy i lp
l j>k DpV,(V)=Dp_, dv? !
. P
Hence we may write p—1
=p-NGD,_V,_(¥)=]]r!, (A15)
U, (o X3t) mtt, V, (o)W, (X)/(D1)" (A12) i p-tVpiM=T1
with corrections of relative order (a?/Dt), while the coef-  and, for the right-hand side of (A13),
|
DV gVo)r=— 2 (gD, (Fg¥e)" P = T eV~ =m0 ol o+ 02 (A16)
P vV-gVvo “(np_p+1)! gVolp p—1 V-gVo —p: 4 o/ = p'Ugl,O 8,0 gp,O ’

where (g,82, - - .
tion in (A 13) thus gives
—
Pmec(p—10

,8p)=g(1,2,...,p). Upon performing the sum over g this last expression yields n,!V(V,). Substitu-

The desired result for the asymptotic probability of reunion now follows from (A5) and (A12) as

e—pfz/ZDt P
Wy(Rg =, 1)=———
(27T)P/2(Dt)p / Jj>k>1

where the convention (A8) is to be recalled. If the initial
and final positions of the walkers are equally spaced with

xj+1,0—xj,0=xj+1—xj =dayp , (Alg)
the products simplify and one obtains
p—1 _
Wp(f,t)zaﬁ(p—” [ H 7! e———pxz/ZDt/(z,n.)p/Z(Dt)pz/Z .
r=1
(A20)

If one now integrates (or, for a lattice, sums) over the posi-
tion x =X, of the reunion, one finds that the total proba-
bility (or “number” of walks of n o« ¢ steps) varies as

g(p)(t) zgép)/t(pz—l)/z ,

as stated in (6.28). The singular behavior of the corre-
sponding generating function, & ,(w,x), defined in (6.13)
is then easily seen to be as reported in (6.18) and (6.19).

(A21)

APPENDIX B: ONE-DIMENSIONAL CHIRAL CLOCK
MODEL

In this appendix we examine the critical and multicriti-
cal behavior of the p-state chiral clock model (2.1) on a
one-dimensional, linear chain. Since this is a one-
dimensional system with short-range interactions the
correlation length remains finite for all nonzero tempera-

(xj,o—xk,o)(xj —-xk)

(A17)
1+0(a?/Dt)
m--(p—1n"’ (A18)

tures. Nevertheless, the p-state chiral clock models for
P >2 each exhibit a chiral ordering transition governed by
a universal chiral scaling function for the correlations, just
as postulated generally in (4.6), as well as a symmetric
(A=0) multicritical point near which the free energy is
governed by a multicritical scaling function of the form
(3.2).

The p Xp transfer matrix, ¥V, for the one-dimensional
p-state clock model has elements

Vie=exp{K cos[2m(I—k +A)/pl} , (B1)

where K=J/kgT. These specify a cyclic matrix which
has eigenvalues

p=1 .
)Lm — z VOkemek/p , (B2)
k=0

where m =0, 1, ...,p—1.2 The free energy per spin, f, is
obtained as usual from the largest eigenvalue, Ay, via
f(T,A)= —kBTanO
=—J cos(2mrA/p)
p—1
—ksT 3 [Vor/Voo+O0(V /Vio)]

k=1
(B3)
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where the second line exhibits the low-temperature
behavior near the ferromagnetic ordering transition that
occurs at T=0 for |A| <. In the low-temperature lim-
it the terms from k=1 and p —1 dominate the sum. In-
serting (B1) reveals that the singular part of the free ener-
gy behaves, for T—>0 and |A| <+, as

fe=f+Jcos(2mA/p)

~—kpgTexp|—K 1_008217_ cos 2mA
4 p
X cosh |K sinzp%rsin ZZA . (B4)

In the vicinity of the symmetric multicritical point, A=0,
T?=0, this reduces to a scaling form like (3.2), as expect-
ed for general dimensionalities, namely,

27 JA
~—kyTexp | —K |1—cos=Z , 5
A sT exp | —K |1—cos » W, kyT (BS)
where the scaling function is
W, (x)=cosh[sin(27/p)(27x /p)] . (B6)

The basic spin-spin correlation function for this one-
dimensional model is?

G(n)=(exp[2mi(s, —s0)/p]) =(A{/A)", (B7)
for n >0, while for n <0 we have
G(n)=G*(—n)=(A} /A" . (B8)

Fourier transformation yields the structure factor

S(g)= 3 e""G(n)

=(l—e~%*)/[1—2e " cos(g—F)+e~*], (B9)

where the inverse correlation length « and the incommen-
surability 7 are defined, in the usual way, via

M/ Ag=exp(—k+iq) . (B10)

Here and above the lattice spacing has been taken as a =1.
In the limit T—0 we find, for all chiral fields in the range
O0<A<7,

k—ig~(Ag—A))/Ao=(1—e*™ PV, / Vo (B11)
so that the correlation length is given by

k=2sin®(7/p)Wo1 / Voo » (B12)
while the incommensurability satisfies

g ~wok with wy=cot(7/p) . (B13)

Thus in the scaling limit ga << 1, T—0, the structure fac-
tor scales as in (4.6), namely as

S(q@)~2k~*""D(q /k) , (B14)

where =1 and the universal scaling function is simply
Dw)=1/[1+(w—wp)*], (B15)

This represents a standard Lorentzian form but with the
maximum displaced from the origin as we have argued is
to be expected quite generally for a chiral ordering transi-
tion. The one-dimensional model therefore confirms all
the expected features.
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