
PHYSICAL REVIEW B VOLUME 29, NUMBER 4 15 FEBRUARY 1984

Quantum size effects on the plasma dispersion in quasi-two-dimensional
electron systems

Sankar Das Sarma
Department of Physics and Astronomy, University of Maryland, College Park, -Maryland 20742

{Received 13 December 1983)

A generalized many-body dielectric theory is developed for studying the collective excitation spectrum in

quasi-two-dimensional electron systems in semiconductor inversion and accumulation layers and in semi-

conductor heterostructures and superlattices. In particular, the coupling between the intrasubband and in-

tersubband collective modes {plasmons) is explicitly retained in the theory. This mode-coupling effect
modifies the plasma dispersion relation in these systems and the theory explains the hitherto unexplained

phenomenon of a plasmon mass increase at higher wave numbers observed in silicon inversion layers. In a

superlattice this mode-coupling effect produces a leading-order modification of the plasma dispersion rela-

tion in contrast to other mode-coupling-type phenomena {which are usually higher-order processes away

from resonance) giving rise to an improved agreement between the theory and light-scattering experimen-

tal results.

In this Communication I present results of a theoretical
calculation of the collective excitation spectrum in quasi-
two-dimensional electronic systems both for the single layer
heterostructure and the multilayer superlattice situations.
The theory explicitly includes the coupling between the
two-dimensional intrasubband and the resonant intersub-
band collective modes ("plasmons"). This mode-coupling
effect (which is nonzero for finite values of wave vector q

parallel to the two-dimensional layer) has been ignored in

earlier theories' for the collective excitation spectrum in

two-dimensional systems because it was considered to be a
"higher-order" effect. In this paper results are presented
which show that this mode-coupling effect "reduces" the
two-dimensional plasma frequency at high values of q from
its classical value. This explains the unexpected (and so far
"unexplained" ) plasmon mass enhancement observed at
high wave vectors in silicon electron inversion layers. In a

multilayer type-I superlattice the coupling between the in-

trasubband and the intersubband' collective modes is shown
to modify the two-dimensional plasma dispersion in the
leading order in q. This is a novel type of mode-coupling
phenomena which are usually higher-order effects. The
theory also explains the slight disagreement between the ex-
perimentally measured' plasma dispersion in a semicon-
ductor superlattice and earlier theoretical calculations, as a
manifestation of this mode-coupling effect.

The generalized dielectric function for a single two-

dimensional electron layer (appropriate for a single hetero-
junction or for a metal-insulator-semiconductor structure )
is given by

+ ijmn ( q 01 ) 5im ojl v ijmn ( q )II mn ( q. i ~ )

where i,j,m, n denote subbands9 for quantized motion along
the direction perpendicular to the layer and 5; is the
Kronecker 8 function. The function II „(qicu) is t,he gen-
eralized polarizability function. '

In Eq. (1), v,j „, the matrix element of the Coulomb in-

teraction (including any image effect9 arising from the
dielectric mismatch at the interface) is given by

v, „(q)= J dz Jl dz't', (z)gj(z)v, (z,z )fm(z )g„(z'), (2)
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where Xl2= IIl2+ II2l is the intersubband polarizability giv-

ing the resonant transitions between levels 1 and 2 and IIll
is the two-dimensional polarizability" function. The depen-
dence on q and cu has not been explicitly shown in Eq. (4)
for the sake of brevity. The last term in Eq. (4) couples the
intra- and the intersubband plasmon terms which are indivi-

dually given by 1 —ellllIIll=0 for the intrasubband two-
dimensional plasmon" and by 1 —v~2~2X~2=0 for the inter-
subband' plasmon. Using random-phase approximation'
for the polarizability, one has"' in the limit of small q

and

II11(q, Ql)—
m QJ
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Xtz(q, o)) = 2IV,E21/(01 E21) p—
where E2l=E2 —El is the subband energy separation and

N, is the electron density per unit area.
Using Eqs. (2) and (5) in Eq. (4) one gets the following

coupled collective modes for the two-subband model:

2+((E2 +%2)+&2+[(E2 +%2 & 2)2+4C2q2]1/2

(6)

where v, (z,z') is the two-dimensional Fourier transform (in
the x-y plane) of the three-dimensional Coulomb interac-
tion including any image term, and t;(z) is the quantized
wave function for the ith subband. In the above equations

q is the (conserved) two-dimensional wave vector in the
plane of the layer whereas ice is the standard' Matsubara
frequency.

The collective excitation spectrum is obtained by the con-
dition of the vanishing of the determinant of the dielectric
matrix given in Eq. (1):

le,, „I=O . (3)

If B subbands are kept in the problem then Eq. (3) defines
a B'XB determinantal equation in the most general situa-
tion. Restricting oneself to a two-subband model (B= 2) in
which only the lowest subband (denoted by 1) is occupied
by electrons, Eq. (3) gives
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~2+ 1
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where «121= (E221 + W~~)'/ is the depolarization shifted'2'4
intersubband transition frequency ("the intersubband plas-
mon" mode).

Experimental conditions for Ref. 6 were such that cu2~» «1~ and then Eq. (8) gives two collective modes
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Where «1~= (22rN, e'q/~m)' ' iS the tWO-dimenSiOnal plaSma
frequency first calculated" by Stern (~ is the average lattice
dielectric constant) and

W~ = [2NgE21u1212(q —0) ]' '

is the so-called depolarization shift. ' ' The constant C in
Eq. (6) is given by

c = (2N,'E21 [vtl12(q 0) ] /m}'

Introducing «1 = Cq in Eq. (6), the coupled modes become

where

~21 (E21 + 2Nsf12E21)' '

«11, = (N,f11/m ) '/'q

«11= [N, q (2E21fjf;/m)' ']'
(12)

In Eq. (12), f11; f12, f;, and f; are form factors whose ex-
plicit forms are not shown in this paper. It should be point-
ed out that Eq. (11) for the superlattice is formally
equivalent to Eq. (8) for a single layer problem. The decou-
pled modes, eo2~, the intersubband' mode, and co~, the in-
trasubband mode in Eqs. (11) and (12), are identical to the
ones obtained recently by Tselis et al. The new feature of
Eq. (11) is the interaction term 4«1; which couples the intra-
and intersubband plasmons.

In the long-wavelength limit the form factors of Eq. (12)
can be explicitly obtained, and in the experimentally in-
teresting" limit of qa, qb (( I, with a & 2b (where a and
b are, respectively, the superlattice period and the thickness
of individual layers), one gets in the leading order

Al„Ga1 „As system'8) situation, one gets the following
equation for the coupled collective modes of an infinite
periodic superlattice:

-2 (-2 + - 2 + [( -2 - 2)2+4- 4]1/2}

The two-dimensional plasmonlike mode ao has a lower fre-
quency than the classical plasma frequency" co~ and if one
writes «12 =22rN, e2q/~m(q) following Ref. 6, the plasmon
mass m (q) is given by

and

«1+ ——«121[1 —0 (q2a2) ]

QJ —«1&(1 —8)

(13)

(14)

m(q)=m I+
2 N, q

2m e2E2)
(10) where

where V1112= [v1112(q 0) ]'. Equation (10) suggests that
the plasmon mass depends on the wave number q and the
electron density N, through the combination N, q since V~~~2

and E21 are only weak functions of electron density (and are
independent of q). This is the experimental observation of
Ref. 6. It should be emphasized that dispersion"' and
many-body" corrections to the plasma frequency always in-
crease value lowering the plasmon mass whereas the experi-
mental observation is the opposite. Also, the q values in
the experimental '6 situation are such that higher-order
dispersion corrections to the plasma frequency are negligi-
ble. The only other possible explanation for the plasmon
mass increase is band nonparabolicity (which is very small
for silicon electron inversion layer) which, however, should
show no q dependence. Thus Eq. (10) is the only possible
qualitative and quantitative explanation for the experimental
observation ' of a plasmon mass increase in silicon inver-
sion layers at high q and N, .

For a superlattice there are important modifications of
the theory outlined above. Tselis, Gonzales de la Cruz, and
Quinn as well as Bloss have recently considered the prob-
lem of intra- and intersubband collective modes in a super-
lattice where the individual layers have finite thicknesses.
Our treatment of the superlattice collective-mode problem is
equivalent to that of Ref. 5 except that the coupling
between the intra- and intersubband collective modes is ex-
plicitly retained in our theory.

Generalizing the above analysis appropriate for a single
layer problem to the type-I superlattice (e.g. , GaAs-As-

(22rN, e2a/[14/22 (I —cosk, a ) j}' q

is the decoupled, long-wavelength two-dimensional plasma
frequency for a type-I superlattice with k, as the wave
number in the superlattice direction. The constant 5 is a
small number (5 = 0.1) which depends on the form factors.

Equation (13) gives the intersubband plasmon mode

21 (E21 + 42rN e E21L12/&)

with

L 12= 2
~

dz „dz'$1(z')(2(z')

which has been first obtained by Tselis et al. and Bloss. It
is clear that the intersubband plasmon is unaffected in the
leading order by mode-coupling effects since the correction
in Eq. (13) goes as O(q2). On the other hand, Eq. (14)
suggests that the two-dimensional intrasubband plasmon
frequency co~ is affected in the leading order by the mode-
coupling effect since co has a different phase velocity com-
pared with co~. As has been emphasized before this is a
novel mode-coupling phenomenon since away from reso-
nance (the situation being discussed) coupling of collective
modes is usually a higher-order effect [as, for example, in
Eq. (13)]. The intrasubband plasmon in a superlattice, the

mode, is thus affected by the coupling in a significant
fashion even for small q since the correction 8 in Eq. (14)
occurs in the same order as the leading decoupled term ~~.
Thus the theoretical slope of the «1 (q) curve against q is
reduced by 1005% compared with the cu~(q) curve. An al-
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ternate way of stating the result is that the effective mass
entering the plasma frequency in Eq. (14) is increased from
m to m(1+2|i) due to intersubband transitions. This is a
10-15% increase in the effective mass due to hybridization.
Actual use of the experimental parameters (appropriate for
a modulation doped GaAs-Al„Ga~ „As multilayer superlat-
tice) corresponding to Ref. 7 gives 8 =0.07, reducing the
slope of the theoretical curve by 7% and bringing the
theoretical results in excellent agreement with all the experi-
mental data points of Ref. 7. This last aspect is particularly
significant since the comparison of the experimental data
with the decoupled plasmon frequency co~ puts all the data
points below the theoretical curve. Thus the experimental'
results are explicitly showing the effects of mode coupling in

a semiconductor superlattice.
In conclusion, coupling between the intra- and intersub-

band plasmons has been explicitly retained in the calculation
for the collective-mode spectrum of quasi-two-dimensional
electron systems both in the single layer case and in the
multilayer superlattice situation. Mode coupling affects the

intrasubband plasmons in a significant fashion providing an
explanation for the hitherto unexplained observation' "of a

plasmon mass increase in silicon inversion layer. For a
type-I superlattice, mode coupling gives rise to the novel
phenomenon of a leading-order modification of the in-

trasubband plasmon frequency even in the nonresonant
(i.e., tozt W to~) situation. Thus the slope of the superlattice
plasmon' curve against q is slightly reduced bringing exper-
iment' and theory in excellent agreement with each other.
The approximations used in the theory are the effective-
mass approximation, the random-phase approximation, and
the neglect of wave-function overlap from different layers in

a superlattice —all of which are expected to be reasonable
assumptions for actual systems of interest. Details of the
theory will be published elsewhere.
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