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Low-frequency conductivity of one-dimensional disordered systems
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A simple method is presented to calculate the low-frequency conductivity for one-dimensional disordered
diffusive systems with nonsingular distributions of the transfer rates.

The dynamics of a variety of one-dimensional (1D) disor-
dered system can be described by a model which consists of
an infinite sct of coupled rate equations, connecting
nearest-neighbor sites by random independent trans
rates

P„= 8'„(P„+I—P„)+ W'„ l(P„-I—P„)

Herc, using the picture of diffusing particles, P„ is the parti-
cle density at site fI, and 8'„ is the conductivity between
sites n and n+1.

Particularly, the model successfully describes diffusion
processes in 1D superionic conductors and quasi-1D elec-
tronic systclTls. '

For systems with cxlstlng lnvcfsc moIYlcnts of thc transfer
rates, a variety of methods have been presented to calculate
the low-frequency diffusion coefficient. ' All of these pa-
pers are based on effective medium type or related argu-
ments. The only exact method so far has been presented by
ZwanZlg.

In this Brief Report I demonstrate a simple method for a
straightforward calcUlatloll of thc low- (slid lllg11-) ffcqUcll-
cy conductivity of systems, which are characterized by Eq.
(1). This method is mathematically equivalent to Zwanzig's
work, but, I believe, can be understood more intuitively
and therefore may be applied more easily to other situa-
tions.

To start, lct Us rcwl'Itc Eq. (1) Rs R colltlnUIty cqUatloll for
thc particle current

P„+(j„-j„ I) =0

and assume a llncar law fol' thc current:

jn = —@'n(Pn+ I P. E.)——

Here I have inserted an external field E„(t) explicitly (fac-
tors, like inverse temperature, are already included in E„).
The 8'„are assumed to be randomly distributed, with exist-
ing inverse moments, and uncorrelatcd in space, c.g. ,

and n —I we immediately recover Eq. (2) by setting

It can be shown that the constant c added to the right side
of Eq. (5) does not play any role for the current in this
model. ' Therefore, we will set c =0 from now on. Using
Eq. (3), Eq. (5) may be rewritten:

j.(t) = -p„(t) .

What is left to be done is the solution of Eq. (5), which
turns out to be simpler than the solution of Fq. (2) In the
low-frequency limit, and has the advantage of being directly
connected with the current. Thc high-frequency results may
be derived from Eq. (5) too, but they are well known, ' so I
shall not reproduce them here.

Taking the Laplace transform of Eq. (5) and dividing by
W'„, we have (c =0)

where

~'0.= l.+I —24. + A. -I .

Tile Gfccll s fUIlctloll g„, (s ) of tllls cqUatloll Is dcf1ned by

—A„g„, (s) =5„
n

Inserting the formal solution of Eq. (7) into the Laplace
transform of Eq. (6) we have

j.(s)=s $g., (s)E (s) .

Because thc averaged Green's function is translationally in-
variant, wc scc fl'olTl thc definition of thc conductivity that

Ir„(S)=S $(g„(S))

We seek thc linear response of the current to the external
field E„. (Because the fluctuation dissipation theorem holds
for this system, thc calculation of the conductivity is
cqUIvalcrlt 'to tllc dctcfmlllatlorl of tllc dlffUsloll cocfflclcllt. )

To proceed, let us consider the following equation:

lan
—II'n{An+I —2A. +An-I —E.) = &

Upon taking the difference of this equation between site n

We now define a Green's function g by

Pl g rf, le ~ Pl, ftf

This equation is easily solved. Wc have in Fouricr space

g'{k,s) = 1

+2 1 —cosk
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and"

g&(s) I yl
Q

with

(13)

with

f r

u= 4
2+ +u

Rearranging Eq. (8) with the help of Eq. (11), we obtain
the following relation:

g„(s)=g„(s)+ /gal i(s-)OI(s)gim(s)
I

where

(14)

0((s)=s( )—8' W(

This equation may be solved iteratively and then averaged,
producing the same expansion for the conductivity as in
Ref. 9:

o.,„(s)=s $(g„(s))
=sg'(k =0, s) I+ $(OI(s)g, (s)) . (15)

I

1

+ —,4
m-'2 +0 (16)

Although this is not an expansion in the frequency but rath-
er in inverse moments, one may check that, given a power
of frequency, there is only a finite number of different con-
tributions from this expansion. Using Eqs. (12) and (13) in

(15) and checking the frequency dependence of the various
terms, one obtains in the low-frequency limit

The term proportional to s' was found by all authors,
whereas' for the linear term in s, so far only one calculation
exists, which, however, does not reproduce our result. The
deviation from the correct result in Ref. 7 is due to the fact
that the effective medium approximation fails to reproduce
all contributions linear in s. ' An exact evaluation of the
T-matrix expansion in Ref. 7 should, however, give our
result again.

Note that the step from Eq. (5) to Eq. (7) is only allowed
for II'„A 0. Thus an interesting class of systems [class c of
Ref. I] has to be excluded here.

It should be pointed out that our method is restricted to
one dimension. In higher dimensions one cannot simply
extract the low-frequency conductivity from an expansion in
inverse moments of the distribution of the transfer rates.

In conclusion, I have presented a simple and direct
method to calculate the low-frequency conductivity for one-
dimensional disordered systems. Approximate methods
were shown to be correct to leading order in the frequency,
whereas deviations may arise in higher-order terms.

Due to a relation which connects the Laplace transform of
Eq. (1) and our Green's function, Eq. (8), one may use this
method to determine a variety of additional quantities (e.g. ,
the autocorrelation function) in the low-frequency limit. In
addition, our method seems to be helpful for systems with

asymmetric hopping.
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