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Ground-state charge densities, which have been calculated ab initio self-consistently and deter-
mined by minimization of the total energy, are used for a self-consistent calculation of the one-
particle states of simple-cubic thallous chloride and thallous bromide, taking into account the self-
energy corrections computed in the local-density-functional approximation. We depict the resulting
wave functions in a Wannier basis; the band structure is analyzed, and direct and indirect gaps are
shown to be in good agreement with experiments and allow a quantitative explanation of the unusu-
al pressure coefficients and deformation potentials of the thallous halides. The derived valence-
band densities of states are confirmed in all details by various photoemission experiments; the
conduction-band density of states of thallous chloride is corroborated by experiments on core-level
spectroscopy. The unusual polarization properties of thallous halides are attributed to the existence
of the inert s-electron pair (of the cation) beyond the closed-shell configuration of the compound.
The relevance of self-energy and self-interaction corrections is discussed.

I. INTRODUCTION

Compound semiconductors of the types AMBVI
AVBYL AVBYI C4IVBY! etc., such as TICI, PbTe,
Pbl,, and CsPbCl;, are distinguished from the ‘“‘usual”
ANB3¥¥ semiconductors such as GaAs, ZnSe, and Ge, be-
cause the outermost s orbital of the cation A4 is occupied
beyond the closed-shell configuration. In the so-called
“ten-electron” compounds, as well as in the more complex
structures mentioned above, this “inert s-electron pair” of
the cation forms the valence band together with anionic p
states, while the energetically lowest conduction bands are
dominated by cationic p states. As a result, the electronic
properties show characteristic differences from other ionic
or covalent compounds' as follows: A rather small band
gap situated at the edge of the Brillouin zone with a
predominantly intracationic exciton, as a consequence of
the small gap a high polarizability which is characterized
in the optical region by charge-transfer transition from B
to A as well as intracationic transitions; the easily deform-
able, i.e., polarizable outermost s subshell leads to unusu-
ally large and negative pressure coefficients of the lowest
optical transitions; it also causes the unusually large static
screening and strong electron-phonon coupling.

It is the purpose of this paper to describe an ab initio
calculation of the one-electron states of the simplest com-
pounds with an inert s-electron pair, namely the thallous
halides. This investigation is based on the previously re-
ported self-consistent ab initio calculation of the electronic
ground state of thallous halides® (hereafter referred to as
I), which employed the local-density-functional (LDF) for-
malism.>*

However, it is well known>® that the Schrédinger equa-
tion which follows from the LDF—ground-state formal-
ism by a variational principle with respect to the density is
solved by eigenvalues which do not obey Koopmans’s
theorem’; therefore an interpretation of these eigenvalues
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and the corresponding eigenfunctions as one-particle
states is strictly speaking unjustified, although not uncom-
mon.8~10 The necessary investigation of the Dyson equa-
tion for the one-particle Green’s function leads in a local
approximation of the self-energy to an appropriate one-
particle equation which differs from the ground-state
Schrodinger equation only by a local energy-dependent po-
tential.” These so-called self-energy corrections have been
self-consistently taken into account in the usual local ap-
proximation.® The analysis of the resulting band struc-
tures and densities of states shows good agreement with
optical as well as photoemission spectra.

Although the basic variable of the LDF formalism is
the charge density, it is often advantageous or even neces-
sary, e.g., for the investigation of many-body corrections
to optical spectra,!! to gain detailed knowledge of the
wave functions. Usually, a particularly useful basis is pro-
vided by the Wannier functions'? because of their strong
localization and orthogonality. Until now, however, this
convenient and physically intuitive basis has been used
nearly exclusively for theoretical considerations or simple
model calculations.!>* We employ a construction scheme
which allows a simple construction even for crossing
bands. We have adapted this scheme, which was
developed in the framework of Hartree-Fock calcula-
tions,'* to the LDF formalism and used it in a previous
investigation of thallous chloride.!® After a recapitulation
of the basic equations we present the final Wannier func-
tions in the next section and compare it with other repre-
sentations of the one-particle wave functions. We then ex-
plain the self-consistent determination of the one-particle
energies for simple cubic thallous chloride and bromide;
the resulting band structures are discussed in the Sec. III.
They are more accurate than the TICl band structure
presented in the previous investigation' because the calcu-
lation of the underlying ground state has been improved
considerably. They now allow an analysis of the lowest
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optical transitions including the pressure coefficients. In
the final section the densities of states are compared with
various photoemission spectra. The discussion of these
data shows that many of the unusual characteristics of
thallous halides can be explained by the existence of the
inert s-electron pair.

II. CALCULATION OF THE ONE-PARTICLE STATES
A. Schrédinger equation

In principle, the calculation of excited states of an N-
particle system requires the solution of the Dyson equa-
tion.> The resulting one-particle Green’s function yields
one-particle energies which represent the energy difference
between the N- and the (N *1)-electron systems and thus
allow the determination of the band-structure and excita-
tion energies. Within the LDF formalism, which we em-
ploy in the present investigation, the self-energy in the
Dyson equation is locally approximated by the self-energy
of an homogeneous electron gas,> which is known from
dynamically screened Hartree-Fock calculations.!® This
approximation leads to the following Schrodinger equa-
tion:

[—A+ V(P 4+ Vilp(r),E)—Ep(E)]¥,(r,E)=0, (1)

where the effective exchange-correlation potential V. de-
scribes the energy-dependent self-energy.

At E =puy, the chemical potential of the N-particle sys-
tem, it coincides with the exchange-correlation potential
Uy Of the ground-state formalism which was discussed in
I. We therefore set

Vielpr E)=p(p)+AZ(p,E) . (2)

Thus the Schrddinger equation for the excited states
differs from the ground-state equation only by the addi-
tional energy-dependent potential AZ, the so-called self-
energy corrections. Employing the charge density which
resulted from the determination of the ground state in I,
we can easily determine!’ the self-energy corrections and
then solve the Schrédinger equation (1) to derive the one-
particle energies E,, and wave functions W¥,,,.

B. Representation of the wave functions

A conceptually simple and intuitive basis for the repre-
sentation of the one-particle wave functions was originally
defined by Wannier.!?> The Wannier functions are normal-
ized and orthogonal, localized within the unit cell and de-
cay exponentially if they describe an isolated band. How-
ever, the computations as Fourier transforms of the Bloch
functions of a single band requires first the solution of the
adequate Schrodinger equation. For connected bands this
specification leads to Wannier functions which decay only
with an inverse power,!® because the Bloch functions are
no longer analytic at the crossing points of the bands. As
an example, Fig. 1 shows the Wannier function which was
calculated for the upper valence band of thallous chloride
from the Bloch functions which solve the Schrodinger
equation (1). A very complicated function results with a
rather slow decay proportional to 1/r [note that ra(r) is
plotted].

2247

A simple construction scheme which avoids these prob-
lems was given by Kohn!* but rarely used.®!® Exponen-
tially decaying Wannier functions even for connected
bands without prior knowledge of the Bloch functions are
obtained from a set of localized functions ;,

a,-L(r)=N—1/2§ > %e"”z/)j(r —I—L)(k).  (3)
J
To derive orthogonal normalized Wannier functions the
coefficients have to satisfy

b(k)=S; (k) , @

where Sj; denotes the overlap matrix between the Bloch-
symmetrized basis functions,

Suk1=3 | [ diryr —Ldr o= 3507
L

(5)

This orthogonalization scheme, which was already given
by Lowdin,?® does not change the symmetry properties.
Therefore the Wannier functions transform according to
the point group of the crystal if we demand this symmetry
for the basis 1);. However, the Wannier functions are not
uniquely defined in this way because the square root of a
matrix [in Eq. (4)] is not. If we start from a nearly
orthogonal basis, i.e.,

we can suitably use the fast-converging series
S~12(k)=1—5D(k)+ 5DXk)—zD*k)+ - - (7)

to obtain Wannier functions which differ from the local-
ized basis only by a small correction

ajL(r)=¢j(r —L)
—3 X %i(r—L")

iL’
X [ drg(r' =L@’ =L+ -+ . (8)

In Fig. 2 we present a Wannier function a;(r) constructed

0.5

FIG. 1. Wannier function F(R) of the upper valence band lo-
cated at a chlorine ion calculated as Fourier transform of the
Bloch functions of this band. Note the scale: In order to
display the off-center contributions the function was scaled up
by a factor R.
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FIG. 2. (a) Basis function with p symmetry localized at a
chlorine ion. (b) Corresponding Wannier function calculated ac-
cording to the Lowdin scheme [Eq. (8)] by orthogonalization of
the localized orbital (a) on all functions which contribute to
valence and conduction bands. Scale is the same as in Fig. 1.

according to this scheme and its starting point, the local-
ized orbital ¢;. The difference is very small and only no-
ticeable near the neighboring lattice sites where the orbi-
tals ;- are localized. Obviously this generalized Wannier
function is much better localized than the straightfor-
wardly calculated function in Fig. 1.

In general [i.e., relaxing the condition (6)], the general-
ized Wannier functions are obtained directly from a super-
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position of the Bloch-symmetrized local orbitals ; ac-
cording to definition (3). Figure 3 shows a Bloch-
symmetrized local orbital for various wave vectors. Only
the contribution localized at the origin does not change,
all other contributions oscillate, so that the summation in
Eq. (3) over all wave vectors yields an exponentially local-
ized Wannier function.

C. Basis set

In view of the similarity between the Schrodinger equa-
tion (1) and the quasiparticle equation of the
LDF—ground-state formalism, we use the optimized basis
set of localized orbitals which followed from the minimi-
zation of the total energy with respect to the basis set.’!
That means we take the orbitals of the free ions up to
5d-T1%, 3s-Cl—, and 4s-Br~ as frozen core and the 6s- and
6p-T1*, 3p-Cl—, and 4p-Br~ orbitals with varied outer-
most maxima for the description of valence and conduc-
tion states. With respect to the total energy the thus-
defined frozen core turned out to be a reasonable approxi-
mation causing only small errors.? With regard to the
band structure, the implications of the frozen core should
be insignificant as can be seen from the energetically up-
permost orbitals which are included in the core, namely,
5d3/, and 5ds, of thallium about 10 eV below the valence.
bands. Their energy levels do not display any crystal-field
splitting which should arise if the ionic orbitals are influ-
enced by their environment. While this effect was ob-
served, e.g., in photoemission spectra of silver halides,?
the thallous halide spectra display only a spin-orbit split-
ting of 2.31 eV in TICl and 2.27 eV in TIBr (Ref. 23)
which agrees within experimental error with the splitting
of the 5d energies of free T1T ions known from experi-
ment?® and relativistic calculations.?* These experiments
confirm that the one-particle energies corresponding to
these core functions are not significantly influenced by the
formation of the crystal. However, in order to avoid any
mixing terms between core and other states in the secular

k=10,1,0)

k=(1,1,0) B

FIG. 3. Localized basis function of Fig. 2(a) after Bloch symmetrization for different wave vectors K.
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equation corresponding to the Schrodinger equation (1),
we have explicitly orthogonalized the “other” states on all
core states using the usual Schmidt procedure.

The overlap matrix S;;(k) [Eq. (5)] and the correspond-
ing Hamiltonian matrix H;;(k) among valence and con-
duction orbitals are thus corrected,

S§(k)=S8;(k)— 3, S (k)S¢; (k) ,
H)(k)=H(k)— 3, S}(k)Ec(K)S;(k) ,

where the sum runs over all core orbitals, and Sj;, S;., and
S, are defined by Eq. (5). From the above argument that
the formation of the crystal hardly changes the core, it
follows that the core-energy levels E, are nearly disper-
sionless and can therefore be approximated by the levels of
the free ions appropriately shifted by the Madelung ener-
gy. We have calculated the neglected dispersion effects
non-self-consistently and found that the contributions of
various core states largely cancel, and significant changes
of the order of 0.1 eV occur only at the extrema of the
bands, yielding, e.g., an increase of the band gap by 0.25
eV. On the other hand, considering the uppermost con-
duction states which follow from the described basis set,
we cannot expect to achieve a very good basis-set conver-
gence. For these states we estimate that the mixing of
higher orbitals changes the one-particle energies up to 0.5
ev.

D. Self-consistent solution of the Schrédinger equation

From the Schrodinger equation (1) we derive the secular
equation in terms of the localized orbitals in the usual
way,

det | > [Hiy(k)+ A3 (E,k)—ESp (k)]e™ | =0, (9)
L

where the matrix elements are calculated between the
core-orthogonalized localized orbitals ¢;(r) and ¥;(r —L),
and H° represents the Hamiltonian of the ground-state
equation including relativistic corrections for the mass-
velocity and Darwin terms and the spin-orbit coupling.?’
Owing to the energy dependence of the self-energy correc-
tions this eigenvalue problem is nonlinear and has to be
solved self-consistently with respect to the energy. Al-
though this self-consistency does affect the wave func-
tions, it should be noted that in the LDF formalism, the
charge density, which enters the calculation of the matrix
elements, has to be taken from the ground state and is
therefore not affected. Hence we can determine the ma-
trix elements of the self-energy corrections in Eq. (9) for
all energies from the ground-state charge density. It
turned out'>!” that the matrix elements of the self-energy
corrections depend approximately linearly on the energy,

AzijL=0'ij]-:LE ) (10

with different proportionality constants o™ and o~ for
energies above and below the chemical potential. We can
therefore reduce the problem to a secular equation which
is linear in the energy,
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det %e”‘L{H}}L(k)—E[S,-(}L(k)—ai(k)]} =0.

(11)

This is nothing but the secular equation of the ground-
state formalism with a modified overlap matrix. It can be
solved in the usual way and yields the one-particle states
within the approximations of the LDF formalism and the
variational freedom of the basis set.

In Fig. 4 the resulting band structures are compared
with those eigenvalues that can be obtained by neglection
of the self-energy corrections, i.e., from the Schrodinger
equation of the ground-state formalism. The deviations
are rather small and exceed 0.3 eV only in the lowest
valence band. These small deviations, which, however, be-
come important for the quantitative comparison with ex-
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FIG. 4. Thallous halide band structures calculated with (solid
lines) and without (dotted lines) self-energy corrections at the ex-
perimental equilibrium lattice constant.
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perimental spectra, explain the success of band struc-
tures®~!° which were obtained from the ground-state
equation only, a procedure which is strictly speaking in-
correct as discussed in the Introduction.

A common deficiency of LDF band-structure calcula-
tions, even including self-energy corrections, is a consider-
able undervaluation of the band gaps'®?°~2% compared
with optical experiments. This drawback, which we shall
also observe in the next section, has usually been attribut-
ed to self-interaction: The Coulomb and exchange-
interaction terms of one orbital with itself do not cancel in
the LDF formalism in contrast to the Hartree-Fock an-
satz. For finite systems ad hoc corrections were justified
and successfully implemented.?®*=3° The application of
these corrections to infinite systems however is by no
means straightforward. Besides states which are localized
by impurities?® or otherwise,?! the eigenstates of a crystal
are Bloch functions for which those interaction terms van-
ish in the thermodynamic limit.!”3? Therefore we believe
that self-interaction corrections cannot repair the men-
tioned deficiency.

III. BAND STRUCTURES

We now turn to the analysis of the band structures for
thallous chloride and thallous bromide in Fig. 4, which
have been calculated ab initio without any fitting parame-
ter in the described way. Qualitatively they agree with
band structures obtained earlier from Korringa-Kohn-
Rostoker (KKR),** pseudopotential,* linear combination
of atomic orbitals (LCAO),>* and orthogonalized-plane-
wave (OPW) (Ref. 36) calculations. Quantitatively the
comparison with experimental data shows much better
overall agreement than those calculations.

In agreement with those earlier calculations, our valence
bands predominantly consist of thallium s and halogen p
states, while the conduction bands are built from thallium
p states. This partition could be expected from the
ground-state investigation,> where only a small mixing of
Tl p states into the ground-state charge density was ob-
served, i.e., T1 p states remained largely unoccupied in the
ground state. Among the valence bands, on the other
hand, a considerable mixing between s and p orbitals local-
ized on nearest-neighbor sites leads to a large dispersion,
which is maximal at the X point as expected from symme-
try arguments. Accordingly, the top of the valence bands
occurs at the X point, and the states display predominant
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s character with 30—40 % halogen p contribution. Simi-
larly pure p conduction bands should obtain minima at
points X, M, and R. While the minimum at point M is
prevented by relatively strong mixing of valence-band
states, we do find distinct minima of the conduction bands
at points X and R. As a consequence we obtain a direct
gap at point X and an indirect gap between points X and R
(see Fig. 4) in agreement with experimental observa-
tions.3”=%° This usual feature of gaps at the edge of the
Brillouin zone follows therefore directly from the elec-
tronic configuration of the ten-electron compounds with
their surplus s-electron pair. In contrast the respective s
states in alkali halides, for example, belong to the conduc-
tion bands so that symmetry arguments alone explain a
direct gap at I'.

The optical absorption at the direct gap of the thallous
halides is hence dominated by an intracationic transition;
the following two structures in the absorption spectra®
can be attributed to transitions from the second and third
valence band to the lowest conduction band at the X point,
and these are therefore interionic transitions with a corre-
sponding charge transfer from halogen to thallium ions.
This unambiguous assignment follows from the spin-orbit
coupling of the halogen states, which agrees not only with
the splitting of the structures in the absorption spectra but
also with the distance between the bands in the band
structure.

In Table I we compare the energies of the discussed
transitions with the experimental values. The agreement
is very good for the spin-orbit-split doublet, the differ-
ences between chloride and bromide direct and indirect
gaps are also correctly reproduced, but the calculated
direct gaps are too small by 0.3 eV, and the indirect gaps
are too small by another 0.4 eV.

We have been able to attribute more than half of this
discrepancy to the discussed neglection of the dispersion
of core-orthogonalization terms.!” The remaining error of
0.1 eV for the direct and 0.3 eV for the indirect gaps are
surprisingly small compared to other' LDF calculations.
The reason for this unexpected accuracy is not clear at the
moment. We have already disclaimed the usual pretext by
means of self-interaction terms in the preceding section.
The essential difference between our calculation and other
applications of the LDF formalism is the extreme high
atomic number of thallium, this may suggest that the un-
dervalued band gaps are a consequence of an unknown
systematic error which decreases with increasing number

TABLE 1. Energetic distance of critical points of the thallous halide band structures in Fig. 4 com-
pared to the respective energies of optical transitions [S. Kurita and K. Kobayashi, Proceedings of the
Tenth International Conference on the Physics of Semiconductors, Cambridge, 1970, edited by S. Keller,
J. Hensel, and F. Stern (United States Atomic Energy Commission, Oak Ridge, 1970), p. 171; R. Z.
Bachrach and F. C. Brown, Phys. Rev. B 1, 818 (1970); and Reference 38]. All values are given in eV.

Thallous chloride

Thallous bromide

Theory Experiment Theory Experiment
Direct gap 3.09 3.42 2.65 3.02
Indirect gap 2.50 3.22 1.81 2.67
Spin-orbit-split doublet 5.12 4.92 4.21 4.05
5.18 5.02 4.52 4.47
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of electrons.

For a discussion of the pressure dependence of the opti-
cal transitions we calculate the band structures for smaller
than the equilibrium lattice constants. An example is
shown in Fig. 5. The used lattice constant corresponds to
a hydrostatic pressure of 29 kbar.*! As a consequence the
dispersion of all bands increases, and the bands are shifted
towards higher energies due to the increased kinetic ener-
gy. The last effect is stronger for s than for p states due to
the comparatively smaller localization of the former. The
increased Madelung energy shifts thallium states upwards
and halogen states downwards. For the valence bands
these effects largely cancel except for those states in the
uppermost band which are dominated by thallium s con-
tributions, because in this case, dispersion, kinetic energy,
and Madelung shift all increase the energy. At the bottom
of the conduction bands the increase is weakened by
dispersion effects.

As a result the direct as well as the indirect gaps are re-
duced at the smaller lattice constant. This behavior,
which we can thus directly derive from the electronic con-
figuration characteristic for ten-electron systems with-
s-p-mixed valence bands and cationic p conduction bands,
was already derived from nonself-consistent OPW calcula-
tions>® and has also been observed experimentally.*?—*
The measured pressure coefficients are presented in Table
II. With respect to their largeness and their sign, they dis-
tinguish the thallous halides from other materials. The
pressure coefficients of silver halides for example differ by
a factor of —2.2 for the direct gaps and by a factor of
10.6 for the absorption edge.”* The theoretical pressure
coefficients contained in Table II are calculated from the
band structures in Fig. 5 for thallous chloride and similar-
ly for bromide, using the experimental pressure depen-
dence of the lattice constant. As expected from Fig. 5 the
pressure coefficients for the direct gap are large and nega-
tive and for the indirect gap, i.e., the absorption edge, they
are even larger. The spin-orbit-split transition is nearly
unchanged under pressure. These observations agree with
experiments, but the calculated absolute values are even
larger than the experimental data. Accordingly the defor-
mation potentials are substantially overestimated. The ef-
fect of the wave-vector-independent core orthogonaliza-
tion increases drastically with reduced lattice constant and
thus contributes to these errors. But the main reason for
these deviations is certainly the overvaluation of the repul-
sive potential in our calculation as discussed in I so that
the reduced lattice constant corresponds to a higher hy-
drostatic pressure than the 29 kbar used in deriving the
data in Table II. In fact, the deviations in Table II are cut
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FIG. 5. Thallous chloride band structure calculated under
neglect of self-energy corrections at the experimental equilibri-
um (solid lines) and at a reduced (dotted lines) lattice constant,
simulating a hydrostatic pressure of 29 kbar.

in half if we calculate the pressure coefficients by means
of the appropriate theoretical compressibility according to
the total-energy curves in L.

IV. DENSITIES OF STATES

As a comparison of higher optical transitions with criti-
cal points of ab initio band-structure calculations is not
justifiable,*> we turn to the densities of states (DOS’s) for
further comparison with experiments. Extensive uv
photoemission experiments have been published for thal-
lous chloride*; we shall compare the conclusion which
those authors have drawn from the energy-distribution
curves (EDC’s) with the valence-band DOS curve which is
shown in Fig. 6. The strong structures in the EDC’s at
1.0 and 2.2 eV below the valence-band maximum (VBM)
correspond to the high DOS at —0.9 and —2.3 eV. The
high DOS at —3.3 eV appears as a weak shoulder at —3.4
eV in the EDC’s for high incident-photon energy. Obvi-
ously these states are not fully recorded with the available
photon energies. Near the VBM the DOS curves display a
small shoulder; so do the EDC’s at —0.3 eV for
(8.9—9.2)-eV photons. Accordingly, at 8.6—8.9 eV above
the VBM there should be conduction-band states close to

TABLE II. Pressure coefficients of the energies of the lowest optical transitions and volume defor-

mation potentials of thallous halides.

Thallous chloride

Thallous bromide

Experiments Experiments
Transition Quantity Theory Ref. 44 Ref. 43 Theory Ref. 44 Ref. 43
Indirect dE/dp (10~% eV/bar) —28 —16 -36 —18
Direct dE/dp (10~% eV/bar) —18 —86  —13.2 —20.8 —92  —137
Direct VdE /dV (eV) + 5.1 +2.4 +3.2 + 5.4 +2.3 + 3.0
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FIG. 6. DOS of the valence bands of thallous chloride corre-
sponding to the band structure shown in Fig. 4. Energy scale is
shifted so that the VBM is zero.

the X point of the Brillouin zone because valence-band
states at —0.3 eV exist only near the X point. In fact, the
highest conduction band at point X is separated from the
VBM at 8.9 eV (see Fig. 4). For higher incident-photon
energies the EDC’s around —0.3 eV are particularly re-
duced, hence no conduction-band states should be expect-
ed near the X point 10 eV above the VBM. No states ap-
pear in Fig. 4 in this region; this observation indicates that
at least at point X the higher conduction bands are
separated from the computed bands by at least 0.8 eV. A
more detailed analysis of the strong EDC peaks allows us
to prove this statement for the whole Brillouin zone: The
—1.0-eV peak is strongest for (8.6—9.2)-eV photons, and
decreases from 9.6 eV until it nearly vanishes at 10.4 eV
to reappear at 11.2 eV. The same behavior shifted by 1.2
eV is displayed by the —2.2-eV peak. Correspondingly,
the conduction-band DOS should be large around 8 eV
above VBM, decrease from 8.6 to 9.4 eV and rise again at
10.2 eV. The DOS, which is presented in Fig. 7, does
indeed show a maximum at 8.6 eV according to the upper-
most band in Fig. 4 and the decrease towards 9.4 eV.
Higher bands not considered in our calculation are of
course responsible for the renewed rise in the EDC’s.

All the above information, which was drawn from the
EDC’s by experimentalists,*® is in good agreement with

arb. units

Energy (eV)

FIG. 7. DOS of the conduction bands of thallous chloride
corresponding to the band structure shown in Fig. 4. (Bottom of
the band is at 3 eV, the tailing is a numerical error due to the
linear approximation of the Gilat-Raubenheimer procedure
which was used in the integration over the Brillouin zone.)
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the present investigation. Only one observation seems to
contradict, namely, the valence-band width, which was
given as 4 eV, although another weak structure at —4.5
eV was found in the EDC’s for high photon energy and
attributed to inelastically scattered electrons.*® A compar-
ison with the band structure in Fig. 4 suggests that this
shoulder is caused by the lowest valence band. The
matching maximum in the valence-band DOS is situated
at —5.5 eV. Reexamination of the EDC’s show that the
structure increases with increasing incident-photon energy
and shifts from —4.3 to —4.8 eV. This suggests that the
highest incident-photon energy was still insufficient to
determine the real position of this structure. A further in-
crease and shift towards —5.5 eV can be expected.

This expectation is satisfied by x-ray and uv photo-
emission spectra at much higher energy (21.2 eV).*’ In
Fig. 8 these experiments are reproduced and compared
with the valence-band DOS which was broadened by con-
volution with a Gaussian to match the resolution of the
experiments. All EDC structures are in good agreement
with the theoretical results, in particular the discusssed
weak shoulder at —3.4 is now distinct and the lowest
valence band shows up at —5.6 eV in the x-ray spectrum.

For a further corroboration of the conduction-band
DOS, we analyze the results of core-level spectroscopy
which were obtained for TICI by the use of synchrotron
radiation.*® If we neglect the matrix elements, the absorp-
tion from the energetically sharp core level into the con-
duction bands should directly reflect the DOS of these
bands.

The soft-x-ray (approximately 200 eV) absorption spec-
tra start with an antiresonance reflecting the Fano effect
occurring at the formation of the core exciton pertinent to
the 2p level of chlorine against a continuous background
which is here given by the absorption from 5p, Ss, and 4f
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FIG. 8. Solid lines represent DOS’s of the valence bands of
thallous chloride (cf. Fig. 6), broadened by convolution with
Gaussians of a halfwidth of (a) 0.9 eV and (b) 0.7 eV. Dotted
lines represent photoemission spectra (Ref. 47) of TICI; (a) XPS
(Al Ka), (b) UPS (21.2 eV without the background of inelastical-
ly scattered electrons).



29 AB INITIO CALCULATION OF THE ELECTRONIC STRUCTURE ... . IL ...

E

TLCl l
o
E it

A B C D :i
‘T . *
5 ’ ;
+= ;
< ::'-.-‘ . *

1 l 1 l 1 l L

FIG. 9. DOS of the conduction bands of thallous chloride (cf.
Fig. 7), broadened by convolution with a Gaussian of a half-
width of 0.7 eV (solid line) in order to match the resolution of
the soft-x-ray absorption spectra (Ref. 48) (dotted line).

states of thallium. Thus the first peak in these spectra
corresponds to the conduction-band bottom, 1.7 eV above
which we observe a strong structure, succeeded by weaker
structures at 2.5 and 5 eV and a very large peak at 6 €V,
which is followed by a distinct drop.** In the DOS (see
Fig. 9) these observations match the strong peaks at 1.8
and 5.5 eV and weaker structures at 3.0 and 4.7 eV above
the conduction-band minimum. We expect the core level
of chlorine 2p to suffer a spin-orbit splitting of 1.8 eV.
The commensurate doublets are reflected in the absorption
spectra although some of the spin-orbit partners of the
discussed absorption structures coincide with other peaks;
the second exciton, for example, is not distinguishable
from the 1.7-eV peak. For thallous bromide comparable
photoemission experiments are complicated by surface
charges* and by the satellites of core structures which are
superimposed in the valence-band region.> A comparison
of the available spectra®*>* with thallous chloride spec-
tra does not show qualitative differences. The EDC’s
again display a weak shoulder at —0.4 eV and a shoulder
at around —1.2 eV, followed by a strong maximum at
—2.2 eV with a shoulder at —3.5 eV.® The experiments
also show with regard to the conduction bands that the re-

arbitr units

Energy (eV)

FIG. 10. DOS of thallous bromide corresponding to the band
structure shown in Fig. 5. Energy scale is shifted so that the
VBM is zero.
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FIG. 11. DOS of the valence bands of thallous bromide (cf.
Fig. 10), broadened by convolution with a Gaussian of a half-
width of 0.7 eV (solid lines) in order to match the resolution of
the x-ray photoemission spectra (Ref. 50) (dotted lines).

gion between 6.5 and 7.3 eV above the VBM stands out
for its high DOS.* The theoretical results for thallous
bromide are presented in Figs. 10 and 11. In the valence-
band region the very weak shoulder at —0.3 eV, the peak
at —0.9 eV, and the strong peak at around —2 eV with a
shoulder up to —3.5 eV, all agree with the expectations
from the experiment under discussion, and the maximum
of the conduction-band DOS is also at 7.3 eV. In contrast
to earlier measurements* the recent x-ray photoemission
experiments*® show an additional peak at —6.0 eV, which
corresponds to the lowest valence band in Fig. 4 and is re-
flected by the strong peak at the bottom of the DOS at
—6.0 eV in Figs. 10 and 11.

V. CONCLUSION

Together with the previous paper, the present investiga-
tion constitutes an an initio self-consistent description of
the electronic structure of simple cubic thallous halides.
Without fitting any parameter we derived a consistent rep-
resentation of the many-electron ground state and the
one-particle states. Ground-state properties as well as
many optical data have been calculated and shown to be in
good agreement with experiments thus confirming the va-
lidity of our approach and the accuracy of our results.
The numerical errors have been reduced below 0.1 eV for
the one-particle energies. The deviations of our band
structures and densities of states from experimental data
are generally of the same size or, where they are larger,
could be shown to relate to the usage of the frozen-core
approximation. Therefore the methodological accuracy,
in particular, the local-density approximation for the self-
energy turned out to be the same as the achieved numeri-
cal accuracy. We conclude that the effect of nonlocal
contributions to the self-energy is below 0.1 eV, while our
calculations have shown that the consideration of the
self-energy corrections in the local approximation is more
important for the achieved overall agreement with experi-
ments (a neglect of these corrections would increase most
of the deviations by 0.1—0.2 eV). We believe that this ac-
curacy, which is considerably higher than in previous in-
vestigations, is necessary for a realistic description of the
electronic states with respect to further applications.
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