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Reflectivity of a nonlocal dielectric with an excitonic surface potential
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The reflectivity of a semi-infinite nonlocal dielectric is investigated theoretically, including the ef-
fect of the surface potential and without invoking the simplifying dead-layer approximation. This is
achieved by integrating the exciton equation of motion in the presence of the repulsive, spatially
varying, surface potential together with Maxwell's equations. The method is developed for both s
and p polarizations, and the results of numerical calculations of the reAectivity of CdS and ZnSe are
presented.

I. INTRODUCTION

In their discussion of the optical properties of nonlocal
dielectrics Hopfield and Thomas' suggested that the effect
of the surface could be represented by a repulsive potential
U(z) which acts on the exciton in the vicinity of the sur-
face. The geometry of a semi-infinite spatially dispersive
dielectric at z &0 is assumed. Since they found the solu-
tion of the resulting differential equations containing a
spatially varying term U(z) to be difficult, Hopfield and
Thomas replaced the potential by an infinite potential bar-
rier a finite distance d inside the crystal. %ith this simpli-
fying assumption there are three spatial regions in which
one has to solve the equations: Outside the dielectric
(z & 0), in the exciton-free layer (0 &z & d), and in the spa-
tially dispersive region (z ~ d). After obtaining the solu-
tions in the three regions one has to match fields at the
boundaries. At z=0 the usual Maxwell boundary condi-
tions suffice, but at z=d additional boundary conditions
(ABC' s) have to be specified. Much effort has been in-
vested in discussions of the merits or deficiencies of the
various possible choices of these ABC' s. ' Some of the
arguments were based on pure theoretical considerations
(e.g., energy conservation) and some relied on fitting ex-
perimental data from optical experiments. In many works
the further simplification of ignoring the dead layer alto-
gether has been invoked and the ABC's were applied
directly at z =0.

Our purpose here is to return to the original formula-
tion of Hopfield and Thomas' and to solve the exciton
equation of motion together with Maxwell's equations
without replacing the spatially varying potential U(z) by a
step function. In this way we dispense with the need of
specifying the ABC's at a fictitious interface as is done in
the dead-layer approximation at z=d. We perform a
direct integration of the set of differential equations, start-
ing at some large z deep in the bulk and advancing to-
wards the surface of the dielectric, z=0. At this surface
we will still need an ABC, but here, in view of the repul-
sive nature of the potential U(z), the obvious choice is the
vanishing of the excitonic polarization, i.e., the Pekar
ABC.

Since Hopfield and Thomas have explicitly stated that
the theory of excitons in the surface region must be com-
pleted by actually solving the differential equations with a

spatially varying potential U(z), it is somewhat surprising
that this approach has almost been neglected, while
numerous works were devoted to the ABC problem. Im-
portant exceptions are the recent works of Sakoda,
Kiselev, ' and Balslev, ' ' in which various forms of sur-
face potentials were included in the calculations. How-
ever, in these investigations only the case of s polarization
was considered and reflectivity calculations were per-
formed for normal incidence only. Perhaps this was due
to the fact that Hopfield and Thomas' formulated the
basic system of differential equations containing the sur-
face potential for s polarization only. %e develop here an
analogous set of equations for the more complex case of p
polarization. We then present a systematic method for in-
tegrating the equations for both polarizations and for cal-
culating the corresponding reflectivities at oblique in-
cidence.

II. BULK SOLUTIONS

We now define the model dielectric and recall some of
the well-known properties of its bulk solutions, i.e., the
exciton-polariton modes of the infinite homogeneous
solid. Starting from these solutions we will subsequently
build up the solutions for the semi-infinite dielectric.

The dielectric under consideration has a dielectric con-
stant

e(~,q)=co+- z
coy- —6) +Dg —leo/

Here eo is the background dielectric constant, mz is the
frequency of the transverse resonance, co& is a measure of
the oscillator strength, and y is the damping constant.
Spatial dispersion enters through the term Dq, with
D =Km~/M, where M is the exciton mass.

At any given frequency co there exist three different
modes. There are two transverse modes, which are ob-
tained from the dispersion relation

c q /co =e(co,q) .

%e assume, without loss of generality, that the exciton-
polariton wave vector lies in the x-z plane so that

q =q„+q, . For given m and q», (2) is a quadratic equa-
tion in q, . The roots, which will be denoted by q& and q2,
are given by

Qc1984 The American Physical Society



REFLECTIVITY OF A NONLOCAL DIELECTRIC WITH AN. . . 2233

2
2 ~ 2

q12 2
' ~B+~0

' 2 2 2 1/2 '

4COp CO

~B —&0 2 +qx + 2
C c D

(3)

D =epE+4mP,

we obtain

2

V X V XE= (eQE+4mP) .
c2

(12)

(13)

where

I s =(co coT—Dq„—+icky)/D . (4)

Equations (8) and (13) form the system of differential
equations to be solved. We now describe the method of
solution for the two independent polarizations.

The third bulk mode is longitudinal, defined by

e(co, q) =0 .

For given co and q„we can obtain q, from (5). The solu-

tion, which will be denoted by qL, is given by

2
N

qL ~B
E

a2
+ I (z) Py(z) =-

az2

2

Ey (z), — (14)

A. s polarization

The excitonic polarization and the corresponding elec-
tric field have y components only and Eqs. (8) and (13)
reduce to

III. REFLECTIVITY OF SEMI-INFINITE
DIELECTRIC

CO

q —ep c2
CO

Ey(z) =4m Py(z) .z' ' c' ' (15)

We now consider the semi-infinite dielectric occupying
the half-space z&0. The effects of the surface will be
represented by a repulsive potential U(z) acting on the ex-
citon. The exciton equation of motion in the presence of
this potential is'

AT U(z)
CO —NT+lNQ+DV —2 P=—

We integrate these two equations numerically, starting
from some large enough z=z0 outside the range of the
surface potential U(z) and advancing toward the surface
z=0. As discussed above, there exist in the bulk two in-
dependent s-polarized exciton-polariton modes. We there-
fore perform the integration twice with two different sets
of initial conditions at z =zp. The first set is derived from
bulk fields

a2
+ I (z) P(z)=-

Z2

2

E(z),AD

where only the z-dependent parts of the fields have been
retained. Here

Assuming an exp(iq„x) x dependence of the fields this as-
sumes the form

Py(z) =e

Ey(z)=, (q )
—I s )e

COp

and the second one is derived from

Py(z) =e

(17)

(18)

coT U(z)
I (z) = cu coT Dq, +—icoy —2—D . (9)

. CO~~XH= —i —D,
c

—+ Q) —+

V XE=i—H,
C

(10)

If we discard the surface potential term, I' (z) reduces to
the bulk value I s of Eq. (4).

We will solve the exciton equation of motion (8) togeth-
er with Maxwell's equations and then match the internal
solutions with the fields outside the dielectric to obtain the
reflectivity. The external fields consist of incident and re-
flected waves. The angle of incidence is denoted by 8 and
the wave vector of the incident field is again assumed to
lie in the x-z plane, so that its components are k„=k sinO

and k, =kcos8, where k=co/c. Of course, the wave-

vector component parallel to the surface is conserved, so
that k„=q„, and all the fields have a common exp(iq„x)
factor.

By eliminating H from the Maxwell equations

Py(z) =A, Py, (z)+A2Py2(z),

Ez(z) =A &Ez &(z)+A2E&2(z) .

(20)

(21)

We determine the ratio A1/A2 numerically by applying
the Pekar ' ABC, P~(0)=0, at the surface of the solid.
This is the natural choice of an ABC at a surface near
which there exists a repulsive potential. ' The boundary
condition gives

A i Pyp(0)

Az Py i(0)
(22)

The incident and reflected fields outside the dielectric are
of the form

E~(z)= 2 (q2 —I s)e
COp

Here q1 and q2 are the two bulk values of q, defined
by Eq. (3), and I s, given by (4), is the bulk value of I (z).

lfIZ
We denote the solutions which have an e ' behavior in

the bulk by P~&(z) and E~, (z), and those with an e ' bulk
behavior we denote by P~2(z) and E~2(z) The genera. l

solution will be a combination of the form

and using the relation
i(,k„x+k z)

(23)
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i{k„x—k z)
(24) B. p polarization

Applying the usual continuity conditions on the tangential
components of the electric and magnetic fields at z =0 we
obtain

In this case the nonvanishing components of the exci-
tonic polarization and the electric field are P„,P„E,and
E, The x and z components of Eqs. (8) and (13) are

Eo+E~ ——A, Ez ~(0)+AqE&2(0),

ik, (Eo E~—) =A (Ey')(0)+ApEy'2(0),

(25)

(26)

4n.D
x

Np

82
, +r'(z) P, ,

Bz

from which it follows that

ik, Ey )(0)+Ey2(0)
2

A)
Ey' i (0) + Ey2(0)

EO
ik, Ey)(0)+Ey2(0) + Ey)(0)+Ey2(0)

~qx
BE,

4+D
2

COp

82
, +r'(z) P, ,

az2

B N co+ ep E„—4~ Px =0,
Qz 2

C
2

C
2

(30)

(31)

R =
I
Eg /Eo

from (27) and (22).

(28)

(27)

Thus, once we have performed the numerical integration
of Eqs. (14) and (15), we get the reflectivity

aE.iq„+ q —ep E,—4m P, =O .
C C

(32)

These four equations can be reduced to two equations for
P„and P„which can readily be integrated numerically by
substituting E„and E, from (29) and (30) into (31) and
(32). This gives

r'(z)+eo . . +2 + eo, 1'(z)+, —,P, iq„— , +1'(z) + P, =0,B" c~ Bz2 Bz Bz c2 Bz Dc Bz Bz Bz

(33)
r

. a" a' c Bz Dc c
(34)

P(z)=(q;, 0, —q„)e ', i =1,2 (35)

We integrate these two coupled equations numerically
three times, starting with three different initial conditions
at z =zp in the bulk. We obtain two transverse solutions
by using the initial conditions corresponding to

A2 P, i(0)P„L(0)—P„i(0)P,I (0)

A) P 2(0)P,I (0)—P,2(0)P„L (0) '

P,2(0)P„)(0)—P„2(0)P,((0)
P„2(0)P,L (0)—P,2(0)P„L (0)

(38)

(39)

P(z) =(q„,O, qI )e (36)

where q; are again the bulk values given by (3). We obtain
a longitudinal solution by starting at zp with the longitudi-
nal bulk mode

i{k„x+kz)~l k
p k,

9 (40)

The p-polarized external fields are given by the sum of an
incident and a reflected wave of the form

where qL is given by (6).
lg)Z%'e denote the solution with an e ' bulk behavior by

P&(z) =(P», O, P»), the solution with an e ' behavior by

P2(z) = (P„z,O, P,z) and the longitudinal solution by

PI (z)=(P„L,O, P,I ). The general solution will be a com-
bination of the form

P(z) =A
~ P~(z)+A2P2(z)+AL PI (z) . (37)

Applying the Pekar ABC P(0)=0 we obtain the two am-
plitude ratios

I

x i{k x —kz)—+T k
''k. '

The Maxwell boundary conditions at the surface give

Eo+Ez ——A iE„t(0)+AzE„2(0)+AI E„I(0),
)k (Eo Eg ) =k, I A )E„)(—0)+A2E„2(0)

ik„[A (E,)(0)+A2—E,2(0)]I,
so that the ratio of reflected to incident amplitudes is

(41)

(42)

(43)

Ez

A2 AI A2 A2
ik E„2(0)+E„)(0)+ (E„I(0) —k, E„'2(0)+E„')(0)—ik„E,2(0)+E,)(0)

Ai
r

A2 AL A2
ik E„2(0)+E„)(0)+. E„I(0) +k, E„'q(0)+E„',(0) ik E,p(.0)—+.E, )(O)

(44)
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ty of ZnSe, as measured by Tokura er al.~4 is shown in
curve a of Fig. 2. Curve c was calculated from the local
theory, i.e., neglecting spatial dispersion. Curve b was ob-
tained from the nonlocal theory, but without a surface po-
tential, i.e., assuming U(z) =0 and using the Pekar ABC.
The reflectivity obtained by the method described in Sec.

0
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n e or p polarization.FIG. 6. Calculated reflectivity of Z S f
ngle of incidence is 8S'. a, with co~/coT ——0.8)&10 a =SO A;

b wit, without a surface potential; c, calculated by the local theory
coT —. )&,a —SOA,

IIII using a surface potential of the form (45) with co&/co&.
= .8X10 and a =50 A is given by curve b of Fig. 3,
in which a is again the experimental spectrum. The calcu-
ated refiectivity agrees well with the experimental refiec-

tivity at energies up to about half-way between coT and

uL, but does not reproduce the structure at higher ener-

gies. This discrepancy will be discussed in Sec. V.
Nevertheless, we will use the values co&/coT ——0.8X10
and a =50 A rn the following reflectivity calculations,
which demonstrate the ready applicability of our method

izations.
to the case of oblique incidence and for both s and p polar-

The calculated reflectivity for s polarization and angles
of incidence of 45 and 85' is shown in Fig. 4. It is com-

pared with the results of the local theory and of the nonlo-
cal Pekar theory without a surface potential. We see that
the main effect of the surface potential is the reduction of
the intensities of the relative maximum and minimum of
the spectrum, accompanied by a slight shift of these extre-
ma toward the lower-energy side. The analogous reflec-
tivities for the case of p polarization are shown in Figs. 5

and 6. In addition to the effects which occur for s polari-
zation there also appears a secondary reflectivity max-
imum above coL .

V. DISCUSSIQN

O.I—

0— I

2795 2.800 2.805 2.8IO

Energy (eV }

n e or p po arization.FIG. S. Calculated reflectivity of ZnS f l
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——0.8 && 10 ' a = SO A;
b with, without a surface potential; c, calculated by the local theory

, a —SOA,

We have presented a method for calculating the refiec-
tivity of a semi-infinite dielectric, in which the effect of
t e surface on the excitons is represented by a continuous
su ace potential instead of the discontinuous potential
which is used in the dead-layer approximation. The sam-
ple calculation performed for CdS (Fig. 1) demonstrates
t at with a reasonable choice of the surface potential pa-
rameters, the experimentally measured reflectivity can be
reproduced. For this case the agreement with the mea-
sured data does not fall short of that which has been
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achieved by Halevi and Hernandez-Cocoletzi' with the
dead-layer approximation.

In the case of ZnSe we could not reproduce the full
structure of the experimental spectrum (Fig. 3). This may
bc duc to thc over simp1if lcd foITll of thc surface potcnt1al
(45). It is possible that the surface potential also has to
contain a well, i.e., a region in which U(z) &0, as suggest-
ed by Kiselev' and I.agois. In any case, as correctly
noted by Kiselev, ' whereas the reflectivity of a crystal
with a given surface potential is uniquely defined„ the re-
verse problem, that of reconstructing the potential from a
given reflectivity spectrum does not have a unique solu-
tion. Additional information, such as reflectivity data at
various angles of incidence for both s and p polarizations
will be useful for defining the correct shape and magni-
tude of the surface potential. The method presented here
provides a step in this direction, because it is applicable to
arbitrary polarization and angle of incidence, and can thus
be combined with a systematic set of optical measure-
ments on a given sample. Here the importance of using
one and the same sample for a large number of experi-
ments should be stressed. This is because different sam-
ples of the same material can have different surface poten-
tials for the excitons, depending on the preparation of the

crystal. This has been shown, e.g., by Tokura et al. , who
have presented two clearly different reflectivity spectra of
two ZnSC samples. Furthermore, Lagois has also mea-
sured the reflectivity of ZnSe and his data differ consid-
erably from those of Tokura et al.

An important additional source of information which
will yield information about the surface potential is the
dispersion relation of the surface polaritons, which can be
traced experimentally by the method of attenuated total
reflection (ATR). I.agois has performed ATR calcula-
tions for ZnO using a three-layer model to approximate
the surface potential (or depth-dependent exciton eigenen-
ergy in his nomenclature). In his calculations, however, a
dead layer was also assumed, so that his model still in-
volves an inherently discontinuous potential. The applica-
tion of the present method to ATR calculations is now be-
ing investigated and will be discussed elsewhere.
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