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Surface-induced charge disturbances and piezoelectricity in insulating crystals
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The charge disturbance induced by a surface in a three-dimensional insulating crystal is studied in
the self-consistent-field approximation, when the surface is parallel to one of the lowest-index crys-
tal planes. The disturbance is shown to decay exponentially into the interior of the crystal with a
decay rate which depends only on the band structure of the infinite crystal and the position of the
Fermi level relative to any surface states that may be formed. %e then show that the macroscopic
piezoelectric response of a semiconducting crystal does not depend on the way in which the crystal
is terminated, thus resolving a previous controversy.

I. INTRODUCTB3N

It is commonly believed that piezoelectricity is a bulk
effect and that the vanishing coefficients of the piezoelec-
tric tensor can be inferred from the symmetry of the unit
cell of the crystal. ' In particular, one expects that, if the
unit cell is symmetric under spatial inversion, then all
components of the piezoelectric tensor are zero. Indeed, it
is clear that this is the case for a molecular solid, where
the dipole moment of the solid is just the sum of the di-
pole moments of the individual molecules, and the molec-
ular moments in turn are determined by the local electric
fields and local strain fields at the molecules.

For the case of an ionic solid, the situation is slightly
less obvious. Even though a crystal structure has inver-
sion symmetry (e.g., the NaC1 structure), a finite crystal
may be terminated in an asymmetric manner [e.g., a (111)
plane of Na+ ions on one side and a plane of Cl on the
other side], so that the finite crystal can have a macro-
scopic dipole moment, proportional to the volume of the
sample. Indeed, if one chooses as the center of the unit
cell a point midway between a Na+ and a Cl ion, the
unit cell will have a finite dipole moment; this dipole mo-
ment would vary with pressure applied to the sample, and
one might then be tempted to conclude that NSCl is a
piezoelectric. In fact, if the large electric field due to the
surface ions were not cancelled by external charges, the
field would produce a relative displacement of the positive
and negative ions in the bulk of the crystal, and the mag-
nitude of this additional polarization would change in a
nontrivial fashion as the pressure is varied.

Of course, NaC1 is not a piezoelectric. The piezoelec-
tric coefficient must be measured, in principle, under con-
ditions of vanishing macroscopic electric field. For exam-
ple one may place the sample between the plates of a
shortcd capacltol, which ls a geometry that leads to van-
islliilg avci'agc clcctilc flicld 111 the crystal. Thc piczoclcc-
tric coefficient then is determined by measuring the
current flow through the shorting wire, as one varies the
stress on the sample. For an ionic crystal with an
inversion-symmetric unit cell, such as NSC1, one can

readily demonstrate that for a given stress variation, the
current in the shorting wire will vanish in the limit of a
thick sample, inversely as the thickness of the sample, and
hence there is no bulk piezoelectric effect, regardless of
how the crystal is terminated. The essence of the argu-
ment here is that the displacements of the ions are entirely
determined by thclr /OcQl cnvlronnlcnts once thc IDacro-
scopic electric field is cancelled, and thus the termination
of the surface has no effect on the sample interior in the
shortcd capacltol gcoIDctry.

It is less clear, however, that one can make these locali-
ty arguments in the case of a semiconducting crystal.
Here, the natural starting point for a quantum-mechanical
description involves electrons in Bloch states, which are
spread throughout the crystal. There is then no obvious
way to talk about the displacement of a particular elec-
tron, and one may especially question whether the sample
boundaries will have a negligible effect on the interior. In
fact, it has been proposed that the surface effects can-
not be ignored in this case, and that there should be a non-
vanishing bulk piezoelectric coefficient for a crystal with
asymIDctric termination, even when thcrc ls an lnvclslon
center in the unit cell of the infinite crystal.

In the present paper we argue that the effects of the
semiconductor surface fall off exponentially as one enters
the interior of the crystal, and that one can define a local
piezoelectric response in the semiconductor just as in the
case of the ionic crystal or a molecular solid with local di-
pole moments. It is well known that under appropriate
conditions surface perturbations on the charge density
p( r) of an insulating crystal fall off exponentially as a
function of distance from the surface. However, the po-
larization P(r) is related to the integral of p(r ), so it does
not immediately follow that there is no constant correc-
tion to P(r). In the simplest case of a nonpiezoelectric
crystal, we can establish that there is no correction by
making use of the demonstrations of surface charge
quantization by Appelbaum and Hamann and Claro. To
establish that there is vanishing effect of the surface on
the piezoelectric response of a bulk sample in the more
general case, we show that the current response function is
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independent of sample termination, far from the surface
1Rycls. Tllc colldltloll fol 'tllls to bc true Is tlIat tile Fermi
level lie within an energy gap in the interior of the crystal,
between a completely full valence band and a completely
empty conduction band.

It follows from our arguments that there is a unique
piezoelectric coefficient, which can be calculated in princi-
ple for an infinite sample or for a finite sample with any
convenient boundary conditions, and that the piezoelectric
coefficient does vanish when the unit cell has inversion
symmetry. These x'esults are in agxeement with the con-
clusions of Martin, ' and our work may be considered to
provide a quantum-mechanical justification for Martin s
arguments.

The analyses in this paper are carried out in the self-
coIlslstc11t potclltlal Rpproxlmatlon, I.c., flic self-collslstcnt
potential V( r ) is determined by Poisson's equation

V'V(r ) = —4Irc'[ p(r ) —p;„(r)],
where p;,„(r) is the number density of the ionic charge
and p(r ) is the density of electrons obtained by solving the
one-particle Schrodinger equation in the potential V(r).
(A local exchange and correlation potential could also be
included with little additional effort. ) We assume that the
time-varying applied stress causes a known variation in
the ionic charge p;,„, and we examine the resulting elec-
tron flow in the adiabatic (ro~O) limit.

In this paper we consider a sample which is between
two parallel capacitor plates, and we assuxne that the sam-
ple surfaces are parallel to one of the elementary planes of
the crystal, so that the sample remains periodic in thc
direction parallel to the plates. Effects of the sample ter-
mination are found to fall off exponentially, in this case,
with a decay rate which depends on the details of the sur-
face only through the position of the Fermi level relative
to any surface states which are formed. In the case of a
surface parallel to a crystal plane of high Miller index, or
of a reconstructed surface with a large unit cell, there will
still be exponential decay of surface effects, but the decay
length can be much longer, proportional to the size of the
surface unit cell, and controlled by the electrostatic poten-
tial of the periodic variations in surface charge density.

In the case of a disordered sample surface, there will
only be power-law falloff of the surface effects, controlled
by the random electrostatic dipole fields of the surface
charges. Even in this case, the surface effects fall off
quickly enough so that the measured piezoelectric con-
stant of a large sample should reduce to the bulk value, in-
dependent of the details of the surface. However, we shall
not discuss the disordered surface here.

In the following section we shall discuss in greater de-
tail the model considered in this paper. In Sec. III we ex-
amine in detail the self-consistent potential and charge
density in the neighborhood of a surface, and see how they
appxoach exponentially the values for the ideal bulk crys-
tal. The quantization of surface charge is discussed in
Sec. IV for the simplest case of a nonpiezoelcctric crystal.
In Sec. V these results are used to establish the vanishing
of the piezoelectric coefficient in the simple case. The
mox'c gcncfal case 1s also trcatcd In this scct1on. Herc wc

show that the current response function is independent of
the details of the surface potential Rnd that this implies
that the surface has a vanishing effect on the piezoelectric
response of a bulk sample. Appendix A contains a review
of the analytic properties of Bloch functions used in the
paper. In Appendix 8 we present details of our analysis
of the wave functions and charge density in the vicinity of
a suIfacc.

Although portions of Secs. III and IV are recapitula-
tions of derivations that have previously appeared in the
literature, other portions, such as our discussions of the
linear-response function X(r, r ') and our analysis of the
self-consistency problem are presented here for the first
time, to the best of our knowledge. Previous discussions
of the falloff of the charge-density perturbation b.p&(r)
arising from a localized surface potential are extended, in
Appendix 8, to three-dimensional crystals.

II. MODEI. CONSIDERED

In the following sections we considex' a semiconducting
crystal, in a quantum-mechanical treatment, and show
that the effect of the surface on the charge density and
self-cons1stent potent1al decays exponentIally Into the 1nte-
rior of the crystal. There is, in fact, a minimum decay
rate independent of the details of the surface potential, if
the Fermi energy is located near the middle of the bulk
gap. Using these results and the quantization of surface
charge, or, more generally, the properties of the current
response funct1on, we show that the p1ezoelectr1c polanza-
tion is independent of the nature of the surfaces, neglect-
ing terms of order I/L, where I. is the thickness of the
sample.

Wc cons1dcx' a scmiconduct1ng crystal bctwccn shortcd
capacitor plates that are oriented perpendicular to the z
direction. If the ions in the crystal are displaced due to an
applied ac pressure on the capacitor plates there will be a
change in the electron-ion potential, and we would like to
kxlow what thc I'csponsc to this change 1n potential ls~ or~
specifically, what current is induced in the shorting wire.

Within the self-consistent potential approximation, we
may answer these questions by an iterative procedure. We
may first guess the positions of the ions and an approxi-
mate form of electronic charge density p(r). We then
compute V(r) from Poisson's equation, (1.1). We next
solve SC111'OdlIlgcl 8 cquatloll 111 tllls V( I') to gct R llew cs'tl"
mate of p(r), use the new p(r) to compute a new V(r),
and iterate until self-consistency is achieved for V(r) and
p(r). In general, however, we may find at this point that
the forces on the ions are not zero. Then we must displace
the ions slightly, so that the forces vanish, and then begin
the procedux'e again. Ultimately, after several iterations,
one must find self-consistency for the positions of the
ions, the electron charge density p(r), and the potential
V(r).

In the present paper we shall discuss the problem of
self-coIlslstcrlcy between V( I' ) Rnd p( I' ). Self-consistency
of the ionic positions can be discussed with a minor gen-
ex'alization of oux arguments, but will not be explicitly
treated. Rather, we shall assume that, except near the sur-



SURFACE-INDUCED CHARGE DISTURBANCES AND PIEZOELECTRICITY. . . 2177

face, the interionic distances are the saine as for an infin-
ite crystal, and that the bare ionic potentials are also the
same as in the infinite crystal. The effect of varying stress
will be incorporated in the model by a variation of some
parameter of the bare ion potentials, which conserves the
bulk symmetry. Any effects of the surface will then result
from the perturbation of the electron charge density p(r)
and the self-consistent potential V( r ).

Figure 1 shows an example of the bare electron-ion po-
tential for a crystal with two types of ions and an inver-
sion-symmetric unit cell in the bulk. A simple example of
a change in this potential which preserves the bulk sym-

metry is one in which the relative depths of the A and 8
wells change but their positions remain the same. In this
case one would expect charge to be transferred between
the A and 8 wells. If the crystal is terminated in a sym-
metric way, such that it has an inversion center, then, by
symmetry, applying pressure cannot induce a dipole mo-
ment in the crystal and no current will flow in the short-
ing wire. However, if the crystal is terminated in an
asymmetric way, as in Fig. 1, it is not so obvious that a di-

pole moment cannot be induced.

III. THE SELF-CONSISTENT POTENTIAL

b V(r) =Az+ g e ~~ ~~(B

IIG II(&0)

—(z+s)GII

(z —L+s)GII+C e ), (3.1)

where GII is a reciprocal-lattice vector parallel to the sur-
faces and the coefficients 8 and C are determined

II

by the surface charges. If we remove the macroscopic
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FIG. 1. An example of the electron-ion potential V(r II,z) for
fixed rII, in the simple case where the bulk crystal is non-
piezoelectric, is shown. The potential is periodic in the region
0&z &LqULK.

A. Potential arising from specified surface charges

Consider a finite crystal in the region —s (z (I.—s,
terminated in an asymmetric manner. Let us first assume
that the change in potential, arising from each surface, is
entirely due to charges within a finite surface layer of
thickness s. Then, from Lap/ace's equation, the difference
in the total potential of this finite crystal and the corre-
sponding infinite crystal in the region 0 &z & L, —2s is

electric field by shorting the electrodes, then A must be
zero (Ref. 2) and b, V(r) decays exponentially inside the
solid (at a rate corresponding to the smallest reciprocal-
lattice vector

~ G~~ ~

).
In the self-consistent-field approximation the change in

the charge density, due to the surfaces, is not perfectly lo-
calized within a finite surface layer. The potential arising
from a general surface charge density eb, p(r) is obtained
from Poisson's equation and the condition that the macro-
scopic electric field vanish. In Fourier space, the resulting
surface potential b, V must satisfy

6p(G~~, q, )
av(G~~, q, ) =4~e'

62 + 2

lirn [q,hV(O, q, )]=0,
q —+0

(3.2a)

(3.2b)

where we have assumed that 5p( r ) is periodic in r
~

~. If
6p decays exponentially into the bulk with exponent y,
then from (3.2) it follows that b V will decay exponentially
with exponent P, where

P= min (), ~G~~ ~

) . (3.3)

In general, for a semiconductor we expect that the ex-
ponential decay length y

' for the surface perturbation
will be larger than the lattice constant of the crystal. If
the surface is parallel to one of the lowest-order crystal
planes, so that min

~ G~~ ~

is equal to one of the lowest
few reciprocal-lattice vectors of the bulk, then P=y
( min

~ G~~ ~; the charge density perturbation and the po-
tential perturbation both decay exponentially into the bulk
with a decay rate y which is smaller than the minimum
reciprocal-lattice vector 6

I
~.

B. Charge density resulting from a specified
surface potential

To calculate the charge density resulting from a speci-
fied surface potential 5V( r ), we need to solve
Schrodinger's equation in the presence of this potential.
This is a difficult problem because of the infinite extent of
the surface potential (i.e., the exponential tail). However,
this problem can be solved by dividing the surface poten-
tial b V into a sum of two parts: one of arbitrary strength
but nonzero only in a finite region, which we denote 5Vi,
and a second part 6V2, which is small everywhere and de-
cays exponentially for z far from the surface. The charge
density resulting from b, Vi can be found exactly by solv-
ing Schrodinger s equation and that resulting from AVz
can be found approximately by using linear-response
theory. This is a good approximation because EV2 is
weak but, in fact, the following analysis can be extended
beyond linear-response theory, if desired.

We first consider the short-ranged potential AV, (r). In
Appendix 8 we show that, for 6Vi ( r ) localized near the
surface of a semi-infinite crystal, the perturbation in the
charge density arising from the surface decays exponen-
tially into the bulk. In particular, we consider a potential
of the form



Vo(r), z&0
= ' Vo(r)+AVi{r), —s &z&0

whcrc Vo 1s thc potcnt1al of thc infinite crystal and whc1e
the surface potential b, Vi (r } is periodic in r ~~. It is shown
that the electron density pi(r) = po(r)+Spy(r) satisfies

lim hpi(r~(, z) e

where po is the electron density of the infinite crystal and
I/ai is a microscopic length which depends only on the
nature of the band gap in the bulk and the position of the
Fermi level, relative to any surface states in the gap.

In the proof of (3.5) it is assumed that b, Vi remains
bounded inside the surface region —s &z &0. The fact
that we have placed an infinite potential barrier at a point
z= —s (which we may take to be outside the crystal)
should not affect the results.

The analysis in Appendix 8 can be briefly summarized
as follows. The electron charge density is the total charge
density of all filled bands and all filled surface states (if
any):

If surface states are present, the decay rate ai may still
equal the bulk coefficient ao, under certain conditions. In
the simplest cases, we find that ai ——ao, provided that any
surface state with energy below a value Ei(k~~) is filled
and provided that any surface state with energy greater
th 1 E (k~~} e pty, h re Ei(k)~) d Ez(k~~)
lie in the gap between the valence and conduction bands.
In this case the contributions of the pole singularities to
the iiltegi'al of (3.6a} al"e jUst cailcelled by tile suiil ovei'
surface states. This result has previously been estabhshed
in one dimension by Rehr and Kohn. '

Under more general conditions there will not be a can-
cellation between the poles of the integral and the sum in
(3.6a). Then the decay rate ai which governs the falloff of
5pi will be determined by the decay rate of the surface-
state wave functions near the Fermi energy, and, in general
we will have a& ~ao. The decay rate u~ can tend to zero,
however, only under very peculiar conditions —if the
Fermi energy approaches the edge of the bulk valence or
conduction band, and there happens to be a marginally
bound surface state at the band edge. Otherwise, a&

' will
be a microscopic length comparable to ao '.

The intrinsic decay rate ao is closely related to the ener-
gy gap between the conduction and valence band. %e ex-
pect that ao will tend to zero if the parameters of the crys-
tal are modified in such a way that the direct band gap
tends to zero.

(3.6b) C. The se1f-cojnsistency pro&lcm

ai ——ao =—2 min
I Imk, (k~~) I

. (3.7)

Note that o.o depends on the bulk band structure and not
on the surface.

The continuum wave functions g „and the surface states

t/i are defined in Appendix 8, and ps and ps denote
kIIK n

the band and surface-state contributions, respectively, to
the density of electrons. The asymptotic behavior of
b, pi(r) is determined by the singularities of P- (r, r)

kn
in the complex k, plane, where P ( r, r ')

kn
=g- (r)g- (r'). Now P- has poles at the com-

II'

plex values k, =~,(k~~), where a; is the complex k, com-
ponent of the wave vector {k~~,a, ) of a decaying Bloch
wave which contributes to a surface state of the semi-
infinite crystal. In addition P has, in general, branch

kn
points at certain complex wave vectors k, =k, (k~~), where
there is a merger between bands n and n+1. The branch
points are characteristics of the bulk band structure, while
the surface states depend on the nature of the potential in
the surface region.

If there are no surface states between the conduction
and valence bands, then the closest singularities to the real
axis arise from the branch points between the valence and
conduction bands, and the decay constant in (3.5) may be
written as

Having established that a potential 5Vi strictly limited
to a finite surface region produces a charge density hpi
which decays exponentially into the crystal, we now turn
to the effects of the exponentially decaying potential 5Vz,
and we prepare to consider the self-consistency problem.

Let us write the total self-consistent potential as

V(r)= Vi(r)+b, Vq(r), (3.g)

p(r)= po(r)+&pi(r)+&p2(r), (3.9)

p;,„(r)=p;,„(r) +hp;,„(r), (3.10)

where po(r) and p,,„(r) are the charge densities of the in-
finite crystal, hp;,„ is assumed to be confined to the sur-
face region —s &z &0, and po+hp, is the electron charge
density resulting from the potential Vi ( r ), discussed
above. The charge density b, pz and the potential b, Vz

where Vi(r ) is a potential of the form (3.4), including the
repulsive wall at z= —s, the potential Vo of the infinite
crystal for z & 0, and the perturbed potential Vo+ b Vi, for
—s &z&0. We write the electron number density p(r)
and the ionic charge density p;,„(r},for z & —s, as
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represent the balance necessary for self-consistency. Also
there is a certain degree of arbitrariness in the definition
of h, Vi, we assume that it has been chosen carefully
enough so that the remainder h, Vz is small. Then hpi is
related to h Vz by

hp2(r)=e f X(r, r ')hV2(r ')dr ', (3.11)

where X(r, r') is the polarizability of the semi-infinite
crystal in the presence of the short-ranged surface poten-
tial hVi.

X(r, r')= g'
n, n

ll' ll

P„(r, r ')P-„, , ( r ', r )f dk, dk,'

kn k 'n'

I' (r, r')P, ,(r', r}

k Iia' n k 'n'

I'- (r, r '}P„.. .(r ', r)
k

ii
k

ii

'

k IIX&n k IIKzn

+(r~r '), (3.12)

for z,z' & —s, and X{r, r ') =0 otherwise. The band indices n and n' run over all filled and all empty bands, respectively.
In order to close our equations, we invoke Poisson s equation (1.1), in the region —s &z & (e. Since we assume that

Vo( r) is the self-consistent potential with the charge density e( po —p;,„)as source, we may write (1.1}as

V2(hVi+hV2)= —4~e (hpi+hpz —hp;,„) . (3.13)

Also, since we have assumed that there is no macroscopic electric field in the interior of the sample, we employ the
boundary condition that h Vz(r)~0 for z~ oo.

Because our system is assumed periodic in the direction parallel to the x-y plane, ~e may take a partial Fouriex
transform in the plane and write the solution to Eq. (3.13) as

h, Vi(G((,z)+h V2(G(~,z) =e f dz'u (z —z')[h pi(G~~, z')+hpz{G(~, z') —hp;, „(G)),z')], (3.14)

where I G~~ I are the reciprocal-lattice vectors in the plane,
and u- (z —z') is the Green's function for Poisson's

equation. For G~~~0 we have

2m'u- (z —z')= exp( —iGiii iz —z'i ), (3.15)
fG()f

while for G~~ =0 we have

4m(z —z') for z «z'
uo(z —z') =

0 for z&z'.

We may also rewrite Eq. (3.11) in the form

kp2(G)(, s)=e x f ds'x- -, (z,z')AY, (Gt(,z'),
GiiG ii

'
G

ii

(3.17)

where the kernel is the partial Fourier transform of
X(r, » ').

The expression (3.12) for X(r, r ') can be studied by the
same techniques used for the one-electron correlation
function G(r, r '} in Appendix B. One finds that X has
similar asymptotic behavior to G. Specifically, if we write

(3.18)

where X is the response function of the infinite crystal,
then vm have

—I) ISX(Z,Z )hX-, (z,z')-e as z+z ~~
GIIG ii

(3.19b)

sphere

X[&-,(z'}+5'-, (z')],
G

ii
G

ii

(3.20)

S- (z)=——hVi(G)(, z)

+8 ZQ~ Z —Z

X [h pi(G(), z'}—h p;,„(G)),z')],

(3.21)

S'- {z)=g f f dz'dz"u- (z —z')hX -, (z',z")
II GIIG ii

Ii

xh V2(G
t (,

z"),
and where R is the inverse dielectric function of the infin
ite crystal, which may be defined, with the use of a matrix
notation, by

where the decay rates ao and ai are the same as in Sec.
III8 and in Appendix B.

Now we can write a formal solution to Eqs. (3.14) and
(3.17) in the form

hVz(G~(, z)= g f dz'R- -, (z,z')
GIIG iiG

ii

X,(z,z')-e ' as ~z —z'~ ~oo (3.19a)
II II (1—e uXo)8=1. (3.23)
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Now invoking (3.19}, we

S (z) & const&(e ' and
GII

Furthermore, we shall see that

see that, for large z,
S' (z) & constXe

G
II

I

R-,(z,z')-e
II il

where a is less than ap, but

as Iz —z'I ~Do (3.24)

(3.25)

EVz(r) & constXe (3.26)

if the coupling constant e is small. It is clear then that

where y is the minimum of a and ai. We may note that
a ' is a microscopic decay length characteristic of the
self-consistent dielectric response of the infinite crystal,
and that tending to zero would signal the onset of a dielec-
tric instability in the bulk crystal. If there are no contri-
butions from slowly decaying surface states near the Fer-
mi energy, as discussed above and in Appendix B, then
ai ——ap&a, and hence b, Vz decays with the bulk decay
rate a.

In order to derive (3.25), it is convenient to take the
Fourier transform of R and g in the z direction as well as
in the x-y plane. Then (3.23) may be written as

X (q+Q, q+Q') R(q+Q, q+Q')=5e, a IQ+-Iz
' =

q, q
(3.27)

where t QI are the reciprocal-lattice vectors of the bulk crystal, and q is a wave vector parallel to the z axis. We wish to
continue R analytically in q, and look for the singularity closest to the real axis.

The response function X diverges at q =+iap. This can be demonstrated from the expression for g:

yp(q+Q, q+Q')= g 'f dr f dr' f dk
n, n'

P- (r, r ')P, (r, r ')
kn ' k+ q n' '

i{q+ Q ) r —i(q+ Q ')
e e +~r~r ~E

kn k+ q, n'
(3.28)

+8~ ~QQ' ' (3.29)

where A is a constant and 8, is analytic in q in the
Q QQ'

region of interest. If we ignore all the terms in (3.26} ex-

cept Q=Q '=0, then we find a pole in R at q =+ia with
a=ap —2Ire ap

I
Ap

I

When we take into account the variation of Imk with

the wave vector k~~, then the divergence of g is reduced
to a logarithmic divergence, close to q=+iap. Then for
sufficiently small e, R has a simple pole at q =+i a, with

and from the form of P, Eq. (A2), and E, Eq. (A5),

near the branch points k, (.k~~). If we ignore the depen-

dence of Imk, on the wave vector k~ ~, then X has a simple
pole at q=+iap, and we may approximate X by the ex-
pression

~ ~~'~ I q+Q I I
q+Q'

I

x (q+Q, q+Q')=
(q —iap)(q+iap)

I

as for the infinite crystal. It is then possible to introduce
a concept of excess surface charge, and show that this ex-
cess is quantized in half-integer values. This result will be
used in Sec. V to give a very simple argument for a van-
ishing bulk piezoelectric response in this system.

One can define the surface charge of our semi-infinite
semiconductor to be the number of excess electrons to the
left of a symmetry plane of the crystal:

ma/2
5N(m/2)= f dz f dr~~p(r~~) n~~npm—/2, (4.1)

where a is the length of a unit cell (containing one A and
one B site, for example, as in Fig. 1), m &0 is an integer,
np is the number of filled bands, and z=ma /2 is a sym-
metry plane. We have assumed that the crystal has a
large but finite area, containing a number n~~ of unit cells
parallel to the surface, and we shall assume periodic boun-
dary conditions at the lateral edges of the sample. The
band contribution to this surface charge is given by

sx, (mn)= I dz /dr„x'g f za, ~q-„(F)['
N

II

ap —a- const)& exp( —const/e ) .2 (3.30) —n~~npm/2. (4.2)

IV. SURFACE CHARGE QUANTIZATION

In this section we will restrict ourselves to the case
where the bulk crystal has inversion symmetry and a two-
fold rotation axis normal to the surface. Then there exists
a set of symmetry planes for the bulk crystal, which are
parallel to the cut surface. We assume that the twofold
rotational symmetry is preserved in the semi-infinite crys-
tal. We take z=0 to be a symmetry plane of the bulk

crystal, and assume that the potential for z & 0 is the same

We can consider the contribution from a single k
~ ~

only:
ma/2

5N(sk((, m /2)= f dz f dr)(g' f dk,
I @ (gr

n "II'2"

npm /2 ~ (4.3)

and we can define 5N(k ~~,
m 2/) similarly.

For a surface potential which is zero in the bulk (i.e.,
the b, Vi part of the self-consistent potential only), the
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value 5N( k
~

~, m /2) has been shown to be quantized for
each value of k~~, to order 1/m, in integer or half-integer
values in both one dimensions and three dimensions. " If
we further assume that the band structure is simple, such

that for fixed k~~ and energy E- there are only two solu-s
ll

tions corresponding to the infinite crystal, then the quanti-
zation in each k

~~
is evident from Eq. (7) of Ref. 8:

5N&(kll~m/2)=((1/m. )[5(k~~,Ir/a) —5(k~~, O}]+—, [ci cos[25(k~[,0)l+c'2cos[25(k~~, m/a)] j+0(1/m })no,

(4A)

where ei 2 ——+1 and 5(k~~, k, } is the phase shift due to the
surface potential. Since for k, =O or k, =n/a, 5=jm/o,
where j is an integer, '" it follows from the above equa-
tion that the band surface charge is quantized in integer or
half-integer values to order 1/m. This accuracy was ob-
tained by considering the analytic properties of the wave
functions on the real k, axis only. By extending the
analysis to the complex plane, it can be shown' that the
error is actually of order e " ~, where y is the smallest
decay rate of the surface states associated with the filled
bands (or y=ao if there are no surface states). Of course
y can be very small in the case where a surface state is just
barely pulled out of the valence band. However, if the
Fermi level is in the middle of the energy gap between the
conduction and valence bands, any such surface state will
be filled. When the Fermi level lies near the middle of the
gap, the total charge density from states of the wave vec-
tor k

~
~, illcludlllg thc surface state RIld filled valcIlcc

states, will exponentially approach the bulk values with a
decay rate al(

k ~), so that

5N(k)), m/2)=1/2+0(c '
~~ ),

where / is an integer and 1/al(k~~) is a microscopic
length, independent of the surface potential (other than its
dependence on the position of the Fermi level relative to
the surface states, if any).

In this analysis of surface charge quantization we have
ignored the long-ranged part of the self-consistent surface
potential [B,Vz(r) from Sec. III], which decays like c
as z-+ ao. The net effect of introducing EV2(r) into our—CE)INC /2
analysis is to change the error from 0(e '

) to
O(e ~ ) in (4.5).

We remark also that if there are no surface states that
cross the Fermi level (i.e., no partially filled surface band)
then the value of / is the same for all values for k

~
~, so that

the total surface charge obeys

5N(m/2) =n~~[1/2+0(e ~ )] .
Equation (4.5) gives only the asymptotic form of the

surface charge. Our analysis does not give the amplitude
of the asymptotic correction or the depth into the crystal
required to reach this asymptotic form. Such information
can be obtained from the numerical work of Appelbaum
and HaIQann On a One-d11Ticnsional Kronig-Penney model
(one atom per unit cell). The striking cancellation in the
charge disturbance that occurs between the contributions
from the band and the surface states is clearly in their pa-
per. The total surface charge is shown to be accurately

quantized as near as five lattice spacings from the surface
(for neutral crystals).

V. PIEZOELECTRIC RESPONSE

We turn now to the piezoelectric response of a large
slab of material. We will first discuss the piezoelectric
response of a finite (or semi-infinite) crystal for the simple
case where the previous analysis of surface charge quanti-
zation is valid. That is, we first consider a crystal with an
inversion-symmetric unit cell in the bulk and a set of sym-
metry planes parallel to the surface, and where the bulk
band structure meets the restriction of not more than two
states fol' RIly glvcll clicl'gy alld glvcll k~~, as dlscllsscd 111

the preceding section. We present a simple argument for
the vanishing of the bulk piezoelectric response in that
case, independent of the detailed surface potential. (Note
that a one-dimensional crystal with inversion symmetry
will always fall into this simple case. ) The piezoelectric
response in the more general case is discussed in Sec. V B.

A. The simple case

Suppose an adiabatic ac perturbation is applied to the
crystal in such a way that the local inversion symmetry of
the bare ion potential is preserved in the interior of the
crystal but the change in the surface potential is arbitrary
other than to preserve the periodicity in the x-y plane.
Then, from the analysis of Sec. III, the difference in the
ac self-consistent potential from that of the infinite crystal
is localized to the surface region.

If the potential V(r ) is changed by a small amount, for
example as a result of strain in a piezoelectric experiment,
then one might naturally expect 5N(k((, m/2} to change
by a small amount. However, the quantization of surface
charge implies that surface charge discrepancy, 5N(k~~)= hm 5N(k~~, m/2) =l/2, can only change by a
discrete amount. In fact, the surface charge discrepancy
5N(k~~) will not change at all, unless there is a change in
occupancy of a surface state, in which case we will have a .

change of +1 in 5N(k~~).
At low temperature, an electron can be scattered from

one state to another only if both states are very close to
the Fermi level. If there are no surface states at the
Fermi level, then no scattering is possible, so there mill be
no changes in 5N(k~~). If there are surface states at the
Fermi level, electrons can be transferred from a surface
state at one value of k~~ to a surface state at another value
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of k~~. It is clear, however, that such scattering processes
will not change the total surface charge at the given crys-
tal surface. (There can be no scattering process which
transfers an electron from a state at one crystal surface to
a state at the opposite crystal surface, because there is
negligible overlap between the wave functions of those
states. )

We see, therefore, that the number of electrons to thc

left of a symmetry plane at z =IIIg /2 rcnlR111s unchanged

during the variation of stress, except for corrections which

fall off exponentially as one enters the crystal. It follows,

then, that the total current through the symmetry plane is

zero, except for corrections of order e

r S, r,z, .„=Oe- (5.1)

The polarization of the sample is defined by

Pz= r zz I' —0 r (5.2)

where po{r) is now the charge density in the absence of
stress. Taking into account charge conservation, I}p/Bt
= —V.J, we have

B. The general case

We now consider more general semi-infinite crystals
and show that the piezoelectric response is the same as
that of the bulk crystal, neglecting terms of order 1/L,
provided that the Fermi level lies in a nonvanishing ener-

gy gap in the bulk.
%C shall use linear-response theory in this section.

Specifically, we assume for convenience that the applied
strain is sufficiently minute that the resulting ion displace-
Inents are small compared to the interatomic spacing, and
the resulting change in electron-ion potential is small.
However, it is clear physically that the piezoelectric
rcsponsc is actually lincai as long as thc stlain is sHlall.

(If it is desired to calculate directly the response to a finite
strain, one should transform to a coordinate system mov-

ing with the ions, at the expense of some complication 111

our equations. )
The z component of the current in the sample is related

to the complete self-consistent ac potential V( r, r0) by

J,(r,co)= f dr 'E(r, r ';co)V(r ',co), (5.5)

P,

Also, wc have
(m+1)a/2

r
~

z Jg r «z —Jg r )»ma 2

(m+1)u/2=—J dF)) J dz(x —ma/2)p(ri), z) .

(5.3)

{5.4)

where + is thc z conlpoIlcllt of thc current, response func-
tion of the semi-infinite crystal in the presence of the
short-ranged potential AV1. The ac potential can be writ-

ten as

V(r, a))= Vo(r, a))+b, V(r, co),

where Vo( r, co) is the self-consistent ac potential of the in-

finite crystal. It follows from our analysis in Sec. III that

Now, except for surface effects which vanish as e

the integral on the right-hand side of (5A) vanishes by

symmetry. Then the only contribution to dP, /dt comes

from the surface layers and is independent of the thick-
ness of the sample. The average polarization density of
the sample is therefore inversely proportional to the thick-

ness L. In a piezoelectric experiment» thc current iIl the

shorting wires of the capacitor plates, per unit area in the

x-y plane, is proportional to the average polarization den-

sity of the sample, and therefore the contribution due to
asymmetric termination of the sample will vanish as 1/L,
for large L.

(5.7)

if the frequency co is sufficiently small. It will also be use-

ful to take the Fourier transform of (5.5} in the x-y plane:

J,(Q~~,z,a)) = g f dz'E(Q~ ~, Q t),z,z', co) V(Q t~,
z', ~)

~ I

(5.8)

II1 tllc adiabatic 11111lt (co~0) tllc current rcspoIlsc fllIlc-

tion is given, for z,z' & —s, by

E
kn k 'n' Kg kn k 'n'

P (r ', rl)P, , (rz, r ')
k ~~K&n

k n

+y„f dk,'

"g kn k 'n'

h

P (r ', ri)P . . .(rz, r '}

+ XX (E E )z
kn k 'n'

r& ——r2 ——r

+(r~r '} . (5.9)
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The asymptotic behavior of X is determined by the singu-
larities of the integrands, in the complex k, and k,

'
planes,

which lie closest to the real k, and k,
' axes. By comparing

(5.7) to the expression for X, (3.12), one sees that the ana-
lytic structure of the integrands is very similar in these
two expressions. There are singularities at the branch
points of P and E and poles at complex values of

kn kn
k, =a; which correspond to surface states. As in Sec. III
and Appendix B, these poles will be cancelled by the sums
over surface states, if the corresponding surface states are
filled. From our previous analysis it follows that X, has
the following asymptotic properties, for co—+0:

(Z+Z')~ uo

~ e ' ', (5.10a)

f drIIJ, (rII,z=ma/2, co)=0(e '~
)

in the adiabatic limit, which is Eq. (5.1).

ACKNOWLEDGMENTS

(5.15)

The authors are grateful to R. Landauer for stimulating
their interest in this subject and for several helpful discus-
sions. This work has been supported in part by the Na-
tional Science Foundation through Grants Nos. DMR-
82-07431 and PHY-77-27084. One of the authors (C.K.)
has been supported by a Natural Sciences and Engineering
Research Council fellowship from the Canadian govern-
ment and has benefited from the hospitality of the Physics
Department of the University of British Columbia, Van-
couver during part of this work.

lim Eo(QII, Q II,z,z';co) oc e
(z—z'/ ~a)

(5.10b) APPENDIX A: ANALYTIC PROPERTIES
OF BLOCH FUNCTIONS

where Eo is the current response of the infinite crystal
[and is given by the first term in (5.9)], and ai and ao are
as defined in Sec. III and Appendix B.

It follows from (5.7), (5.8), and (5.10) that the current
satisfies

lim
I
J (QII z ~) J (QII z ~)

I
oce (5.11)

Z~ 00

in the adiabatic limit, where J, is the current in the infin-
ite sample:

(QII,z, co) = g f dz'+0(QII, Q II,z,z', co)
~ I

In this appendix we briefly summarize some analytic
properties of the Bloch functions P for the infinite

kn
crystal, which will be used in Appendix B. The analytici-
ty of Bloch waves in one dimension has been studied
thoroughly by Kohn. ' A general analysis of the analytic
properties of three-dimensional Bloch waves has been per-
formed by des Cloizeaux. ' We will need the properties of

for complex k, and real k„and k„only. These can
kn

be found in Blount, ' Heine, ' and Krieger. '

The Bloch functions are solutions to the three-dimen-
sional Schrodinger equation

&( Vo(Q II,
z', co) . (5.12) (Al)

The fact that the current approaches that of the bulk crys-
tal exponentially away from the surface immediately im-
plies that the polarization

P,(co)= f drII f dz J,( cd) (5.13)

differs from that of the bulk only in the contribution from
the surface layers. Thus the current in the shorting wire
will be independent of the manner in which the sample is
terminated, neglecting contributions of order 1/L, for
large I..

In a general crystal, one does not have surface charge
quantization because there are, in general, no symmetry
planes through which zero current flows. However, if we
consider the special case discussed in the preceding sec-
tion, then surface charge quantization follows from the
linear-response analysis of this section. To see this, we
make use of the bulk symmetry, which implies

V Qll' z+n /2'co)= V(QII'z+na/2, co), (5.14a)

Ko(QII, Q jI,
—z+ma/2, z'+na/2;ro—)

=—Eo(QII, Q jI,z+ma/2, z'+na/2;oi) . (5.14b)

Using these symmetry relations in (5.12), it follows that
J, (QII,z=ma/2, co)=0. Then from (5.11),

where Vo is a periodic potential and P transforms as
kn

under the translations by a lattice vector of Vo.
This last condition may be expressed by writing

P- (r)=e'"''u- (r), (A2)

where u- is a periodic function. Bloch wave solutions
kn

can be found, in general, for complex as well as real values

of k, though the corresponding eigenvalues E will gen-
kn

erally be complex, and of course the P- are exponentially
kn

growing in some directions, if k is not real.
A section of a three-dimensional band structure is

shown in Fig. 2. The dashed curves correspond to com-
plex values of k, for which the energy is real and are
called real-energy curves. Real-energy curves either run
off to Imk, =+ oo and E=—oo, similar to the ones ori-
ginating at 8 and 8' in Fig. 2, or connect one band to
another, similar to the ones joining A to A' and C to C'.
Considered as a function of coinplex k„E- is a branch

kn
of a multivalued function E-. In general, the projection

k
onto the complex k, plane of each real-energy loop, con-
necting one band to another, encloses at least one pair of
complex conjugate branch points of E . If the real-

k

energy loop lies in a symmetry plane of the Brillouin zone
(such as Rek, =+m/a in Fig. 2) then the branch points
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/xx/

G'
~x&gxxG~

X
X

/j

\

X
X~J

P„=(k, k—p) ' [dp+di(k, —kp)' + ] .

The projection operator of the n+ 1 band, I'-, has the
k, n+1'

same form as (A7) but with the opposite sign in front of
all square roots. Therefore the sum P +P is ana-

k n k, n+1
lytic at k= ko.

The only other singularities of P- occur at points where
k

two or more bands cross. At these points P can have a
k

branch point at real values of k, . However, the sum
g'„P-, where n is summed over all bands which cross atkn'
the point k = k &, is analytic at k ~.

'

- Rekz
/a

Im kz

FIG. 2. A section of a three-dimensional band structure, with

fixed kII, is shown. The dashed lines denote curves along which

k, is complex and E is real. The positions of the branch points
k

of E, which occur in complex-corrugate pairs, are indicated byk'
crosses.

APPENDIX 8: SOME PROPERTIES
OF THE SEMI-INFINITE CRYSTAL

In this appendix we show that, for a semi-infinite semi-
conductor at zero temperature, the effects of the surface
on the charge density decay exponentially away from the
surface. These results are used in Sec. IIIB, where we
consider the charge density resulting from a specified sur-
face potential. We assume that the potential V, (r) is
piecewise continuous and of the form

E„=ap+ai(k, —kp, )'~ + (A3)

To derive the analytic structure of P-, the choice ofkn'
phase and normalization must be specified. We choose

the phase, for real k, such that u' =u, and the nor-
kn —kn'

malization condition to be

will lie on the loop. In this case the two branch points
correspond to the same real energy E-. (In general, the

k

branch points correspond to complex-conjugate values of
the energy also. ) Near the branch point kp, E has the

k

following form:

Vp(r), z &0

Vi(r)= '
V (r)+EV, (r), —s&z~0
tX), Z (—S,

(r)P*„(r ')

k

(B2)

where Vp is perfectly periodic and KVi breaks the z sym-

metry only.
We define a one-electron correlation function

G(r, r')=g' g J dk, P„(r)g', (r')
n

II

=(k, —kp, ) '/"[bp+bi(k, —kp, )' + ] .

The projection operator, defined as

P (r, r ')—:P (r)P „(r'),

(A5)

(A6)

when analytically continued to the branch point ko, has
the form

u„r u „r r=l .

Equation (A4) will then remain valid when we analytically
continue p to complex k, . (The fact that we have not

kn
uniquely specified the phase of P- does not matter since

kn
we will actually only need to analytically continue the
product P P and not P itself. )

kn —kn kn
Considered as a function of complex k„P is a

kn
branch of a multivalued function P-, which has branchk'
points coinciding with those of E . At the branch point

kp, the form of P- is
k

where P satisfies the Schrodinger equation
kn

( —V +V)f„=E-„f„,g„' extends over all occupied

bands, and g is over all occupied surface states be-
k

tween the n and n + 1 bands. We shall assume a large sys-

tern with periodic boundary conditions in the x-y plane.
The surface states are then normalized to unity in this re-

gion, while the extended states have 5-function normaliza-

tion in k, . Our aim is to show that the correlation func-
tion satisfies

lim [e '
/
G(r, r ') —G (r, r ')1]=0, (B3)

Z+Z'~ oo

(B4)

Gp(r, r ) is the one-electron correlation function of the in-

finite crystal and I /a, is a microscopic length.
The electron charge density is p(r) =G(r, r), and hence

it will follow from (B3) that the charge density exponen-

tially approaches that of the infinite lattice pp(r) as one
moves into the interior of the crystal:
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lim [e '
j p(r) —po(r)

~

]=0.
Z~ 00

(85)

1. Jost solutions

[ —V + Vi(r)] f-„=E- f-
in the region —s &z & oo, which satisfy the condition

(86)

We begin by discussing the properties of the Jost solu-
tions, f (r), for the semi-infinite crystal. The Jost solu-

tions are defined to be the solutions to the Schrodinger
equation

semi-infinite crystal because they do not satisfy the boun-
dary condition that the wave function must vanish at
z= —s; however, the Jost solutions will be used to con-
struct these wave functions. The Jost solutions may be de-
fined for complex values of k„and we shall see that they
are analytic in the same domain as the P . This has

kn
been shown in one dimension by Rehr and Kohn' and
their analysis is easily generalized to the three-dimensional
case.

It is convenient to take a partial Fourier transform,
writing

f (r)=P (r) for z)0, (87) GII

where P are the Bloch functions for the infinite crystal
kn

with potential Vo(r) and where Vi(r) is given by (3.4).
The Jost solutions are not valid wave functions for the

I

and similarly for P»„, where the sum is over the

reciprocal-lattice vectors GII for the periodicity parallel to
the surface.

Then the partial Fourier transforms satisfy

d
2+ j II+ II j k„ f»„( II' )+ +

dz —+ I

for z & —s, with

f„(GII,z) =p „(GII,z) for z &0 .

We write the potential Vi(r ) as

(810)

Vi(r)= . Vo(r), z&0

Eo+6 V( r ), —s, &z & 0
(811)

where Eo can be chosen to be any convenient constant. Then the Jost solutions f- satisfy the following integral equa-
kn

tion:

f-„(GII,Z)=p-„(GII,Z) —f dz'9- (GII,z,z') p AV(GII GjI,z')f- (GjI,z—') . (812)
~ I

Where 8 is a Green's function and

(GII,z), z) 0
k

a+e+o. e-&', —s &z&0
(813)

where Q:(Eo+ j kII+GII ~

E—-„)' and a+————,
'
[p „(GII,O)+(8/Bz)p-„(GII, O)/Q]. The Green's function has the

simple form

sinh[Q(z —z')]/2Q, z &z'

0, otherwise
(814)

where we have —s &z,z' &0.
The integral equation (812) can be iterated to obtain

00 0 0f„(GII,Z)=p-„(GII,Z)+ g ( —1) I dz, J dz g g $ „(GII,Z,Z, )
m=1 m —1

G
-+ (m)

I I II
G

X 8 g(G II ~zl~z2) 9» (G
II izm —i~zm )kV(GII —G II,zi)

Xb V(G ' —G, ) hV(G' ' —G' ' )P- (G' ', ) . (815)
kn



2186 C. KALLIN AND B. I. HALPERIN

If b, V(G)),z) is bounded in the region —s &z &0 and

b V(r)),z) is sufficiently smooth in r)I, then each term in

(815) can be bounded. For example, if b, V(G)),z)=0 for

~ GII ~
& GM then each term can be bounded by

A(b V~Be M') /m! where

~VM =
6 )I,

—$(z(0

For now, we are assuming that there are only two solu-

tions f'-' with the given k)I and E and with k, real.
kn kn

The functions fj for j& 3 are evanescent solutions to (86)
which satisfy E =E and Imx, &0.

J
The coefficients c" appearing in (818) are determined

by the normalization condition and the boundary condi-
tion g" (r) I,

—s ) =0, or equivalently,

(GM, z)
)

&Ae ~', @" (G)), —s ) =0 for all G)) . (819)

and

f" (r)=v 2 g f„(G)),z)cos[(k))+GII).r],

f-„( )r= ~~ Xf ), (GII ) s'"[ "ll+GII '~~

II

where

f"*(r)=f" (r), i =e,o .

(816a)

(816b)

in the region —s & z & z' & 0 [these bounds follow from
(813) and (814)],and the sum in (815) converges uniform-

ly. It follows that the Jost solutions f are analytic in
kn

the same domain of the complex k, plane as P-„and
9' . The P- are analytic in k, except at the branch

kn kn
points of P- . [This can be seen immediately from (813)

kn
if Eo is chosen such th E-„&Eo+

~ k)I+GII ~, but in

fact (II) is analytic at Q=0 as well. ] Also, from (814),
kn

is analytic. Therefore the solutions f- are analytic
kn kn

everywhere except at the branch points of ())- .
kn

In the following, we shall assume for convenience that
the potential V(r) in our system has a twofold rotational
symmetry about the z axis. Then the Jost solutions f-kn
may be combined to give

If we approximate the Schrodinger equation by a finite-
difference equation in space, then there will be a max-
imum value of GII and a finite number of evanescent

waves (one less than the number of GII in this case).
Let us define the matrix A" by

(820)

where f~ is defined in (817) and (818) and I numbers the
reciprocal-lattice vectors GII. Then the solution to (819)
1s

c"=const( —1) deta", (821)

(
(i) (i) )(/2
l 2 (822)

The wave functions g'-' are then t)-function normalized
kn

in k, .
We now construct the surface states. If we fix k

II
and

look at an energy E in a region where no f" with real k,kn
exists, we still find solutions to the Schrodinger equation
of the form of (817) and (818) but unbounded in general
since either f", or f2' will grow exponentially as z —+Do,
depending on the sign of Imk, . If we restrict ourselves to
Imk, & 0, the necessary condition for a surface state to ex-
ist is cz'=0 since f,"=f" grows exponentially

II' k, , n

with z. Thus surface states have the form

where the matrix 8" is formed by deleting the mth
column of A". We shall choose the constant in (821)
such that

2. Wave functions of the semi-infinite crystal

The wave functions of the semi-infinite crystal are solu-

tions of the Schrodinger equation which satisfy the boun-

dary condition of vanishing at z= —s. These wave func-
tions may be chosen to be linear combinations of either
the even or odd solutions f'-' which are labeled by the

kn

same ki~ and correspond to the same energy. An extended

wave function is const~cted by fixing kll and choosing
E=E where k, is real. For z & —s, the extended wave

kn
functions may be written as

() f() ( )

J li z."J' " ll"z nJ
J J

J=3
(823)

for z & —s, where k, is now complex. The normalization
constant is (see below)

' l/2
i) 2~l

c")ac")/akCl C2 z

(824)

3. Normalization of surface states

This section is a generalization to three dimensions of
Appendix 8 of Ref. 10, where the normalization of one-
dimensional surface states was obtained. The normaliza-
tion constant is given by

—1 /2

(i)f(i)+ (i)f(i)+ ~ (i)f(i)—Cl 1 C2 2 ~ Cj j
J=3

(B18)
where

(825)
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(~) (l) f(i) + y (i)f(i)
kn J=3

Multiplying the Schrodinger equation for X- by

(}X /(lk, and subtracting the Schrodinger equation for
kn

(}X /(}k, multiplied by X-, we obtain the identity
kn kn'

kdr X- (r)=-
kn ()g

(}X (}X

f '~~ ak, az

(826)

Using the fact that g".
i cj"fj"(r ~~,

—s) =0 for all k, and

( r
~

~,
—s ) and cz' ——c" are 0, we find

kn k II, -k„.

f dr X„(r)=
g&(i)

kn

aI; aI.,
r

I I

8' 2',X-„ (827)

The Wronskian W( f2', X ) can be evaluated by repeat-kn
ing the above procedure for X and (if&'/(ik„but in-

kn
tegrating over 0 (z & a only. The result is

(i)~

~ ~d r
ii
8'(f2',X )=-

(}k, 2mi
(828)

4. Asymptotic properties of G(r, r '}

From (82), (818), and (822), the one-electron correla-
tion function is

Substituting (827) and (828} into (818) gives the desired
result, Eq. (824).

(i) (i)
G(" ')= g g' g f dk f"( )f"( ')+ f"( )f"("')+f"( )f"("')+f"( )f"("')

7 k
II

27TEC
y f()')(-r)f(i') (-') +( ~ ~ ~ ),

ac(," /ak,
z

(829)

for z,z') —s, and 0 otherwise. In the last summation, k, takes on complex values corresponding to filled surface states
[see (823)]. All terms involving evanescent waves are denoted by ( ). We can combine terms to eliminate the restric-
tion k, ~ 0 on the integral over the Brillouin zone:

'~()
G(r r')= gg f dk g' f"( )f"( ')+f"( )f"( ')

g C2

Ci ) I ) 1—2 irl
(icz' /(}k,

+( . ) . (830)

It follows from the analysis of Appendixes A and 8 1

that the integrand of (830),
c(l) f(l)

( ~r)f(&) (P&)
kn km k n f(i) (~)f(i)

(i) kn k II,
—k, n

k II,
—k, n

is analytic in k, except at the points where c" van-

ishes and at the branch points of f'-' (which coincide

with those of fk' k „by symmetry). However, if we

sum this integrand over all filled bands, the singularities
at all branch points cancel, except those which lie between
the valence and conduction bands. This can be seen from
(A5)—(A7). The fact that the coefficients c" are deter-
minants of infinite matrices 8" involving the f'-' does

kn
not introduce any additional singularities because the
determinants are uniformly convergent in k, . This can be
seen by expanding 8;1~', for large i or j, in the nearly-free-
electron approximation. One finds that 8,&' approaches
5(J sufficiently fast for uniform convergence.

Thus the integrand of the k, integral in (830) is analytic
at all branch points of f'-', as we sum over n, except atkn'
the branch point, k, (k)~), which lies in the energy gap be-
tween the valence and conduction bands. (In the case of
simple bands, which we are considering, any other branch
point in the gap is related to k, ( k

~ ~

) by complex conjuga-
tion or a reciprocal-lattice vector. ) We can now deform
the contour of integration as shown in Fig. 3. The con-
tour C is chosen to lie (at constant Imk, } just below the
branch point k, (k))). The vertical portions of the contour
cancel because of the periodicity in k, of the integrand.
There will be a contribution to the integral from the poles
of 1/cz', which lie between the real-k, axis and the con-
tour C. In the case of simple bands these are poles corre-
sponding to surface states with energies less thanE:E- . How—ever, if these states are filled, then

kII kII, k (kII)
the contribution to the integral from these poles is exactly
cancelled by the sum over surface states in (830). There-
fore the correlation function may be written as

(&)

y y f dk y i f(i)(~r)f(i)(~i)+f(i)(P)f(i)(~i)

II

(i) (!)(~) (i)(~ )i
ac(2') /ak,

(831)
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I —Re kz
~/a

Here the sum over k, is only over (complex) wave vectors
with Imk, &0 and which either lie beloic the contour C
and correspond to empty surface states or lie above the
contour C and correspond to fi/led surface states. From

ik a
the Bloch condition, P„(r~),z+a)=e ' P„(r~~,z), we

have, on the contour C, the following bound on f", for
large z:

+~0( k )/2
I
fI",

&
I ~ conste (832)

he««(k~~)—=2I Imk. (k~~) I
If we def»e X(k~~) to b

the smallest decay rate of the surface states appearing in
the sum in (831), then we obtain the following properties
of the one-electron correlation function:

PIG. 3. Integration contour C is shown for the simple case
whci c the only branch points ln the cncrgy gap occur at
Rck, = +m/a. This would be the case, for example, if the Fermi
lcvcl lay bctwccn thc lowest two bands in Fig. 2. The contoul is
chosen to lie just below the branch points, which are indicated
by crosses. The contributions to the integral from the two verti-
cal dashed contours cancel by symmetry.

with energy less than E„are occupied and all with ener-
ll

gy gl eater that I are unoccupied then cK I =Ao
fl

=—min- ao(k~~).k
i)

GBZ

In deriving the asymptotic properties of G( r, r '), we as-
sumed that the potential V(r ) had a twofold rotation axis
and that there were no more than two degenerate extendal
Bloch functions labeled by the same k~~. These assump-
tions simplify the analysis [by constraining the number of
relevant coefficients in (817) and (818) to only two, name-
ly, ci and cz] but they are not necessary conditions; the
results are true in general. The generalizations in our
analysis needed to consider crystals which lack a twofold
rotation axis and those needed to consider more compli-
cated band structures are identical, so we will only discuss
the latter.

Consider the case where four Bloch functions (with the
same k~~) are degenerate in energy, for example, the case
where the Fermi level lies between the two highest bands
in Fig. 2. In this case there will be two degenerate extend-
ed wave functions of the semi-infinite crystal. These are
found by arbitrarily fixing one of the coefficients in the
expansion analagous to (817) and (818). Tliere will be
two inequivalent branch points (not related by complex
conjugation or a reciprocal-lattice vector) in the gap, and
two different real-energy curves. ' As in the simple case,
our contour of integration in the evaluation of G(r, r ')
will be chosen to lie just below the branch point which is
closest to the real k, axis. An example is shown in Fig. 4,
where we have not assumed any symmetry between k, and—k, . The real-energy curves are also shown in Fig. 4.
For each surface state in the gap there will be a corre-
sponding point on each of the real-energy curves at which
the integrand will have a pole. (In Fig. 4 we have shown

Z+Z ~ QQ

for z,z' &0, (833)

lim [e ' G(r, r')]=0,
jZ —Z'~ -+co

for 0 ~ e & 1, where the decay rate is defined as

(834)

(835)

a~= min ai(k~~), (836)
k ((EBZ

where BZ refers to the Brillouin zone. The first property
(835) follows from the equivalence of the infinite-crystal
correlation function,

Go(r, r ') = Q ' g I dk, P „(r)P-„(r') (837)
k

I(

and the second term in (831), for z,z'&0, and from the
bound on

I fI",
~

I, (832). The evanescent terms are bound-

ed by (const)e ~', where P&ai, since the evanescent
waves originate &om bands which are higher in energy
than the conduction band.

If the Fermi level is such that all surface states (if any)

I

1

l

I

I

I

'~/a

I

I

I
- Rekz

~/a

FIG. 4. An example of the integration contour C is shown for
a mox'e general band structure. The contour C is chosen to lie
just below the lowest branch point. Thc branch points are indi-
cated by crosses. This is similar to the situation one would have
if the Fermi level lay between the highest two bands in Fig. 2,
except we have assumed herc an asymmetry between k, and
—k„which one would have in the most general case. The pro-

jection of the real-energy curves are shown and the arrows indi-
cate thc direction of increasing energy. The points labeled 1 and
2 correspond to the (same) energy of a surface state in the gap,
The integral in Eq. (830) will have a contribution from the pole
at point 1. This contribution wi11 bc canccllcd by a term ln thc
sum over surface states, however, if the state in question is
filled.
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the case where there is a single surface state in the gap. )

Again, as in the simple case, the contribution from the
poles below the coiitoiii' C (aiid on tlie low-elieigy side of
the branch point) will be cancelled if the corresponding
surface state is filled. The states above the contour C (or
those below C but on the high-energy side of the branch
point) will not contribute to G(r, r ') if they are empty.
There is also a contribution from the evanescent waves ap-
peariiig iii (817) which may no't be Ilegligible Ilow as tllese
waves may originate from the conduction band and hence
decay slowly in the gap. However, one still finds the same
asymptotic properties of 6 as in the simple case (833) and
(834); the effects of the surface decay with a finite decay

rate al. One can define two energid El(kll)(E2(kll)
such that if all su~ace states with energy less than Ei(kll)
are filled and all with energy greater than E2(kll) are
empty, then tzi(kll) =a&(kll), where ct& is determined by
thc brailch point %vh1ch ties closest to thc I'cal axis, and de-
pends only on the bulk band structure. (It may now de-
pend on the properties of the evanescent waves. ) In gen-
eral, ai (aq', but the important point is that ai will be
nonzero provided that the Fermi level hes in a nonvamsh-
ing energy gap in the bulk, and will approach zero only if
the Fermi level approaches the edge of either the bulk
valence 01 OOIldUctlon band aIld there happcIls to bc a
marginally bound surface state at the band edge.
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