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Pressure derivatives of the elastic moduli of the rutile-structure difluorides
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The pressure derivatives of the elastic moduli of single-crystal CoF2 and MnF2 have been deter-
mined from the variation of the sound velocity under hydrostatic pressure. All pressure derivatives
of the rutile-structure diAuorides decrease slightly with increasing cation radius. From the pressure
derivatives, the elastic-mode Qruneisen y s and the low- and high-temperature limits of the
Gruneisen constant are derived and compared with the thermodynamic values, a fair agreement be-
ing found for the high-temperature values. The experimental values of the pressure derivatives are
compared with theoretical values derived from a rigid-ion central-force-interaction model and the
agreement is found to improve with increasing cation radius.

I. INTRODUCTION

The rutile-structure difluorides, RF2 (R =Mg, Ni, Co,
Zn, Fe, or Mn), constitute an interesting series of materi-
als because of their geophysical importance on the one
hand, and also due to the series of phase transitions that
they undergo under the influence of pressure and tempera-
ture. ' The compounds are structurally re1ated to stisho-
vite, which presumably pIays a vital role in the structure
of the lower mantle of the earth. Also, all of them under-
go a series of structural phase transformations from rutile
to distorted fluorite and finally to a post-distorted fluorite
form (PbClz or hexagonal). Hence, many varied investiga-
tions of these substances have been undertaken in the past.

In this paper measurements of the pressure dependence
of the elastic moduli on single crystals of CoFz and MnF2
are described. This investigation may provide additional
information on the relation between the lattice dynamics
of these materials, especially the softening slow shear
iilode associated with tile sliear coilstaiit cg =

2 (cii —c&2)
and its relation to the phase transformation. Also, the
Dlodificd Born criterion and 1ts conncctlorl w1th thc phase
transition may be examined. The various mode-Griineisen
y's and the low- and high-temperature limits of the
Gruneisen constant wil1 be evaluated from the elastic data
and compared to the corresponding thermodynamic values
whenever the latter are available.

II. EXPERIMENTAL

Single crystals of CoF2 and MnFz were grown by the
Stockbarger method in a vacuum furnace. The starting
powder material was loaded into graphite crucibles with a
90 cone angle, and the required temperature distribution
was obtained from a profiled graphite heating element
supplied by the mains frequency at low voltage and high
current. When suitably baffled using molybdenum radia-
ti.on screens, a temperature gradient of about 56 Kcm
was obtained. Growth speeds were of the order of 1.5
rnmh '. MnF2 was grown under vacuum, while CoF2
was grown under a positive pressure of 200 mbar of
oxygen-free nitrogen. Typical impurity levels in MnF2
were 100 ppm of Mg, while for CoFz they were 100 ppm

of Fe, 70ppm of Ni, 10ppm of Mg, and 10ppm of Mn.
The specimens were oriented by means of x-ray Laue

back reflection photographs. On each sample a number of
pairs of fiat and parallel faces corresponding to crystalline
planes of high symmetry were cut and lapped. The pres-
sure derivatives were determined by measuring the change
in the velocity of ultrasonic longitudinal and shear waves,
10 MHz frequency, propagating along various crystalline
directions of high symmetry under hydrostatic pressure in
the range 0—1 GPa. Thc sourld waves wcr'c generated by
crystalline-quartz transducers bonded to one face by a 1:1
formula weight mixture of glycerine and phthalic anhy-
Chide, while the velocity was determined by the pulse-
echo—overlap method. The pressure was generated in a
piston-cylinder apparatus utilizing a 1:1 mixture by
volume of n-pentane and isopentane as the pressurizing
medium. A detailed description of the ultrasonic and
high-pressure techniques has been published elsewhere.

In Table I the various physical parameters of the
rutile-structure difluorides required for the subsequent
data evaluation are presented. Here a and c are the 1at-
tice parameters of the tetragonal unit cell, u is the param-
eter defining the nearest-neighbor anion-cation distance in
the cell as V2au, R+ is the Pauling cation radius, p is
the density, c,j. and s,j are the six independent adiabatic
elastic stiffness and compliance moduli, tt„and tc„are the
adiabatic and isothermal compressibilities, 8 is the iso-
thermal bulk modulus, o,, and a, denote, respective1y, the
linear therma1 expansion in the a and e directions, and C&
is the specific heat at constant pressure. All values refer
to room temperature. As can be seen, the difference be-
tween the isothermal and adiabatic elastic moduli is negli-
gible and no differentiation between the two sets will be
made.

Figures 1—4 show the experimental values of the natur-
al modulus, defined as po8'2, where po is the zero-pressure
density, and W is the natural velocity' as a function of
the pressure P for a number of propagation directions and
modes. The solid circles in these figures are the experi-
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TABLE I. Various physical parameters for the rutile-structure difluorides.

a (A)
c (A)

R+ (A)
p (kg/m )

c() (GPa)
c]2 {GPa)
c(3 (GPa)
C 33 (GPa)
c44 (GPa)
c66 (GPa)
s~& (10 "Pa ')

s {10 "Pa ')

$]3 (10 Pa ')

s33 (10 " Pa ')

s44 (10 "Pa ')

(10 "Pa ')
sc'„(10 "Pa ')

(10 "Pa ')
B' (GPa)
64 (10 K ')

-: (10-' K-')
Cp (J/kg)

MgF2

4.623
3.052
0.303
0.65

3177
140.6
90.2
62.9

205. 1

56.6
95.8

1.25
—0.73
—0.16

0.59
1.77
1.04
0.99
1.00

100.1
9.4

13.60
988.4

NiF2

4.651
3.048
0.302
0.70

4815
145.0
110.0
90.9

220.8
46.5
99.4

1.71
—1.15
—0.23

0.64
2.15
1.01
0.84
0.84

119.0
7.19
9.04

662.4

CoF2

4.695
3.180
0.306
0.72

4592
128.1

1M.O
88.1

197.1
37.6
85.5
2.11

—1.44
—0.30

0.77
2.66
1.17
0.91
0.92

108.7
3.67

10.33
709.6

ZnF2

4.703
3.134
0.303
0.74

4952
130.0
96.7
89.0

199.2
39.5
81.4

1.82
—1.14
—0.30

0.78
2.56
1.24
0.95
0.96

103.8
8.97

11.64
635.1

MnF2

4.873
3 ~ 310
0.305
0.80

3922
103.3
82.7
70.2

166.0
31.7
70.0
2.82

—2.03
—0.33

0.88
3.15
1.43
1.14
1.15

88.1

3.63
12.87

569.5

mentally measured data points, while the straight lines are
linear least-squares fits to the experimental data. From
the slopes of these lines the pressure derivative of pu for
I'=0, (pu )II, where p and U are, respectively, the density

and velocity at pressure P, may now be determined. For a
particular propagation direction and mode, the connection
between (pu )0 and the values of the natural modulus and
its pressure derivative at I' =0, i.e., (plied' )0, is given by
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FIG. 3. Natural modulus as a function of pressure for vari-
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FIG. 4. Natural modulus as a function of pressure for vari-
ous propagation directions and modes in MnF2.

(pU )o ——(poW )11+(poW )11(K,—2KI),

where ~I is the linear compressibility for the particular

propagation direction. If N is the unit vector in the prop-
agation direction, ~I will be given by

KI =($11+$]2+$13)(N]+%2)+ (2$13+$33 )X3 . (2)2 2 2

In Table II the relation between (pu )' and (pl]W )o for the
various propagation directions and modes is shown. In
the propagation direction and mode column, the first
direction designates the propagation, and the second direc-
tion designates the polarization. In Table III the experi-
mental values for (poW )I], together with their associated

TABLE II. Relation between {pv )p for various propagation directions and modes.

Propagation direction
and mode

[001], [001]
[001], [001]
[1oo], [1oo]
[100], [001]
[100], [010]
[100], [110]
[110], [1TO]
[110], [001]
[011], [011]
[011], [100]
[011], J.[100]

(pv')0

CL

Cs

CgL

CT

CgT

(pU )o

(pp 8 )p+c33(2s]1+2s12 —
s33 )

(po~')0+C44(»»+2$12 $33)

{po~ )0+cll(2$13+$33)
(pp W )p +c44{2s13 +s 33 )

(po & )0+c66(2$13+$33 )

{po~ )o+CL, (2$]3+$33)
(p08' )p+c, (2s13+s33)
(po~ )0+c44(2$13+$33)
(pp8 )p+cgL, (K, —2Ko]1)

(pp8 )p +CT(K& —2Kp11)

{pp~ )0 +CgT{KtP 2K011)

1 1 2 a
CL =

2 (C11+C12+2C66)I Cs 2 (C11 —C]2)~ CT=m C66+n C44

cgl —
2 ((c]]m +c33n +c44)+ [[c]]m —c33n +c44(n —m )] +4m n (c]3+c44) ] )

ct]r= z((c]]m +c33n +c44) [[c],m —c3]n +c44(n —m)]+4m n —(c]3+c44) J' )'

K„=2s11+$33+2(s12+ 2$13 ), Kp11 =(s11+s12+$13)m + (2s13+$33 )n

'm and n are the direction cosines of the [011]direction with respect to the [010] and [001] axes.
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TABLE III. Values of (pod'2)t and (pv')o for the various propagation directions and modes in CoF2
and MnF2.

Propagation mode
and directon (Pp8' )p

CoF2
(PU )p

MnF2

(p.~').' (PU')p

[001], [001]
[001], [001]
[100], [100)
[100], [001]
[100], [010]
[110], [110]
[110], [1TO]
[110], [001]
[011], [011]
[011], [100]
[011], i[100]

3.99 +0.07
0.300+0.008
3.81 +0.06
0.351+0.003
2.46 +0.02
6.38 +0.11

—0.948+0.005
0.373+0.009
4.06 +0.06
0.877+0.007
0.017+0.005

5.11
0.51
4.03
0.41
2.61
6.72

—0.93
0.43
4.86
1.12
0.18

3.45 +0.05
—0.110+0.005

3.23 +0. 1

0.03 +0.01
2.17 +0.02
6.08 +0.05

—0.710+0.003
0.004+0.006
4.03 +0.04
0.90 +0.03

—0.18 +0.01

4.61
0.11
3.46
0.10
2.32
6.44

—0.69
0.07
4.82
1.14

—0.02

errors and the corresponding values of (pu )o derived from
the latter, are presented. From these values of (pu )o, the
pressure derivatives of elastic moduli Bc;J/BP may now be
determined. As there are 11 equations for the six un-
knowns, the system is overdeterrnined and the values of
the dc,J/dP were computed by a least-squares fit, the re-
sults being shown in Table IV together with Manghnani's
data" for MnF2. As can be seen, the agreement between
the two latter sets is generally satisfactory except in the
case of Bc~3/BP and Bc66/BP.

IV. DISCUSSION

A. Correlation with cation radius

elastic moduli and their pressure derivatives. ' For a par-
ticular propagation mode i one obtains

B 1

z (pvi )o+B~t ——, .
2(pv, )o

If X(i) and U(i) are unit vectors in the propagation and
polarization directions, then

~cklmn
(pu; )o= X/ (i)1V (i)UI(i)U„(i),

with the subscripts k, l, I, and n denoting Cartesian com-
ponents, summation over repeated indices being assumed,
and ckr~„denoting the fourth-rank tensor components of

The rutile-structure diflourides form an isomorphous
series with the same anion where the cation radius in-
creases monotonically from Mg + to Mn +. In Fig. 5 the
correlation between the pressure derivatives of the various
elastic moduli and the Pauling cation radius is examined.
As can be seen, the pressure derivatives generally decrease
slightly with increasing cation radius, a phenomenon
which is also manifested by the elastic moduli them-
selves.

B. Griineisen-mode y's

Assuming an anisotropic continuum and Debye model,
the mode-Griineisen y's y;, may be related directly to the
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TABLE IV. Pressure derivatives of the elastic rnoduli of
CoF2 and MnF2.

Bc„/BP
Bc]2/BP
Bcl. /BP
Bc33/BP
Bc /BP
Bc66/BP
88/BP

'Reference 11.

CoF2

4.58
5.46
4.37
4.98
0.42
4.81
4.81

MnF2

3.50
4.72
4.62
4.74
0.22
2.98
4.29

MnF2
(Manghnani et al. )'

3.56
5.08
3.87
4.95
0.14
4.16
4.21

0
0.60

I I I I I I

0.800.70
CATION RADIUS (A)

FICi. 5. Pressure derivatives of the elastic moduli as a func-
tion of the cation radius.
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FIG. 6. Mode-Griineisen y parameters in some crystalline
directions of high symmetry for CoF2.

MgF2
NiF2
CoF2
ZnF2
MnF2

el

0.41
—0.59

0.22
0.54

—0.24

~th

(80 K)

—0.02

el

0.87
0.53
0.81
1.17
0.52

~th

(300 K)

1.03
0.87
0.59
0.98
0.79

TABLE V. Comparison of the low- and high-temperature
limits of the elastic Griineisen constant with the thermodynam-
ics Gruneisen constant.

the elastic stiffness moduli. From the mode y's, the low-
and high-temperature limits of the elastic Griineisen con-
stant, y0' and yH, may now be evaluated as follows:

el
y0

yH = g—y

Q being the number of modes summed.
Utilizing Eqs. (3) and (4), the mode y's for some direc-

tions of high symmetry were calculated and the results are
shown in Figs. 6 and 7. Here 1 and 2 designate the slow
and fast shear modes, and 3 denotes the longitudinal
mode. It is evident that in the case of MnFz the mode y's
for the slow shear mode are essentially negative over the
whole range, which may indicate, at low temperatures
where the slow shear mode is the one mainly excited, that
the thermal expansion may become negative. This is
borne out by Table V where yo and y& are compared with
the corresponding values of the thermodynamic Griineisen
constant y'" determined from the thermal expansion and
specific heat. As can be seen, y'" at 80 K is negative, indi-
cating a negative thermal expansion at low temperatures.

teraction, Striefler and Barsch' 'd have calculated the
pressure derivatives of the elastic moduli for the rutile-
structure difluorides. Their theoretical values together
with the experimental data are shown in Table VI. Also
included in the same table is a quality of agreement pa-
rameter between the two sets of experimental and theoreti-
cal values for the six independent pressure derivatives
Bc;~/()P. This parameter is defined as the square root of
the sum of the squares of the deviations divided by 6)& 5.
As can be seen, the agreement between experiment and
theory is generally appreciably better for the substances
with the larger cation radius than for MgF2 with the
smallest cation radius.

I
[

I

~ NIF&

L MnF&

0.99

C. Comparison with theoretical values

Based on a rigid-ion model with a central-force short-
range interaction between nearest-neighbor cation-anions
and anion-anions, in addition to the usual Coulomb in-
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FIG. 7. Mode-Griineisen y parameters in some crystalline
directions of high symmetry for MnF~.
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FIG. 8. Equation of state for NiF2 and MnF2.
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TABLE VI. Comparison of experimental data and theoretical values for the pressure derivatives of the elastic moduli.

Bc(i /BP Bc33/BP
Expt. Theor. Expt. Theor.

Bc~2/BP Bc)3/BP Bc44/BE Bc44/BP
Expt. Theor. Expt. Theor. Expt. Theor. Expt. Theor.

Quality
of fit

MgF2
NiF2
CoF2
ZnF2
MnFq

4.92
3.60
4.58
3,88
3.50

5.20
4.15
2.17

5.74
5.48
4.98
5.16
4.74

3.94
3.06

6.22
7.04
5.46
6.11
4.72

6.81
5.83
4.13

4.15
4.45
4.37
3.78
4.62

5.93
5.40
4.54

0.79
0.29
0.42
1.46
0.22

—1.42
—1.42
—1.78

2.97
3.10
2.18
2.89
2.36

4.46
3.50
2.15

0.6
0.6
0.5

D. Equation of state in the low-pressure (rutile) phase

Utilizing the measured values of the bulk modulus and
its pressure derivative 8', an equation of state (pressure-
volume relation) for the material may be constructed. '

One which is widely used is the Murnaghan first-order
equation of state,

I /8'
V 8'

1+ I'
Vo 8

where V is the volume and Vo is its zero-pressure value.
In Fig. 8 the solid lines represent the above equation for

NiF2 and MnF2, while the solid rircles and solid triangles
represent the experimental data. ' ' As can be seen, the
agreement between the Murnaghan equation and the ex-
perimental data is very good, which is really not surpris-
ing s1nce the low-pressure phase extends only over a SIDaII
pressure range in these materials.
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