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Magnetostatic waves and spin waves in layered ferrite structures
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Collective magnetic excitations are supported by multiple ferrite layers. The character of magne-

tostatic waves is calculated for such systems and is illustrated for three different layers variously

spaced (accurate control of the delay characteristics is shown to be possible) as well as for very

many similar layers equally spaced. For volume waves on many layers, collective spin-wave-like

modes of long wavelength form a continuum that evolves smoothly into narrow bands characteristic
of the layers at short wavelength. For surface waves, an excitation similar to the surface wave on a
continuous medium appears when the spacing is less than the layer thickness, but a dense continu-

um of other excitations (not analogous to those of a uniform medium) always persists even for small

spacings. This unexpected spectrum is related to a novel system of modes localized on the gaps.

I. INTRODUCTION

There has recently been interest in the propagation of
magnetostatic waves in two' or more ferrite layers;
much of this interest is stimulated by a desire to achieve
technically useful delay characteristics.

We here describe a convenient way to find the disper-
sion relation of magnetostatic waves in an arbitrary se-
quence of magnetic layers interspersed with vacuum or
dielectric; illustrative results are given for volume and sur-
face modes on two or three layers. Exchange effects will
be ignored.

For many similar films equally separated the modes be-
come bands. For surface waves we find, when the separa-
tion is small, an unexpected continuum due to modes lo-
calized on the gaps; the surface-wave spectrum is not
analogous to the excitations of a continuous medium. In
the case of volume waves, by contrast, a collective spin-
wave spectrum of long wavelength evolves continuously
into magnetostatic modes of shorter wavelength; these
modes are close to the magnetostatic modes of single
layers.

Recently, Grunberg and Mika have published a treat-
ment of surface waves on X identical layers. Their work
differs from ours both in technique and in interpretation,
and each finds some results that the other does not.

The system is a set of N ferrite layers stacked along the

y axis, as sketched in Fig. 1. The nth layer has thickness
d„and is at a distance s„ from layer n+ I; the waves pro-
pagate along the x axis.

Surface permeability At each bou. ndary, the tangential
field H„and the normal Aux By are continuous. These
conditions are assured by requiring continuity of the ratio
By /Hz the authors ' treat such cases through introduc-
ing a relative surface permeability p' defined as

p'= —iB~/H„.
The value of p' at any interface can be calculated from the
value at any neighboring interface.

The vector potential A, obeys Laplace's equation in the
vacuum regions above and below the stack of ferrite films,

From Eq. (1), therefore, the upper and lower boundary
conditions are

p'=+1 (k=+), above,

p'=+1 (k=+), below .

In many cases of technical interest the ferrite layers are
next to ground planes; this topic is discussed in part 3 of
the Appendix.

Differentiation of Eq. (1) yields
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FIG. 1. Ferrite layers and the coordinates used in calculation.

and must become small at great distances. For wave num-
ber k, therefore,

W, -e' e- ~'~& above,

, -e'~e lk I&, below .
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the conditions divB=curlH=O having been used; the
second of these is the magnetostatic approximation.

We now use the constitutive relations,

B& P11Hx + lP12Hy
(3)

By = —LP12H~ +P22Hy

p2&, '(0)—[p i ip» —iu i2 —pi ziti'(0) ]P tanh(Pky )
p'(y) =

p» —[pi2+p, (0)]p 'tanh(pky)

which, together with the definition of p', allow us to elim-

inate the ratios of fields from Bp'/By. The result is

S

Bg
k[(P +812) P11P22]~P22 '

Therefore, if p'(0) is known,
D„(k)=0 . (10)

Similarly, for negative k, we find D„(—k) =0. The diago-
nal elements of M therefore contain the characteristic re-
lations for the individual films.

For a sequence of N films, Eq. (7) gives

wiv=C Ewp,

Dn 2P22+(1+PllP» P12)p tanh(pkdil ) i

E„=(1—piip»+pi2 —2uii)p 'tanh(pkd„),

F„=(—1+p»p» —p» —2p»)P 'tanh(Pkd„) .

The relative permeabilities p,J can differ in the different
films. It should be noted that Eq. (7) is not truly homo-
geneous; the "factor" Ã contains some surface permeabil-
ities, but our object is to make use of the zeros in u and v,

so that the magnitude of the factor does not enter.
If we consider one film in isolation, then for positive k

we have p'=1 above the film and p'= —1 below the film;
therefore v„ i

——u„=0. From Eqs. (7) and (8), therefore,

where

(4)
where the factor is a product of prior factors, and

K=M~M~ 1 M1 . (12)

This result can also be obtained by expressing H as the

gradient of a magnetic potential.
Equation (4) for p' reduces the N-layer problem to one

of iteration from interface to interface, using the known
values of p' at the upper and lower boundaries —see Eq.
(2). For positive k, for example, the value of k must be
such that the value p'=1 at the top yields p'= —1 at the
bottom.

II. THEORY

A. The secular equation

Whether k is positive or negative, a member of the pair
p'+ 1, p' —1 is zero at both upper and lower surfaces. We
therefore define new variables u„,v„

w„= (u„,v„)= (p'„+ 1,p'„—1),
where ls'„ is the value of p' at the bottom of layer n This.
unsymmetrical definition, from the bottoms of the layers,
will require that we treat the upper vacuum layer as the
upper "magnetic" layer of the system, layer n =0, ter-
minating at the dotted line 00 in Fig. 1.

To make use of the zeros in u and U we must rewrite
Eq. (4) in "homogeneous" form. This is done in part 1 of
the Appendix, and the result is

The quantity wp refers to the value of w at the top of the
upper film, all other w's being defined at the bottoms of
the layers, as was noted after Eq. (6).

The boundary conditions in Eq. (2) reduce to
u~ =vp =0 for positive k and to tv ——up ——0 for negative

k. From Eq. (11), therefore, the secular equations are

ICii(k) =0, k )0

K»(k) =0, k (0 .
(13)

Since K is merely the N-fold product of 2X 2 matrices, the
dispersion relation for any reasonable number of layers
can be found easily.

B. Special cases

2. Two films, k &0

We find

l. Single film

The result has been given already, in Eq. (10). The
solutions to this equation have been extensively discussed
in the literature. The most important cases are surface
waves, ' '" with H

~
~z, forward volume waves, ' with H

~ ~y,

and backward volume waves, "with H
~
~x.

~w =4 MN~w

where M„ is a 2&(2 matrix,

D„(k)
—2ks„

„e

F D( —k)e

The elements of M„are given by

(7)

(8)

—2ks )D1D2+F1E2e =0 . (14)

Various forms of this equation have been extensively in-
vestigated' for volume waves; we shall consider only
surface waves. Since D; =0 is the secular equation for
film i, it is evident that terms involving E; and F; are in-
teraction terms; the exponential factor ensures that in-
teractions are small when the separation is large.

All modes are composite. Adkins and Glass err in
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3. Three films, k )0

The secular equation is
—2ksI

+D)E2E3eD]D2D3 +EJE2D3e

stating that the modes of the individual films, B;=0, are
modes of the coupled system.

III. RESULTS

A. Types of systems

Numerical results have been obtained for three dissimi-
lar ferrite layers and for many equal layers, for both sur-
face waves and for forward volume waves. The principal
diagonal and off-diagonal permeabilities, 1M and it, are

+F1D2( —k)E3e ' ' =0. (15)

This equation is less formidable than it appears
because —especially for volume waves —the functions D,
E, and F are reasonably simple functions of frequency and
wave number [see Eq. (9}]. Some solutions are given in
Sec. III.

P = 1 —tt oint /(to —boa )
2 2

i~ =to st /(~ oia )—
where oi is the frequency, and

~a =ciao ~~ =4~y

(19)

4. Many equal films

%'hen the matrices M are all equal,

Here Ho is the internal bias field, M is the magnetization,
and y is the gyromagnetic ratio.

For surface waves, the bias field is along the z axis, and

X=mN. P11=P22=P~P ]2=& (20a)

If S diagonalizes M,

0
S 'M S=A=

2
J

then

K=S(S 'MS)(S 'MS) . S
=S~NS-'.

The symmetry of the system ensures that positive and
negative wave numbers are the same at the same frequen-
cy. The secular equation, E~& ——0, reduces to

tt = —811/P222=

P 'tanh(/3kd ) =a 'tan(ukd ) .
(21)

We summarize the principal simple excitations briefly, for
later comparison.

For forward volume waves, the bias field is nortnal to the
plane of the films, and therefore

P~~
——P, P22 ——1, P&2

——0.
In this case all solutions lie within the spin-wave region,
toit &co &colt+toHcost, and p11 is negative. In Eqs. (5)
and (9) we must set

or

N
A, 1

—M11

A,2
—M11 tan(akd ) =2a/(a —1) . (22)

Magnetostatic modes ofa layer

For forward volume waves on a single film, Eqs. (9),
(10), (20b), and (21) give

The eigenvalues of M are

A, 12 ———, [(M11+M22)+[(M11—M22) +4M12M~1]'~ I .

(M I 1 ™22) +4M12M21 & 0 (18)

It is shown in part 2 of the Appendix that there are no
other solutions, apart from a singular surface-wave solu-
tion, and that the number of modes in the band defined by
Eq. (18) is equal to the number of films. These results,
Eqs. (16)—(18), are formally the same as those given by
Griinberg and Mika in the case of surface waves.

%'hen X is very large, it is obvious that nearly all solutions
of Eq (16) mus. t arise when A, 1 and k2 have the same mag-
nitude, i.e., when the square root is imaginary, because
otherwise the left-hand side of the equation becomes very
large (or small). This condition is met when

Solutions span all real values of a (negative p); the fre-
quency range 1s

oiH &oi &(oiH+oiHoiM)2 I /2

For each principal solution k ~, further modes
k=k1+nvr/ad exist, where n is a positive integer. The
higher modes should be regarded as spin waves within the
layer, and exchange effects must often be taken into ac-
count in describing them.

For surface waves, Eqs. (9), (10), and (20a) give

tanh(kd ) =2p, /(it —
1Li —1) .

This is equivalent to the form given by Damon and Esh-
bach" and by Bongianni, ' and solutions exist only above
the spin-wave spectrum, within the range

(oia+taoist) &oi &oiH+ 2 oint
2 1/2 1

These magnetostatic modes are shown in Fig. 2, for yt-
trium iron garnet (YIG) with a magnetization 4~M = 1780
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FIG. 3. Three equal layers: splitting of the fundamental for-
ward volume-~ave modes on YIG. The layer thicknesses are 20
pm, thc scparatlons aI'c 30 pm, and thc blas ficM ls 6.4X4&M.

FIG. 2. SiInple magnctostatic cxcitations of a single layer of
YIG, 4@M= 1780 G. The bias field Ho is 0.4)&4'.

which ls at tlM top of the surface wave band for a finite
layer. At this frequency all positive wave numbers are al-

G, in an internal bias field Ho ——0.4X41r~ &»y th«lrst
three of the volume-wave modes are shown.

B. Fevr ferrite layers

I oca11zcd IQodcs cRn cx1st on 8 gap bet%'ccn two scm1"
infinite ferrites when the bias field is along the z axis. For
a gap s, standard arguments yield

tanh(ks) =2p/(~' —p' —1) . (24)

This term (often reserved for waves of short wave-
length) will here be used for the excitations of a continu-
ous medium. When exchange effects are small and the
wave number is at an angle 8 to the bias field, the frequen-

Cy 1S

The frequency range is the same as that of forward
volume waves, and the frequency is independent of wave
nQIDbcr. In part1cular, when Ho 1s along thc p Rx1s %'c

find

k„/k„=cot8= a, (25)

where a=( —p)'i .
The surface wave of a semi-infmite medium, first re-

ported by Damon and Eshbach, is among the eleIDentary
excitations. When Ho is along the z axis, only one fre-
qUCDCy exists~

(26)

The spectrum is identical with that of surface waves on an
isolated layer of the same thickness, Eq. (23). These
IDodes RIe mentioned because they are important in under-
standing the surface wave characteristics of a layered sys-
tem.

Wave numbers are computed from Eq. (15), the func-
tlolls D, E, Rnd E bclllg glvcll lfl Eq. (9); tlM subs'tltu'tloll 111

Eq. (21) must be used when p, » is negative.
The splitting of the fundamental mode into three

branches is illustrated in Fig. 3, for three equal films
equally separated. The layer thickness d is 20 pm, and the
scpRrat1GIl 5 1s 30 pIll» thc matcr181 1s PIG, RIld thc IIlag"
netic bias field remains 0.4X4vrM, for easy compariso~
w1th F1g. 2. H1gher modes, correspond1ng to the harmon-
ics shown in Fig. 2, certainly exist, but the modes shown
are clearly derived from the fundamental mode because
they coalcscc Rt 1llgh %'Rvc nUIllbcr whcIl thc 1ntcract1on~
proportional to e, 1s weak.

The effect of differing magnetizations is illustrated in
Fig. 4 for the same geometry as in Fig. 3, but with the
Upper Rnd lowcI' 1Ryc1s having IDagnct1zat1ons 100 6
greater and less than the magnetization of YIG. For films
of different magnetization one must take account of the
conscrvat1on of normal flllx, bccRllsc foi' forward vollllilc
waves the bias field is normal to the film; if the bias field
in film i is H;, then

The layer with the greatest magnetization is therefore sub-
)cct to thc lowest b1as flclcI, Rncl thc band cdgc for volUIDc
waves, gH, 1s lowest 1Il this layer.

This effect can be seen clearly in Fig. 4, where the
characteristic 1s discontinuous each t1IDc 8 ncw layc1 starts
to support waves. At the lowest frequency theI'e is only
one fundamental mode; then the wave numbers fall to
zcI'o Rnd t%'o modes RppcaI'; 1n thc UppcI' I'ange thcrc Rlc
thI'cc modes clcr1vcd from thc fundaIDcntal mode. In thc
low-frequency region, where only one or two solutions are
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FIG. 6. Surface wave and gap wave on two equal YIG films

slightly separated; d
&

——d2 ——20 pm, s =5 pm, bias field
0.4&(4aM. At high wave numbers the lower curve is an excita-
tion localized on the narrow gap.

FIG. 4. Different magnetizations in three layers: structure of
the fundamental forward volume waves for the same geometry

as in Fig. 3. The magnetizations are 4m.M& ——1680 G,
4m.Mz ——1780 G, 4~M3 ——1880 G; the bias field in the middle

film is 0.4&(4mM2.

shown, we have excluded modes derived from the har-
monics (see Fig. 2) of one of the active films. Such modes
can be recognized if one finds field as a function of posi-
tion, because the field crosses zero in the center of an ac-
tive film (an example is shown in Fig. 6 of Ref. 4).

I I I j I I I I ( I I

(a)

Magnetostatic waves are used in frequency-dependent
delay lines, between fixed antenna and receiver; common
system requirements are that the delay either be constant
or else change linearly with frequency. This is unfor-
tunate; for magnetostatic waves on a single layer the
group velocity vg varies almost linearly with frequency, so
the group delay 1/Ug does not.

The use of multiple layers to modify the delay is shown
in Fig. 5(a), which gives the frequency dependence of the
group delay of the fundamental mode for single, double,
and triple films of equal magnetization. The parameters
are as follows: one film, d =30 pm; two films,
di d2 ——15 pm——, s=30 pm, three films, di ——d& ——5 pm,
d2 ——20 pm, s~ ——s2 ——30 pm. These results are given at
higher frequency ( —10 GHz, bias field Ho ——3214 G) than
our other results, because volume waves have a larger
bandwidth at such frequencies. The departure of the de-

lay from linearity is shown in Fig. 5(b), which shows the
improvement that can be produced by multiple films; note
that the best operating bands are not coincident when the
bias field is the same for all three systems.

2. Surface waves, two layers
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Our principal concern has been to show the existence of
the gap mode, Eq. (24); as far as we know it has not been
demonstrated before. We therefore considered two equal
layers, di ——d2 ——20 pm, separated by a narrow gap, s =5
pm. The result, calculated from Eq. (14), is shown in Fig.
6.

The first mode is very nearly a surface wave for the two
filros together, with an "effective" thickness d&+d2 ——40
pro. Except at the lowest frequencies, the second mode is
the gap mode for s =5 pm; its wave nurober is almost 8
times that of the fundamental mode, in agreement with
the ratio of "effective" thicknesses.

FIG. 5. Control of delay by multiple films, to obtain linear

dependence of delay on frequency. (a) The group delay over 1

cm for a single film, (1) d =30 pm; for two films, (2)

d 1
——d2 ——15 pm, s =30 pm; and for three films, (3) with

d& =d3 =5 pm, d2 ——20 pm, s& ——sz ——30 pm; the bias field is

3214 G. (b) Deviation of the delay from linearity in the above

cases.

C. Many similar films

Volume waves

%e shall consider only the fundamental mode —the
solid volume-wave line in Fig. 2—for the same parameters



MAGNETOSTATIC WAVES AND SPIN WAVES IN LAYERED. . .

l

(a) Volume Wave States

Many Layers, s =d

///d ",////~

o //////////

(a) Nlany Layers, s =d
S Urface staves

d ", /////////

s I

H, o. /l//I///l

=0.4 u

Reduced Itave Number, kd

Reduced IIave Number kd

(b) Large and Smell Spacings, s

CL

gQ

tl

0
0. g

~ Spin
Nave

l

1.0
kd

FIG. 7. Many films, d =s. (a) Formation of a continuum
from the fundamental forward volume wave (other modes exist
to the right; cf. Fig. 2). (b) Comparison with spin waves; depen-
dence of normal wave number on tangential wave number at
constant frequency.

I

Many Layers, u„=O. 4 ~M

4 —Volume Wave States
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that w«e used In that ftg«e. Thc b«adening of the fu
damental mode into a continuum is shown in»g. 7(a), «r
spacing equal to layer thickness. %aves may exist in all
of the shaded area; the limits of the spectrum are found
from Eq. (18), using the matrix elements MJ defined in

Scale)

Scale)

3

Reduced Wave Number kd

FIG. 9. Surface waves on many films. (a) Formation of a
surface-wave continuum on YIG for equal thickness and separa-
tion, bias field 0.4X4mM. (b) Narrowing of the continuum for
lesser and greater spacings, and the appearance of a singular
surface wave for lesser spacings.

Eqs. (8) and (9), together with the permeabilities in Eqs.
(19) and (20).

At low wave numbers the spectrum clearly belongs to
collective magnetic modes of the system; i.e., each mode
resembles a spin wave. This identification is made clearer
by finding the dependence of "perpendicular" wave num-
ber (i.e., along the y axis) on tangential wave number, for a
partlclllar fl'cqucIlcy. Tllc Icsult ls sllow11 111 Flg. 7(b); at
low wave numbers it is almost tangent to the characteris-
tic of a spin wave in an isotropic medium, Eq. (25).

The greatest frequency at which k =0 lies in the band is
given by

aIma*=~II+aIIIa1M/(1+s/d) . (28)

I

l 2

Reduced Wave Number kd

In

ave
nd

Thus, when the spac1ng s Is smaH thc width of the co~ti„
uum expands to cover the entire spin-wave band. This re-
sult is not in itself remarkable; it is mentioned only be-
cause surface waves do not display the same behavior.

The contraction of the continuum by increase of the
spacing is illustrated in Fig. 8. It is evident that magne-
tostatic modes of high wave number evolve continuously
from collective modes of long wavelength.

2. Surface waves

FIG. 8. Narrowing of the volume wave continuum by in-
creased separation.

The results of Damon and Eshbach" [see Eq. (26)] lead
011c to cxpcct a 1atllcI' Ilal'I'ow coIltlIllluII1 fol' surface
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waves, since many coupled layers are more like a continu-
ous solid than a single layer is. This expectation is not
realized. Figure 9(a) shows the broadening of the
surface-wave mode into a rather wide continuum for spac-
ing equal to layer thickness. A remarkable feature of this
result is that low wave numbers are allowed at all frequen-
cies up to the top of the band.

It can be shown that, for surface waves, Eq. (18)
reduces to

T(co) (t, +&d &, &d—) 2T—(co)&d&g+&g&, (0,
in which

(29)

t~ ——tanh(kd), t, =tanh(ks),

and T(co) is the right-hand side of Eq (.23);
T(co) =tanh(kod ) for an isolated layer.

This result is entirely symmetrical between s and d; thin
layers far apart have the same spectrum as thick layers
close together. We must conclude that waves propagating
mostly on the thin layers in the first case are replaced
with modes propagating mostly on the narrow spaces in
the second case: these are the "gap modes" mentioned in
Sec. III A [see Eq. (24)]. The existence of such a mode is
shown in Fig. 6.

The greatest frequency at which k =0 lies in the contin-
uurn is given by

~~»=~a+~a~~+~~sd/(s+d) . (30)

This function goes through a maximum when s =d; at
this spacing co» for k =0 is cuII+coM/2, the case shown
in Fig. 9(a). At all other spacings the continuum is nar-
rower, in contrast to the volume wave case, Eq. (28),
where the width of the continuum always increases as the
spacing falls.

The decrease in the width of the continuum for both
large and small spacings is shown in Fig. 9(b). It is plain
that when the gaps are small we must regard the principal
excitations as gap modes weakly linked through large
thicknesses of ferrite

Figure 9(b) also shows a singular surface-wave mode
that exists only when the spacing is less than the layer
thickness. The existence of this mode is demonstrated in
part 2 of the Appendix, and its appearance is the only dis-
cernible effect of interchanging s and d.

The progressive broadening and subsequent narrowing
of the surface-wave continuum have previously been
shown by Grunberg and Mika, in Fig. 2 of their work;
these authors have also demonstrated the appearance of
the singular surface wave.

That a layered structure should support a surface wave
with a frequency independent of wave number is worthy
of remark. The explanation is simple. At the frequency
of the Damon and Eshbach" surface waves, a magnetic
field decreasing as e "~~

~ in the ferrite layer can join
onto a field increasing as e I~ ~ in the intervening dielec-
tric. The field displays a sawtooth pattern as one goes
down through the layers; decreases by e in -each ferrite
layer are followed by increases of e in the next dielectric
layer. For all positive k, therefore, the mode is localized
near the surface provided that s ~ d.

IV. CONCLUSION

A compact way of calculating the characteristics of
magnetostatic waves on multiple ferrite films has been
described and demonstrated. The properties of three un-
equal films, separated by dielectric spacers, have been il-
lustrated, and have been shown to lead to accurate control
of delay over 800 MHz bandwidth.

For very many like films equally separated, the magne-
tostatic modes are split into a continuum. At long wave-
lengths the modes are collective modes of the entire sys-
tem; at short wavelengths they evolve smoothly into nar-
row bands centered on the rnagnetostatic modes of the
layers (or of the gaps between the layers).

For volume waves, the long-wavelength modes of a lay-
ered medium resemble the spin waves of a continuous
medium. A decrease in the spacing between the layers
broadens the continuum until the entire spin-wave spec-
trum is covered.

The surface-wave spectrum of a very thick layered
medium is less simply explained: Indeed, the only satis-
factory part of the results is the abrupt appearance of the
Damon and Eshbach surface wave when the spacing be-
comes less than the layer thickness.

In a continuous semi-infinite medium, the classical sur-
face wave exists at only one frequency. In a layered medi-
um, by contrast, other waves extend throughout the medi-
um at all frequencies within the surface-wave band of a
single layer; the number of modes at each frequency is
equal to the number of layers. Comparison with a con-
tinuous medium is further complicated by a curious sym-
metry between layers and gaps, which are equally capable
of supporting surface waves (the gap modes have not, as
far as we know, been reported before). In contrast to the
volume wave case, this symmetry leads to the conclusion
that the continuum is narrow when the gaps are small, as
well as when they are wide.

The density and frequency distribution of these modes
have no simple parallel in a continuous medium. The nar-
rowing of the continuum, however, implies that energy
transfer from layer to layer is slow when the gaps are very
small. While the modes exist, therefore, most of them
may not be accessible when the structure looks "almost
like" a uniform magnetic medium.

Note added in proof. The properties of many equal
layers under a bias field of arbitrary in-plane direction
have been described by R. E. Camley, T. S. Rahrnan, and
D. L. Mills [Phys. Rev. B 27, 261 (1983)].
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AFFENDIX

1. Connection between layers

For layer n, let the surface permeabilities p' at the bot-
tom and at the top be p„and p„', respectively. Equation
(4) has the form

p„=(ay„'+ b )/(c+ dp„' )
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(the interval y = —d„must here be counted as negative).
We seek to convert this to a "homogeneous" form in-

volving un =pn+ I and Un =pn —1, for reasons given be-
fore Eq. (6). Simple algebra gives

u„=p„+I=, (D„u„'+E„u„'),
2(c+djM„')

u„=p„—1=, [F„u„'+D„(—k)u„'],
2(c+dp'„)

(M i I
—Mlz )'+4M „M,I

———16@,',e -'~sech'(Pkd ),
(A5)

wlllcll ls certainly always Ilcgatlvc. Thclc is tllclcfol'c llo
distinct split-off band.

The phase change between consecutive layers is

/=Are(Ai) or tanp=lmAI/Real .

If the right-hand side of Eq. (16) is exp(ig), then solutions
appcax' when

D„=a+b+e+d, E„=a—b —c+d,
F„=a+b—c —d, D„(—k)=a b+c——d .

e 2i%4 eig

Iti= g/2N+nir/X, (A6)

D„„=2[1+tanh( ks„ i ) ] .

Travel across the dielectric layer, characterized by p„' at
the bottom and by pn I at the top, therefore gives

—2ks„
"n =@"n —I» Un =@Un —le (A2)

Substitution into Eq. (Al) yields Eq. (9). The total factor
is a function, not only of k, but of p'n and pn i', truly
homogeneous equations are not attainable.

2. Number of solutions

It will first be shown that, for large X, Eq. (16) has no
roots other than the band defined by Eq. (18), apart from
a singular surface-wave solution. A singular solution can
arise if the first term in iLi is zero outside the range of
wave numbers that satisfy Eq. (18), i.e., if there is R wave
number such that

M)] +M22 ——0,
and Eq. (18) is not satisfied. There would then be a split-
off band.

The solution to Eq. (A3) is

tanh(Pkd )tanh(ks) = PVII

1 +P I IP22 —P )2

= tanh(Pkod ),

where ko is the wave number on an isolated film. There
are, therefore, no solutions outside the range of frequen-
cies within which magnetostatic waves exist on an isolated
film, and there are solutions at all such frequencies.

Upon substituting Eq. (A4) into condition (18) we ob-

tain, after some algebra,

Explicit forms for these quantities, from the values of a,
b, c, and d, are given in Eq. (9).

It is convenient to iterate from one ferrite layer to
another, rather than treat the intervening dielectric as a
magnetic layer. From Eq. (9) we have for the vacuum
layer s„

[D( —k)]„„=e " 'D„„, E„„=F„,=0,

where n is an integer. When the number of films, X, is
very lal'gc, tllc sollltlolls RI'c closely spaced (4/=IT/N),
and thc band bccoIIlcs a continuum.

The limits of the band are defined by Imi, l
——0; it is

easy to show that this condition is satisfied when the
lower limit of the band is at k=0, as well as for bands
that span positive values of k. From Eqs. (A4) and (A5),
wc fInd tllat Rc»(, I ——0 witlllli tllc band, so thc valllcs of $
always vary between 0 and m. The integer n in Eq. (A6)
can therefore take all values from 0 to X—1; the total
number of solutions is X.

Singular surface Icaue Asp.ecial solution to Eq. (16)
may arise when A, I and A,2 have different magnitudes, pro-
vided that the right-hand side of the equation vanishes (or
is infinite). This can occur only if

M)2M2) ——0 .

Except at k=0, this requires that the sum of permeabili-
ties in either E or F, defined in Eq. (9), be zero. This con-
dition cannot be met for volume waves, but for surface
waves it is satisfied at the frequency

1
6)=QPII + 2 Q)M

This is the frequency of the Damon and Eshbach" sur-
face wave on an isotropic semi-infinite solid, Eq. (26).

Take the square root in Eq. (17) as +(Mii —Mzz) when
MlzMzl is zero. Then A, I=M» and A,I——M22, Eq. (16) is
110W

(M I I /Mlz ) =0 .

When X is vs'y laI gc, solutions exist pI ovidcd that
At th««qucncy aIH+alM/2 tins conditio~

reduces to

e-'"'~-'(1 or s(d .

This case is not included in the continuum defined by Eq.
(18).

A layered structure therefore supports a surface wave
precisely like that on a uniform semi-infinite solid, so long
as the sparing is less than the thickness of the layers.

3 Effect of ground planes

In many cases of tcchnical IntcI'cst R glouIld plRIlc ITlay

be adjacent to the ferrite system. The boundary condition
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at a ground plane is —2ks~
~%+1+UN+1 0 ~N +e

because the normal field, 8', must vanish at a good c
ductor. We shall give only a formal treatment of this
pic.

Let ground planes be at distances so above and s~ below
the ferrite system. At these planes v =1 and U= —1; at
the top of the ferrite systeln Eq. (A2) gives where E is the matrix product in Eq. (12).

This result is a generalization of Eq. (13), bring true for
both positive and negative wave numbers. It is easily seen
that, if so and s& are very large, then for positive k Eq.
(A10) reduces to E» ——0, and for negative k to %22 ——0,
which are the results in the text.

—2kSo
Qo 1, Uo

The boundary conditions at the bottom plane can be
rewritten as

(A9) If we regard this as an inner product with w", then Eq.
(11) allows us to write the dispersion relation as the van-

to Ishlllg of a total lllllel ploduct,
c'

2kv
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