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Infrared phonons of ZrS, „Se„
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Infrared transmission spectra of the pseudo-one-dimensional ZrS3-ZrSe3 solid solutions are re-

ported. A mixed- (one-, two-, and three-) mode behavior is observed and a correspondence with the
Raman phonons is established. It is shown that the conjugate-pair Raman and infrared phonons
have the same type evolution in the mixed samples. It is also observed that the one-dimensional

character is more important in ZrS3 than in ZrSe3.

I. INTRODUCTION

Lattice vibrations of the transition-metal
trichalcogenides ZrS3 and ZrSe3 have been intensively
studied in the last few years mainly in Raman and in-
frared spectroscopies. ' The dimensionality of these ma-
terials and their atomic force constants have been tenta-
tively analyzed. However, there still remains a lack in the
detection and assignation of all the Raman and infrared
phonons.

Both ZrS3 and ZrSe3 have a monoclinic unit cell [Cqt,

(P2I lm ) space group] which contains eight atoms associ-
ated with two chains. Group analysis predicts 12
Raman-active modes (eight As and four Bs) and nine
infrared-active modes (six B„and three A„). In the Ra-
man modes the ZrS3 or ZrSe3 molecular units of the two
chains within the unit cell vibrate out of phase while they
vibrate in phase in the infrared modes. An association of
conjugate modes is thus possible either parallel to the
chains (Bs with A„) or perpendicular to it (As with B„).

ZrS3 and ZrSe3 form a continuous series of solid solu-
tions ZrS3 „Se„with the same C2I, point-group symme-
try. The study of these ternary-phase infrared phonons is
interesting in order to complement recent Raman works'
which identified a complex mixed-mode behavior of this
solid solution. Also such a study permits a better under-
standing of the lattice vibrations of ZrS3 and ZrSe3.

ty measurements in the pure parents ZrS3 and ZrSe3,'

mode assignment in each compound and its evolution
with composition x are listed. The average shift in fre-
quency 5 (cm ') at low temperature is given for all modes
except those of line 10 which were buried in a strong po-
lyethylene absorption peak at 430 cm '. In Fig. 3 mode
frequencies are plotted as a function of x.

III. DISCUSSION

The same mixed- (one-, two-, and newly designed
three-) mode behavior as in the Raman works' were ob-
served. For the sake of comparison we reproduce in Fig. 4
the Raman results of Ref. 1, the different lines being iden-
tified by a number with an asterisk.

In Fig. 3, the three-mode behavior is represented by
lines 6, 10, and 11 of B„symmetry and can be easily asso-
ciated with the Raman As lines 7', 9* and 10" of Fig. 4.
The frequency discrepancy between the infrared modes
and the Raman ones does not exceed 3 cm ', and is
within the experimental errors.

It is now established that the frequencies of line 11 cor-
respond to the stretching mode of the S-S pairs, whereas

= 2.9

II. EXPERIMENTAL RESULTS X=2

We used chemical transport with iodine to grow single
crystals of ZrS3 Se„. Their composition was verified by
x-ray and gravimetric analysis. The latter method indicat-
ed a nonstoichiometry and a Se deficiency maximum in
the midrange of composition (of the order of 10%). In or-

der to reduce the Se deficiency an excess of Se was added
in the growing process of ZrS, 5SeI 5.

Crystals of ZrS3 Se have been used in polarized in-

frared transmission (Fig. 1) at 300 K, while unpolarized
transmission was done using powdered samples on a po-
lyethylene support at 50 and 300 K (Fig. 2). Spectra were

recorded with a 180 Perkin-Elmer spectrophotometer.
Table I shows the regrouping of the results of both

transmission in crystals and powders along with reflectivi-
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FIG. 1. Infrared crystal transmission spectra of ZrS3 „Se„at
300 K. Solid lines and dashed lines stand, respectively, for B„
and A„symmetry.
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FIG. 2. Infared powder transmission p
'

n s ectra of ZrS3 „Se, at
300 K.

the frequencies of line 6 are assassociated with the Se-Se
airs. Line 10 appears only in the ternary phases. As re-

ick et al. it could be related to the S-Se
h ed that in theOur transmission measurements s-owe a

'
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doublet does not reflect the relative nanatural abundance of
the isotopes S an d S. We interpret this doublet and its

' b h
'

s a result of the two possible con-components' be avior as a
figurations for the chalcogens of the trigonal pnsm m e

. Actuall, the frequency of the S-Se pairing
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Line Symmetry x =0.1 x =0.5 x =1.0 x =1.5 x =2.0 x =2.5 x =2.9 x =3.0 (crn ')
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Bu
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347
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101*

-245*
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-386*

430
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-245*
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-423
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-245*
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-523

172
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197.5

-240*
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226.5
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226.5

4
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5
6
4
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