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We have measured the temperature dependence of the first-order Raman scattering by phonons in

Si, Ge, and a-Sn. The full widths at half maximum of the Raman lines, extrapolated to zero tem-

perature, are 1.24+0.07, 0.75+0.03, and 0.81+0.15 cm ' for Si, Ge, and o,-Sn, respectively. The re-
liability of the data obtained allows a critical examination of the theoretical calculations published

so far. We show that the model assuming the decay of the Raman phonon into two acoustical pho-
nons belonging to the same branch, first proposed by Klemens, does not represent adequately the
temperature dependence of the Raman linewidth. The most important decay channels are shown to
be combinations of optical and acoustical phonons. However, the more complete calculation by
Cowley, which involves all possible decay channels, gives very large zero-temperature linewidths.
We show that this arises mainly from the poor description of the phonon dispersion curves by the
shell model used by Cowley, and that a better agreement between theory and experiment is to be ex-

pected by repeating the calculation with Weber's adiabatic bond-charge model.

I. INTRODUCTION

A large number of papers devoted to the study of the
temperature dependence of first-order Raman scattering
by phonons in semiconductors may be found in the litera-
ture. ' However, considerable discrepancies between
values for the linewidth reported by different authors, as
well as theoretical calculations, still exist. In Table I we
have selected some representative values for the full width
at half maximum (FWHM) extrapolated to zero tempera-
ture for diamond and diamond-type semiconductors.

The reason for the experimental discrepancies displayed
in Table I is often the finite resolution of the spectrome-
ters. The corresponding corrections which have to be ap-
plied are sometimes as large as the width itself. On the
other hand, no resolution corrections are needed to deter-
mine peak positions. Consequently, one finds rather good
agreement between line shifts measured by different au-
thors.

The question of the linewidths of tetrahedral semicon-
ductors has recently gained renewed attention as a result
of measurements of the lifetime i of optical phonons in
the time domain using laser-generated ultrashort
pulses. ' '" Preliminary measurements on GaAs (Ref. 11)
seem to indicate that the lifetime is related to the frequen-
cy width through the energy-time uncertainty relation.
This fact implies that the linewidth is determined by ener-

gy relaxation processes.
The linewidths of the optical q =0 Raman phonons for

diamond, silicon, and germanium have been calculated by
Klemens and Cowley. Klemens's model is an attempt to
keep the calculation in an analytically tractable form. To
do this, the author assumes that the only contributions to
the linewidth arise from terms which represent the decay
of the Raman phonon into two acoustical phonons of op-

Material

Diamond Krishnan' (expt. )

Anastassakis et al. " (expt. )

Borer et al. ' (expt. )

Klemens (theory)
Cowley' (theory)

FWHM (cm ')

2.9
2.0

1.68+0.05
0.035
2.74

Silicon Hart et al. (expt. )

Temple et al. (expt. )

This work (expt. )

Klemens" (theory)
Cowley' (theory)

2.1

1.45+0.05
1.24+0.07

0.048
11.34

Germanium Ray et al. h

Cerdeira et al. ' (expt. )

This work (expt. )

Klemensd (theory)
Cowley' (theory)

1.4
1.1

0.75+0.03
0.029
5.34

a-Sn This work (expt. )

Klemens (theory}
0.81+0.15

0.047

'Reference 1.
Reference 2.

'Reference 3.
Reference 4.

'Reference 5.
Reference 6.

gReference 7.
"Reference 8.
'Reference 9.

TABLE I. Some experimental and theoretical determinations
of the FWHM of Raman phonons at zero temperature. The
values corresponding to Klemens's theoretical model were calcu-
lated using Eqs. (12) and (27) of Ref. 4. Values given for
Cowley's model correspond to calculations for 10 K.
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posite q vector that belong to the same branch in the pho-
non dispersion curve. The matrix element is an ad hoc
modification of matrix elements used in his theory of
thermal conductivity. Although one can show by simple
density-of-states arguments that Klemens's model is a
gross oversimplification, it has gained wide acceptance,
specially since the work of Hart et al. on Si. The more

complete calculation of Cowley, summing over all possi-
ble decay processes and using a realistic anharmonic po-
tential, surprisingly gives very large values for the
linewidths of Si and Ge. Even the relative values of the
widths with respect to diamond do not agree with the
measurements.

Very recently, Balkanski et al. ' repeated the linewidth
measurements on Si, showing that Klemens's model does
not fit the experimental data well. These authors modi-
fied the model by adding decay processes into three pho-
nons of the same frequency.

We have performed measurements of Raman linewidths
and line shifts for Si, Ge, and a-Sn as a function of tem-
perature, using the same experimental setup and under

conditions of high resolution. The reliability of the data
obtained allows a critical examination of the theoretical
models. Our measured linewidths cannot be satisfactorily
explained with Klemens's model. We show that combina-
tions of acoustical and optical phonons provide the most
important decay channels for the q=O optical Raman
phonon in disagreement with the model of Ref. 12. The
discrepancy of Cowley's calculation with our experimental
values is shown to be mainly due to the inaccuracies in the
shell-model description of the harmonic Hamiltonian. We
estimate a serniquantitative correction that reduces the
difference between theory and experiment to a factor of 2,
a reasonable result in view of the simple anharmonic po-
tential assumed in Cowley's model.

II. THEORY

A number of reviews dealing with the anharmonic shift
and broadening of Raman lines have been published. '

This work is based on an anharmonic contribution to the
Hamiltonian, which can be written as

q~ q2 q3
Hz —— g g V. . . A(qi ji)A(qzjz)A(q3j3)Ji J2 J3

q&, q&, q3» J~ J3

qi q2 q3 q4

JI J2 J3 J42 2 1' ~(qi ji)~(qz jz)~( 13 J3)~(q4 J4»
q~ q~ q3 q4 ~ J~J3J4

where

A(q, j)=a . +a

the a's being the usual phonon creation and annihilation
operators.

The effect of these anharmonic interactions on the
Raman-allowed optical mode is to change its harmonic
frequency co(O,j) to a damped frequency co(O,j;Q) given

by

co (O,j;Q) =co (O,j)+2'(O,j)[b(O,j;Q)+il (O,j;Q)] .

(2)

(The index j labels the three degenerate q =0 phonons. )

For the materials under consideration the real and ima-

ginary parts of the self energy, 6(O,j;Q) and 1(O,j;Q)
are much smaller than co(O,j) and Eq. (2) can be rewritten
as

co(O,j;Q)=co(O,j)+b(O,j;Q)+il (O,j;Q) .

Thus the line shape of the Stokes Raman peak becomes

(0 Q)
f (0 J' Q)

[co(0,j)+5(0,j;Q)—Q] + I (0,j;Q)

X [ii(Q)+ 1],

with the thermal occupation number

n(Q)= 1

exp(A'Q/k T ) —1

The function b, (O,j;Q) gives the shift of the peak posi-
tion. The three lowest-order contributions to the diagram-
matic expansion of the self-energy yield

0 0 q —q
b(O,j;Q)=h"'+ —g &. . ., ' [2n(q, j')+1]fi, .J J J J

q~J
2

18ir
g2 J J)

q ~Jl~JP
J2

[&(q Ji)+&(—q jz)+1]
co(q,ji)+(q,jz)—Q p
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with n(q, j}=n(ro(q,j)) given in Eq. (5).
The first term in Eq. (6) is the thermal-expansion con-

tribution to the line shift. It may be written as

6' '=co(O,j)exp 3y—(O,j)I a(T')dT'

where a(T) is the coefficient of linear thermal expansion
and y(0,j) is the Gruneisen parameter for the optical Ra-
man mode. This term, as well as the fourth-order contri-
bution to b,(0,j;Q) [the second term in Eq. (6)], does not
depend on Q.

The broadening of the Raman line is given by

I'(O,j;Q)=
7& Ji Jg

0 q —q

J Ji J2

2

[n(q ji)+n( —q jz)+1]5(~(q ji)+~( —q j2)—Q).

The last terms in Eqs. (6) and (8) are the third-order
contributions to the shift and width, respectively. They
are related by a Hilbert transform (dispersion or
Kramers-Kronig relation). 's The physical meaning of Eq.
(8} is quite transparent: Owing to the anharmonic interac-
tions the optical Raman phonon decays in a combination
of two phonons co( q,ji ) and co( —q,j2) satisfying
co( q,ji )+!o(—q,jz )=Q. We shall omit from now on the
index Oj in co(Oj ), b, (O,j;Q), and I (O,j;Q) since, for
the materials under consideration, we are only concerned
with one set of threefold-degenerate phonons at q=O.
Hence we define coo =—ro(0,j), 5(Q)—:b,(0,j;Q), and

r(Q) =r(o,j;Q).

If the matrix elements in Eq. (8) are assumed to be con-
stant, one obtains, for I'(Q), a value proportional to the
two-phonon density of states when T~O,

1(Q)~ —g 5(co(q,j, )+co( —q,j, ) —Q}—=p'(Q) .
V

Equation (9) implies that one should expect a large I (Q)
whenever the frequency coo of the optical mode happens to
coincide with a peak in the two-phonon density of states.
The matrix elements which determine the width I (Q) are
actually given by

0 q —q

J Ji J2

' 1/2
1 f3

8NM boa!o(qj i }co( qj 2)—
r

0 i' /"
g P iver k k, k„e~(k

~
Oj)e~( k~ q,j!)er(k"

~

qj2)e'—
1', 1"k, k', k" a,P, y

where
T

0 l' l"
k k' k"

but not as good for diamond). Thus if one writes a scaled
potential as

(. . .& Uik». u!'k'&

is the third derivative of the interatomic potential with
respect to displacements along directions of the Cartesian
coordinates a, P, and y of the atoms

0

=Ma cop+
uIk

where N is the same function for all materials, and re-
places it in Eqs. (10) and (8), one finds

I (Q) ~ 1/Ma (12)

respectively. The index l labels the primitive cells, while k
labels the position of the two atoms within the primitive
cell. The vectors e(k

~ q,j) are the eigenvectors of the
harmonic problem. M is the atomic mass and N the num-
ber of cells in the crystal.

It has been shown' that the phonon dispersion curves
for diamond, silicon, germanium, and grey tin may be ap-
proximately scaled if one plots the relative frequency
co/!oz as a function of qa, where co& is the ion plasma fre-
quency (mp-M-i/2a-3/z) and a'is the lattice constant
(this scaling is a good approximation for Si, Ge, and a-Sn,

In Table II we compare Eq. (12) with the experimental
linewidths extrapolated to zero temperature.

Two evaluations of Eq. (8) have been reported.
Klemens assumes that the optical Raman phonon decays
in two acoustical phonons of opposite q belonging to the
same branch. This means ji ——j2 in Eq. (8) (there is
a priori no reason for making this approximation. The
density of states for combinations of two phonons with
ji&j2 is actually much larger than that corresponding to
ji ——j2 as may be seen in Table III). The assumption
j!——j2 leads to co(q,ji)=co( —q,jz) and one obtains a
broadening of the form
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TABLE II. Comparison of the measured Raman FWHM 2I"(0) for T~O with the prediction of the
scaling theory [Eq. (12)]. The constant C has been chosen so as to normalize C2I"(0)Ma~ to 1 for sil-
icon.

1
(cgs)

Ma
2I"(0) (cm ')

CMa [2I"(0)]

'Reference 3.
This work.

Diamond

3.94X10"

1.68'
0.25

Si

7.27 ~ 10'6

1.24b

1.0

2.58 && 10'6

0 75"
1.7

a-Sn

1.21 && 10"

0.81
3.9

I'(ci)p T)=Prtjp 0)[ 1 +2n (rppl2) ] (13)

III. EXPERIMENT

The experiments were performed in the usual back-
scattering configuration. A Kr+ laser was used as the ex-

citing light source. The scattered light was analyzed with
a Jarrell-Ash 1-m double monochromator and detected by
photon counting. The data were transferred to a Digital
Equipment Corporation PDP-11/34 computer and fitted

TABLE III. Two-phonon combined density of states p (Q)
for Q=QO, the Rarnan phonon frequency extrapolated to zero
temperature. Values were determined by normalizing the curves
of Go (Ref. 33) which give the two-phonon density of states cal-
culated within Weber's adiabatic band-charge model (Ref. 17).

p (Qo) in units of (a'coo)

Material

Diamond
Silicon

Ciermanium

Overtones

Ui =12)

13
4

Combinations

(jlWj2)

19
50
54

The constant I (cop, O) is determined by making further
approximations to compute the matrix elements and the
density of states. The values calculated with Klemens's
model are listed in Table I. They are much smaller than
the experimental linewidths. Our measurements show
that even considering I (cop, O) to be an adjustable parame-
ter, as is usually done, ' the temperature dependence of
Eq. (13) does not fit well the data. This indicates that
processes with j,&j2 do contribute signficantly to the
linewidth.

Cowley made the first full calculation of Eq. (8) and
the last term of Eq. (6). He solved the harmonic problem
with a shell model' ' and assumed the anharmonic con-
tribution to be an axially symmetric force between nearest
neighbors. This anharmonic interaction has two pararne-
ters which were obtained by calculating the thermal ex-
pansion and fitting it to experimental results. The calcu-
lated I (cop) for diamond is in reasonable agreement with

experiment, but the I 's obtained for Si and Ge are larger
than the experimental ones by a factor of the order of 10.
We shall show that this discrepancy arises mainly from
the poor description of the phonon dispersion curves by
the shell model.

with the appropriate line shape (usually a Lorentzian; see
below).

The silicon sample we measured was a (100)-oriented
high-purity wafer (p& 10 Qcm) provided by Wacker
Chemitronic GmbH. The germanium sample was intrin-
sic at room tempeature, and oriented in the (111) direc-
tion. The cx-Sn sample was a 500-A-thick film grown on a
(100)-oriented InSb surface using the molecular-beam-
epitaxy technique of Farrow et al. Photoemission ex-
periments on these samples have already been reported. '

The low-temperature part of the measurements was per-
formed in a Leybold helium cryostat and the high-
ternperature data were obtained by placing the sample in a
glass oven whose pressure was kept below 10 Torr. The
temperature was measured with a platinum resistor, and
checked with existing data for the line shift. In order to
avoid sample heating effects we have chosen a cylindrical
lens to focus the incoming beam on the sample. The laser
power was kept below 100 mW. No changes in the spec-
tra were observed when reducing the applied power by a
factor of 2.

Owing to the high-absorption coefficient of a-Sn in the
visible and near ir (a=5&&10' cm ' for fun=1. 92 eV),
the Raman measurements on this material are particularly
difficult. We have chosen to work with the 7525-A laser
line as near as possible to the E, maximum of the Raman
efficiency.

Silicon has a strong Rarnan signal and was measured
with the same 7S2S-A line. The Ge sample was measured
with the 6471-A line, which is closer to the E& gap reso-
nance.

To achieve high resolution one has to reduce the sht
widths in the spectrometer and increase the integration
times. For the low-temperature data of cx-Sn we needed
typically 1 h/10 cm '. The measured phonons are so nar-
row that even with the reduced slits one has to correct for
the finite instrumental resolution. The observed peak is
the convolution of the Lorentzian shape of the actual pho-
nons with the response function of the spectrometer. This
function should have a triangular shape, but is very often
considered to be a Gaussian. For the experiments under
consideration, results obtained by assuming either triangu-
lar or Gaussian response functions are almost identical
(within 3%). We have used Gaussian shapes for the actu-
al calculations reported here.

The convolution product of a Gaussian times a
Lorentzian curve is the so-called Voigt profile. The
rigorous procedure to make the deconvolution would be to
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Q =too+ b (Q ) (14)

is conventionally regarded as the position of the center
of the Raman peak. If we now expand b, (Q) in the neigh-
borhood of Q

b, (Q) =b, (Q )+b,((Q —Q~ ), (15)

db, (Q)
dn -=-. '

then Eq. (4), in the vicinity of Q~, can be written as

fit a Voigt profile to our experimental peaks, and then to
calculate the Lorentzian linewidth using the fitted width
of the Voigt profile and the experimentally determined
width of the spectrometer response function. However,
for a typical Raman experiment one needs a signal-to-
noise ratio better than 100 to distinguish between the
Voigt profile relevant to this work and Lorentzian curves
with the same FWHM. Our signal-to-noise ratio is about
25 (and worse for a-Sn), and therefore we used a simpli-
fied procedure.

The experimental peaks were fitted with a Lorentzian
function, and the FWHM so obtained was assumed to be
equal to the FWHM that one would find by fitting the ex-
perimental peaks with a Voigt profile. Then we corrected
for the finite resolution of the spectrometer by using
Posener's tables. The width of the response function of
the spectrometer was determined by measuring the
linewidth of the laser line with the same slit apertures as
in the Raman experiment.

The corrected linewidth obtained after the deconvolu-
tion procedure cannot be immediately related to the func-
tion I (Q)—= I'(O, j;Q) in Eq. (8). The reason is the Q
dependence of b, (Q) and I (Q) in Eq. (4) (Ref. 25) [n(Q) is
a very slowly varying factor]. The solution Q~ of the
equation

~ /

a)

E 0-
Germanium (b)

ET 5—

h

g 0

4

0 I I I I I I I I

0 1 2

TEMPERATURE kT/'hA0

(17)

FIG. 2. Measured FTHM of the Raman peak as a function
of the normalized temperature kT/fiQo {points). Resolution
correction discussed in Sec. III has been applied. Solid line is a
fit with Eqs. {19a) and {19c). Dotted line is the prediction of
Klemens's model [Eqs. (19a) and (19b)] setting 21 (0) equal to
the experimental linewidth extrapolated to zero temperature. Qo
is the Raman frequency for T~O.

The half width at half maximum (HWHM) of the
Lorentzian function of Eq. (17) is given by

ct-Sn (100) (18)

T=77 K

P) T=334 K i
CJ

0 I

&90 200
RAMAN SHIFT {cm 1)

210

FIG. 1. Two typical Raman spectra for a-Sn at different
temperatures.

The Lorentz width obtained with the deconvolution
procedure is I"(Q ) and not I (Q ), the value calculated
in Eq. (8). Both widths are related by Eq. (18). In other
words, to compare experimental and theoretical linewidths
one needs, in principle, a calculation of both real and ima-
ginary part of the self-energy.

IV. RESULTS

Two typical spectra for a-Sn are shown in Fig. 1. The
spectra of Si and Ge look similar except for a better
signal-to-noise ratio. Note that the peak of grey tin still
appears at 334 K well above the transition temperature for
the a~P transformation of bulk tin [-286 K (Ref. 20)].
This demonstrates the stabilizing influence of the sub-
strate. A detailed account of this phenomenon will be
published elsewhere.
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- (a)
525 =

gOy

520.—

515—

510—

I I ~

Silicon

I I I I I

lattice parameters of a-Sn and InSb. The distorted lattice
parameter of the film has been measured by Farrow
et al. Using the values of Ref. 20 and the anharmonici-
ty parameters of Bell for InSb (there are no data for
a-Sn), we calculate for a film oriented along (100) a shift
of 0.6 cm ', in reasonable agreement with the observation
above.

V. DISCUSSION

: (b)
305 =v

—300-
I—
U—295—
3C
V)

Germanium

0 0

a-Tin

L . ~ ~

195—

Figures 2(a)—2(c) show the measured linewidths versus

temperature and Figs. 3(a)—3(c) the corresponding line
shifts. The resolution correction applied amounts to 10%
in Si and Ge and 30% for a-Sn at low temperatures
(T-4K). The measured linewidths for Si are much
smaller than those reported by Hart et al. Our room-
temperature value, 21'(300 K)-2.5 cm ', agrees fairly
well with measurements using a five-pass Fabry-Perot
spectrometer, 2I"(300 K)-2.7+0.1 cm

In Figs. 3(a)—3(c) we plot the shift in the Raman fre-
quency versus temperature. The solid line in Figs. 3(a)
and 3(b) represents the thermal-expansion contribution to

the line shift, after Eq. (9), using ys;(0,j)=0.98,
1 G,(0,j)=1.13, and the integral a(T')dT' tabulated

0
in Ref. 28. The results of Cowley's calculations are also

represented (squares), whereby we have added the shift
due to the thermal expansion to that calculated in Ref. 5.
The calculated results were shifted so as to bring them
into agreement with the measurements at low tempera-
tures.

In Fig. 3(c) we indicate two values for the Raman shift
obtained in bulk samples (triangles). We notice that the
Raman frequencies of the films are higher than the bulk
ones by about 0.8 cm '. This shift can be attributed to
the compression of the film due to the mismatch of the

0 1 2

TEMPERATURE kT/hAp

FIG. 3. Raman shift as a function of the normalized tem-

perature kT/AQo (points). Solid line in Figs. 3(a) and 3(b) is the
thermal-expansion contribution to the line shift. Squares
represent Cowley's calculation plus the effect of thermal expan-
sion. Triangles indicate the Raman shift obtained for bulk o,-Sn
samples (Ref. 29).

The correction of Eq. (18) is usually neglected, and the
linewidths are fitted with functions of the form ' ' '

21"(T)=2I (T) =21"(0)[1+n(co(q,ji)) (19a)

+«~( —q j2))l
with co(q,ji )+co( —q,j2)=Qp Qp being the Raman pho-
non frequency extrapolated to zero temperature.

If the decay channels considered by Klemens are the
most relevant ones, we should be able to fit the data with
Eq. (19a) and the additional condition

~(q ji)=~( —q j2) Qo/2 (19b)

which has the form of Eq. (13). This condition is only
fulfilled for some acoustic branches with ji ——j2.

In Fig. 2 we show the temperature dependence of
21 '(T) obtained with Eqs. (19a) and (19b) by taking I (0)
equal to the measured value of I"(0) at low temperatures
(dashed line). We note that for b, i &0 and

~

b, i ~

increas-
ing with temperature, as obtained from Fig. 4, the
discrepancy found for Si and Ge between the predictions
of Klemens's ansatz (19a) and (19b) and the experiment
would become even larger, if one makes the correction of
Eq. (18).

In Table III we show the values of the two-phonon den-
sity of states calculated at the Raman phonon frequency
Qo. This table explains the poor agreement between
Klemens's model and experiment. The number of decay
channels with co(q,ji )&co( —q,j2) (combinations) is much
higher than the number of overtone decay channels
(j~ ——jq), especially for Si and Ge. Klemens's model only
considers overtone processes [Eq. (19b) with ji ——j2], ie.
most of the possible decay channels are neglected. In gen-

We emphasize again that the experimentally measured
linewidths (Fig. 2) are the I"(Q ) of Eq. (18) and not the
imaginary parts of the phonon self-energy 1(Q ). To
compute the corresponding corrections one needs the spec-
tral dependence of b, (Q) calculated at each temperature.
At some frequencies b,

&
is of the order of 1 and the correc-

tion is large. For Ge we estimate at point I' of Fig. 4,
which, as will be seen below, corresponds to the frequency
0 =00, A~ ———0.03 at T=10 K, and 6& ———0.13 at
T=300 K. Hence corrections for the linewidth may be-
come important at high temperatures. I (Q ) should be
somewhat larger than I"(Q ). Unfortunately, we cannot
perform them because no systematic calculation of 5(Q)
as a function of temperature is available in the literature.
In the remainder of this section we discuss the three
theoretical approaches which can be used to interpret the
data of Figs. 2 and 3.

A. Klemens's model
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E

%0

0
-(C)

Comb.

-(d)

X'/ 8'
p(Q)

&I I,
300 I00

FREQUENCY 0 (cm~}

FIG. 4. Calculated self-energy (Ref. 5) and two-phonon com-
bination density of states {Refs. 19 and 33) for Ge. (a) 5(Q),
dashed line: T=10 K; solid line: T=300 K. (b) I {0),dashed
line: T=10 K; solid line: T=300 K. (c) Two-phonon density
of states for combinations within the shell model used by Cow-

ley (Ref. 19). (d) Same as (c), with Weber's adiabatic band-

charge model (Ref. 33). See text for explanation of X, Y; B, X',
and B' lines.

eral, decay will take place into two phonons with co(q, j& )

sweeping the range 0—Qo and co(q,jq)=QO —co(q,j&).
Equation (19a) will be meaningful if the main contribu-
tions of the decay process cluster around one given fre-
quency. An examination of the phonon dispersion rela-
tions suggests that this contribution arises from pairs
(LA-LO) of phonons belonging to the Q branches ' (along
the L W line) and from—nearby regions of the Brillouin
zone. They fulfill the approximate relationship

co(q,j( ) =0.35QO, co( —q,j2)=0.65Qp . (19c)

A combined density-of-states calculation performed re-
cently by means of a Brillouin-zone integration shows
indeed dominant peaks centered at the frequencies of Eq.
(19c). We thus perform fits of the data of Fig. 2 with
Eqs. (19a) and (19c) giving more weight to the low-
temperature points so as to exclude decay processes into
three or more phonons. Within the experimental tempera-
ture range the fit is rather good for a-Sn and for Ge. In
the case of Si the fit is definitely better than with the as-

sumption of Eq. (19b), although deviations at high tem-
peratures may indicate either a breakdown of Eq. (19c) or
increasing contribution of decay into three phonons, as
suggested in Ref. 12. In the case of a-Sn the fits with
Eqs. (19b) and (19c) have the same quality. Because of the
analogy with Ge and Si, however, we believe the situation
of Eq. (19c) to prevail also in this case.

B. Cowley's anharmonic lattice-dynamical calculations

As shown in Table I these calculations yield too large
values for the phonon linewidths. This is surprising in
view of the fact that Cowley's approach is more realistic
than Klemens's. The reason can be found, at least in part,
by analyzing Fig. 4. We shall concentrate our analysis on
Ge because Cowley only published the full calculated
curve of h(Q) and I (Q) for this material. However, we
expect the analysis to be valid also for Si due to the very
similar shape of the two-phonon density of states. No
calculations of phonon self-energies are available for a-Sn.

Figure 4(c) represents the density of combination
(j~&j2) states calculated with the shell model by Cow-
ley. ' Figure 4(d) gives the same density of states obtained
from Weber's model. One sees that in the latter the
structure near Qo is shifted towards higher energies. This
is exactly what one would find by looking at experimental
dispersion curves: Weber's model provides a much better
fit to them. The density of states p(QO) (X' line) is now
lower than in Cowley's shell model. On the other hand,
the matrix elements should also be smaller: If one com-
pares Figs. 4(b) and 4(c) in the region between 275 and 325
cm ', it follows that the matrix elements tend to increase
towards higher energies. Therefore, the fact that in
Weber's model all features are shifted towards higher en-
ergies leads to a lower p(Q) and to a smaller matrix ele-
ment at Q=QO. We have made an attempt to evaluate
this semiquantitatively in the following way: As may be
seen in Figs. 3(a) and 3(b), the calculated line shifts are
somewhat larger than the experimental ones. Let us con-
sider in Fig. 4 the line X, which represents the Raman
phonon frequency in Cowley's calculation. If we move
this towards the left, in order to equate the experimental
and theoretical shifts, we obtain the line F. The value of
the width is reduced by a factor of 2.6, and the difference
between experimental and theoretical linewidths reduces
to a factor of 2. In making this correction we are neglect-
ing the fourth-order contribution to the line shift. There
are some indications that this term is smaller than the
thermal-expansion shift, For example, the line shift of
diamond is almost entirely due to a thermal-expansion ef-
fect. The difference between the experimental points
and the thermal-expansion term is just the third-order
contribution to the line-shift calculated by Cowley (see
Fig. 3 of Ref. 3), so that the fourth-order term must be
small over a large temperature range.

A difference of a factor of 2 between theory and experi-
ment, as estimated above, would not be a surprise because
there are some indications that Cowley's anharmonic po-
tential is not completely adequate. The mode-Gruneisen

parameters,
' for example, do not agree well with experi-

ment and with those calculated by Yin and Cohen. A
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new calculation of I (Q) with Weber's model would per-
mit us to establish to what extent the potential assumed by
Cowley has to be modified.

C. Scaling approach

In Table II we compare the predictions of Eq. (12) with
the experimental linewidths. If the four elements would
follow a scaling law, all values in the third line of Table II
would be 1. We thus conclude that either the density of
states or the matrix elements or both do not scale as as-
sumed. Small deviations from the scaling law for the
dispersion relations can lead to large variations in the den-

sity of states near critical points. Table III exhibits clearly
the difference between diamond and the semiconducting
elements: The relative density of combination states is
much smaller in diamond than in Si and Ge. The reason
for this is the flattening of TA phonons away from the
zone center for the latter materials„ i.e., a deviation from
the scaling law. If we assume that the matrix elements for
combinations and overtones are not very different, we can
explain the very low relative value of the linewidth for
diamond as partly due to the small density of combination
states.

The relatively large half width of gray tin can also be
understood in the following way: As we see from Fig. 4
(this figure refers to Ge, but the corresponding curves for
Si and a-Sn must be rather similar, as discussed above),
the frequency of the Raman phonon, indicated by the X
line, happens to be near a peak in the density of two-
phonon states. The X line indicates the position of ~0 in
Cowley's shell-model calculation (coo ——300.5 cm ') and
the X' line indicates our experimental Raman frequency
extrapolated to zero temperature (Qo ——305.1 cm '). In
Weber's model the maximum of the peak in the density of
states near Qo (8 in Fig. 4) coincides with the combina-
tion of phonons belonging to the Z&(A) and Z& branches
along the X—W' line. ' ' If the frequency of this point is

called co+ we estimate, from Refs. 17 and 32, that
tott'/Qp= 1.05, 1.05, and 0.97 for Si, Ge, and a-Sn, respec-
tively. This means that for a-Sn, Qo is closer to the peak
in 8' and to higher energies. Hence the Y line of Fig. 4
must be displaced to the right for this material. The re-
sult should be an increase in the linewidth with respect to
Ge by about 50% which falls short of that given in Table
II but at least represents the general trend.

VI. CONCLUSION

We have proved that the investigation of the tempera-
ture dependence of the first-order Raman scattering offers
an important tool to check not only specific anharmonic
properties, but also different models for the phonon
dispersion curves in the harmonic approximation. There-
fore, a full calculation of the phonon self-energy with
Weber's model would be desirable in order to verify the
correctness of the ideas discussed above concerning the
inaccuracies of the shell model used by Cowley and their
influence on the calculated linewidth.

From the experimental point of view, it would be in-

teresting to study the Raman linewidth as a function of
pressure. Owing to the difference in the mode-Griineisen
parameters, the Raman phonon is expected to shift with
presssure towards higher frequencies faster than the two-
phonon combinations that give rise to peak 8's in Fig.
4(d). Referring to Cowley's calculation, the effect of pres-
sure would be to shift line X towards line 8, hence increas-
ing the linewidth. This has not been observed in previous
measurements, probably due to poor experimental reso-
lution.
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