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A theoretical study is presented of the interaction between a high-intensity pump beam with a
wavelength of 10.6 um and a low-intensity probe beam which is tunable in the (9—11)-um region.
The dominant absorption mechanism of the optical beams in p-type Ge is direct intervalence-band
transitions between states in the heavy- and light-hole bands. The hole states in resonance with the
pump tend to saturate at sufficiently high intensities due to changes in the occupation probabilities
of the initial and final states. When the material is simultaneously irradiated by the pump and
probe beams, there is a nonlinear response which produces a component in the hole population
difference between the heavy- and light-hole bands which oscillates at the beat frequency. This os-
cillating component in the population difference acts as a spatial and temporal grating which mixes
the two beams. The absorption of the probe beam is modified by the presence of the pump beam by
both the saturation of the intervalence-band transitions and by the oscillating population difference,
which can scatter pump photons into the direction of the probe beam with the frequency shifted to
that of the probe. Calculations of the probe absorption as a function of the frequency difference be-
tween the probe and pump beams are presented. These calculations of the absorption spectrum are
compared with experimental results and good agreement is found. In addition to modifying the
probe absorption spectrum, the oscillating population difference leads to a current-density com-
ponent which oscillates at the pump frequency plus the beat frequency. If the pump and probe
beams are nearly phase matched, this current-density component can generate a new optical beam
that oscillates at the pump frequency plus the beat frequency. The intensity of this generated wave

is estimated as a function of the beat frequency and the pump and probe intensities.

I. INTRODUCTION

In many p-type semiconductors, the absorption of light
with photon energies less than the band gap is dominated
by direct free-hole transitions. For light in the CO,-laser
spectrum (A~ 10 um), these intervalence-band transitions
in p-type GE occur between the heavy- and light-hole
bands, whereby a free hole in the heavy-hole band absorbs
a photon and makes a direct transition to a state in the
light-hole band.! The absorption due to the intervalence-
band transitions in p-type Ge has been experimentally
shown to saturate at high CO,-laser intensities in a
manner closely approximated by an inhomogeneously
broadened two-level model.>~% Theoretical calculations
suggested that this nonlinear behavior of the absorption
coefficient results from a population effect in which the
hole-occupation probabilities for states in the resonant re-
gion of the heavy- and light-hole bands begin to approach
one another at high light intensities.*”~1°

Experimental attempts have been made to understand
the response of the free-hole distribution to a high-
intensity pump of fixed wavelength by measuring the
transmission of a weak tunable probe also resonant be-
tween the heavy- and light-hole bands.*!"!? By measur-
ing the transmission of the probe beam as a function of
the detuning of the pump and probe, one can investigate
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the modification of the free-hole distribution by the high-
intensity pump for states nearly resonant with the pump
laser. The specific features of the spectral linewidths of
the probe absorption also yield valuable information on
the relaxation times.

In this paper, we present calculations of the absorption
line shape of the probe beam as a function of the intensity
of the pump beam. The absorption coefficient of the
probe beam is found to consist of two separate contribu-
tions. One part is due to the decrease in the distribution
of free holes in the resonant region of the heavy-hole band
induced by the saturating beam. The hole-burning effect
can be described using the theory presented in Ref. 13, in
which rate equations are constructed to determine the dis-
tribution of hole states in k space as a function of the in-
tensity of the saturating beam. The second part results
from the nonlinear response of the hole distribution to a
forcing oscillation at the beat frequency A (A=w —o_)
for a pump laser with frequency @, and a probe laser
with frequency w_. This forcing oscillation induces pul-
sations of the difference in occupation probabilities be-
tween states in the resonant region of the heavy- and
light-hole bands. These population pulsations act as a
temporal and spatial laser-induced grating which can
scatter pump photons into the direction of the probe beam
with the frequency shifted to that of the probe beam, and
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vice versa. This coherent scattering can have a significant
influence on the light transmission as measured in the
probe direction. The calculated results show that the light
as measured along the probe direction cannot be directly
related to the response of the semiconductor due to the
presence of the pump beam alone. The contribution from
the coherent coupling of the two beams can be decreased
by using beams with orthogonal polarizations.

The two contributions to the probe absorption behave
differently as the probe frequency is detuned from the
pump frequency. Thus one expects the probe-absorption
coefficient to have a non-Lorentzian line shape as a func-
tion of the detuning of the pump and probe beams. Both
the incoherent and coherent contributions to the probe ab-
sorption line shape are found to be approximately
Lorentzian, where each of the two contributions has a dif-
ferent linewidth. The composite line shape of the probe
absorption in the saturated medium appears like a double
dip as a function of the detuning of the pump and probe
beams. This double-dip line shape should be especially
apparent when the incoherent and coherent contributions
to the probe absorption have linewidths that are signifi-
cantly different. A double-dip absorption line shape has
been observed in p-type Ge for a pump laser with a wave-
length of 10.6 um.!! In this paper, explicit values are
shown for the absorption line shape of a weak tunable
probe beam in p-type Ge in the presence of a high-
intensity pump beam at 10.6 um, and good agreement is
found with the experiments of Ref. 11.

In addition to the coherent contribution to the probe-
beam absorption, the population pulsations can also gen-
erate a third optical wave at a frequency 2w, —w_) with
a wave vector (2ﬁ+—ﬁ_). Here K, and K_ are the
wave vectors of the pump and probe beams, respectively.
If phase-matching conditions are satisfied, this generated
wave can reach an intensity comparable to that of the
probe beam. In this paper, we discuss the origin of this
generated wave and estimate its intensity as a function of
the pump and probe intensities and the detuning between
the two optical beams.

Previous theoretical discussions of the absorption of a
probe beam have been presented for inhomogeneously
broadened atomic systems with a distribution of frequen-
cies at resonance as a result of Doppler broadening.!4—1¢
Inhomogeneous media which are not velocity broadened
have also been considered.!”~!° These calculations have
shown the inadequacy of using only the hole-burning
model to describe the probe absorption for several dif-
ferent experimental situations. Two theoretical treatments
of the probe absorption in p-type Ge have been present-
ed.”~10 In Refs. 9 and 10, the Ge valence bands were
modeled as an ensemble of two-level systems with cascade
relaxation. The calculation of Ref. 10 includes only the
incoherent contribution to the probe-absorption coeffi-
cient, and thus finds the probe absorption line shape to be
approximately Lorentzian as a function of the detuning of
the pump and probe beams, which is in conflict with the
measured results of Ref. 11. The generated wave at
2w, —o_ has not been previously discussed for this sys-
tem. In our calculational approach, the Ge valence bands
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are described using E-ﬁ theory which includes the non-
parabolic and anisotropic valence-band structure. The ef-
fect of the interaction of the probe with the saturated
medium is described as a perturbation series in the probe-
field strength. Detailed results are presented to first order
in the probe-field strength.

The paper is organized in the following way: In Sec. IT
we present our theoretical approach, in Sec. III we give
the results for p-type Ge, and in Sec. IV we summarize
our conclusions. In Appendix A we describe the effect of
the induced current density on the propagation of the op-
tical beams, and in Appendix B we briefly discuss the ef-
fect of higher-order terms in the probe field.

II. THEORETICAL APPROACH

In semiconductors with a diamond or zinc-blende struc-
ture, there are six bands near the valence-band maximum
(three sets of twofold degenerate bands). The heavy- and
light-hole bands are degenerate at the zone center and the
other two degenerate bands (split-off hole bands) are
separated at k=0 by the spin-orbit interaction. In
thermal equilibrium the occupied hole states are in heavy-
and light-hole bands only.

The absorption of light in the 10-um region by p-type
germanium at room temperature is dominated by inter-
valence-band transitions between the heavy- and light-hole
bands.!*?® Since both energy and wave vector are con-
served in the excitation process, only holes in a narrow re-
gion of K space can directly participate in the optical ab-
sorption. At low-light intensities, the relaxation mecha-
nisms maintain the hole distribution near equilibrium.
However, as the intensity of the CO,-laser light becomes
sufficiently large, scattering can no longer maintain the
distribution at the equilibrium value, and the occupation
probabilities for resonant hole states decrease in the
heavy-hole band and increase in the light-hole band. Since
the absorption is governed by the population difference of
these resonant states, this redistribution leads to a reduced
absorption coefficient. Thus in order to calculate the ab-
sorption of a probe beam in the presence of a saturating
beam, one must first calculate the hole distribution in the
heavy- and light-hole bands as a function of the intensity
of the pump laser.

The calculational approach is to solve for the current
density induced by intervalence-band transitions. The
equations are constructed by use of a density-matrix for-
malism. The density matrix of the whole system is writ-
ten as the product of the density matrix describing the
electronic part of the problem and the density matrix
describing the lattice system. The lattice is considered to
be a surrounding medium and regarded as large and dissi-
pative. Since the lattice (which acts as a heat bath) is not
significantly heated over the duration of the optical in-
teraction, the density matrix describing the lattice can be
taken to be in thermal equilibrium. By tracing over the
lattice modes, the time evolution of the density matrix
describing the electronic part of the problem is used to
construct equations for the current density. The current
density owing to the intervalence-band transitions is found
to be determined by!?
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Here, K is the hole wave vector, h (I) refers to the heavy-
(light-) hole band, #Q(K) is the energy difference between
states of the wave vector K in the heavy- and light-hole
bands, f;(K) is the one-hole occupation probability for a
state with wave vector K in band i, 4 is the vector poten-
tial describing the electromagnetic field, Pbc(k) is the
momentum matrix element between states with wave vec-
tor k in bands b and c¢ (which is summed over the
twofold-degenerate states in each band), and J(K) is the
part of the current density T which includes the contribu-
tion from states with wave vector K [2—»1 (kK)=T].

T,(K) is given by
2
T5(k)

=3 (R @)

_‘)l
¢, k
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where R TobT is the rate at which a hole in band a

—b,X"_
with wave vector K is scattered into a state with wave vec-
tor k in band b. One should note that at low intensity
S k) —fi( K) has cubic symmetry so that the current den-
sity J (after having summed on k) is parallel to A. How-
ever, at high pump intensities f;,(k —£1(¥) no longer has
cubic symmetry, and T(k) [as calculated from Eq. (1)] is
not necessarily parallel to A.

Rate equations for the distribution of hole states are
also constructed using the density-matrix formalism. The
equations of motion for the distribution functions (for
nondegenerate hole densities) are given by'*

dfu(k) 1

dt 2N, c#QU(K)
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d
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SrK)=R . fo(K)]

(3a)
and
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A1 4544
at  N,cHUEK) |9t
- 3[R ¢ iK)-R (k"]
c,k”
(3b)
J
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We consider the case in which the medium is subjected
to two electromagnetic waves (pump and probe beams).
The high-intensity pump beam is described by a plane
wave with polarlzatlon 17+, frequency o, and propaga-
tion constant K+ The low-intensity probe beam is
described by a plane wave with polarization 7 _, frequen-
¢y o_, and propagation constant K_. The vector poten-
tial of the electromagnetic field is then given by

- A i _R . .7
A(f’,t):—;—ﬁ_‘_(e'(m“ Ky )+c.c.)
A_ . R
+_2_7_7,_(e1(w_t K _ r)+c.c.) ) @)

Using Eq. (4), we wish to solve Egs. (3a) and (3b) for
[ ;.(E) and f;(k) as a function of the light intensity of the
two beams.

In the typical pump-and-probe experiment (4, >>A4_),
one can write the hole distributions in the heavy- and
light-hole bands and the current density as a perturbation
expansion in the probe-field magnitude. We define

LB =F20) + 00+ 2K + - -, (5a)

[ =F20) + K + 20+ -+ -, (5b)
and

JE) =T )+ T DE)+T oK)+ - - - (5¢)

The zero-order terms designate the occupation probabili-
ties and current density for the medium subject to the sa-
turating beam and no probe laser. The first-order terms
represent the modification due to the presence of the
probe beam (to first order in the probe-field strength).
The higher-order terms are defined in an analogous way.
For small probe-field strengths, the expansion can be trun-
cated at first order in the calculation of the probe absorp-
tion coefficient. In order to use a perturbation expansion
in the probe-field strength, one requires that the probe in-
tensity be much smaller than the saturation intensity of
the material (~4 MW/cm? in p-type Ge at room tempera-
ture).

By substituting the expanded forms of Egs. 5(a)—5(c)
into the governing equations for the current density glven
by Eq. (1) and for the hole-occupatlon probabilities glven
by Egs. (3a) and (3b), £3* and f;” are found to be in-
dependent of time and space, and fi(k), f£V(K),
T OXX), and T V(K) are found to oscillate as

) (6a)
) (6b)
(6c)
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and
T ) =R V(K)exp{i[ (20, —o_ )t — (2K, —K_)F]} +c.c.)+(T V(K)exp{ilw_t —K_-F]} +c.c.) . (6d)

In the above equations, we have dropped terms in the hole-occupation probabilities which oscillate at frequency 2w.
These high-frequency oscillations are highly damped by the scattering terms.

The first-order terms in fj( K) and fi( K) describe a pulsation in the population of free holes due to a forcing oscilla-
tion at the beat frequency A (A=w_ —w_). This population pulsation is due to a nonlinear coupling of the free-hole dis-
tribution to the two laser beams with frequencies  and w_. This interaction is described by the [d Tf(l?)/dt]-K terms
of Egs. (3a) and (3b), in which J (k) is driven at one of the frequencies and the component of A is oscillating at the other
frequency. The first term in Eq. (6d) arises from the first-order oscillating (frequency A) contribution to the population
difference f;(k)—fi(k) mixing with the pump component of A (oscillating at @) in Eq. (1). The second term in Eq.
(6d) arises from both the zeroth-order steady-state contribution to the population difference (f, —f;) mixing with the
probe contribution of A (i.e., the hole-burning contribution) and from the first-order oscillating contribution to f, —f;
mixing with the pump contribution of A in Eq. (1).

The solution to the zeroth-order equations (i.e., for 4 _ =0) has previously been investigated by the authors.!> The re-
sults of Ref. 13 are briefly summarized since they will be used later in calculating the probe absorption coefficient.
R ©(X) in the current-density expression [Eq. (6¢)] is given by

2
ROE)= Tt e ‘ AOO—£%00] |7 3 74 PocPes+PesPre) | 5 @)

2 fim’ O(K)—w,+i/T; b&h,
c

where
FEK)—fHK)+ TH(K)F(K)—T)(K)G(K)

= = = (8)
1+ B(k)[Ty(k)+ Ty(k)]

[0 — £2(K) =

In Eq. (8), f5(K) is the equilibrium value of the distribution for a state with wave vector K in band ¢, and the following
auxiliary functions are introduced to simplify the expressions for f;*(k) and f{®(k):

— R - ., (9a)
Th(k) CEY' h,k —>c, k
L= R o 2 (9b)
T](k) C’T(" ,k—ec, k
FK)= 3 R o, . o[fOK)—faKN], e)
c,_l?’ ’ '
GK)= 3 R o, +LFOkH—fakN], (9d)
c,?' ' '
and
. el - - 1/[mAT,(K)
B<k>=7212—2—— 3 7 B0 P— [T (%)
em“wc bEh, [QUK)—w P+[1/TH (k)]

where I | is the intensity of the pump laser.

By using Maxwell’s equations and Eq. (7), an expression can be written (see Appendix A) for the absorption coefficient
of the pump beam. By solving for the difference in the occupation probabilities for states in the resonant region using
Eq. (8), one can calculate the absorption coefficient of the pump as a function of the pump intensity. The results are
presented in Refs. 13 and 21 and are found to be in good agreement with the experimental measurements of Refs. 2—6.

We now derive expressions for the first-order results for f;,(K)—f;(k) and T (k). Substituting the expansion de-
fined by Eq. (5) into Eq. (1), and equating terms to first order in the probe-field strength, one finds
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o
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} , (10)

for the first-order correction to the current density due to the presence of the probe. Substitution of the expansion into
Eq. (3) yields the following expressions for f;(k) and f;1(K):

df;(,”(i) —1 d—' - N A_ iw t—K _-7
di . 2NpchQ FOM) 7T e
A i, t— T
%J‘”(k) 7y e e e
— 3R, p p VE-R o K] (11a)
c,T(”
and
dfiP(K) A_ o —R 7
fldt 2Nlcm dJ(O)‘k) e e
h
-y — A i -R -7
+ [%J‘”(k) -7‘7’+—;—(e"“’+‘ e e
— SRy ¢ fIVO-R 4, LK) (11b)
c,?'

Using Eq. (6) in Egs. (10) and (11), one can write expressions for F;‘,”(E)-—F,“)( k), RW(K), and T V(K) by equating
terms which oscillate with the same spatial and temporal dependence. After equating coefficients one finds

—i/T,(K)
[ﬂ(k) w_ ]+[1/T2(k)]

bzh [(Bpe- 7 )P 1) +c.c.]
I+B* ceEI’

F\V(K)—FM(K)=

o LA K) — £2(K)]

= = (12)
1K) 23 74Pl
bEH,
c€l
- — —iA _ 1/(1TﬁT2) 1rNhe (Q-——a)_)*(l/Tz)
RO(F)= — Oy £O()
(k) 2 (Q—0_P+(1/T,)? mi L k)i ] 8 | 9-Qoy—0_)+i/T))
2 [P (P} ﬁ_)+c.c.]
5 5
1 —» c
3 7+ (Py.Pep +c.c.) — , (13)
g, T 23 |74 Pul?
cel bEh,
c€l

and
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gy o —iAd _ 1/(7w#T,) mNye? -
(I(F)= (0) (0)(k)
== (Q—w_)+(1/T,? mZ L (0 =f17 (k)]
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In the equations above, the auxillary functions /(k) and B(K) are introduced to simplify the expressions. The functions
are defined by

. #eVem?w’,
)= € (15a)
2mer 3 | 7 4Py |2 ToTy+T))
bEh,
cel
and
1 1
T,+i(Q2—
- [1/ 2+I(Q w_)] I/Tz-—l(Q—‘CO_) + 1/T2+I(Q'—(0+)
B(k)= 7 . ) 1 ’ (130
2AK)+ ——
/(K)+ 1K) T2 | /T —i(Q—w_) + /T, +i(Q—20,+w_)
where
. T,(K)+ Ty(X)
/(k)= 1 h 1 1 , (150)

Ty +ilo,—o_) T 1/T)—ilo, —a_)

and T( K) and T,(K) are defined by Egs. (9a) and (9b). In deriving these results, we have included the term
zc T{'Rc ran T fe(k’,t) in Eq. (3a) and the corresponding term in Eq. (3b) only to zeroth order (thus it does not enter
into the e’quatio’n for the higher-order results). These terms correspond to scattering of holes from states primarily out-
side the resonant region into states in the resonant region. The population of the states outside the resonant region is not
significantly affected by the presence of the probe beam. We have also assumed that the frequencies v, @_, and Q are

nearly equal.
Using the expressions for the first-order correction to the current density and the wave equation, one finds how the

electromagnetic wave propagation is influenced by J (V). The details of this analysis are contained in Appendix A. To
first order in the probe-field strength, the propagation of the pump beam is not influenced by the probe beam. (The first
contribution to a modlﬂcatlon of the pump beam is second order in the probe field.) This result is immediately obvious
from the form of T V) in Eq. (6d), because it does not contaln a term which osc111ates as .t —K+ T. The propagation
of the probe beam is influenced by the term 1V in T V. In Eq. (14) for T "(K), the first term in the large square
brackets describes the usual absorption of the probe beam as modified by the saturating beam through the intensity
dependence of the distribution functions f5° K)— 19 K). The second term in large square brackets of Eq. (14) (i.e., the
term proportional to I, ) describes the coherent coupling between the pump and probe beams. The R ) term in J V)
leads to the generation of a third optical beam which oscillates at (20, —w_)t—(2K, —K_)-F. This beam can reach
intensities comparable to that of the probe beam if phase matching conditions are satisfied.
In Appendix A we find that the absorption coefficient of the probe beam is given by

87 Im[ T V(K)- 77 _
a0 )= aIm[I"(k)-7_]

2 K A , (16a)

which can be rewritten as



2042 R. B. JAMES AND D. L. SMITH 29
477N, e? . . R 1/[m#HT,(K)
(0T )= 5 | S | B (B) |2 | [APE) — O AT
Vem’co_ 5 b&h, [QUK)—o_P+[1/T(K)]?
2
2 {[ﬁ+Pbc(k)][ﬁ—ch(k)]‘{“Cc}
beEh,
I+ - cel
X [1— == Re[B(K)] — —— (16b)
1(¥) 43 7B 3 |7 Pp(K) |2
bEh, beEh,
cel cel

The unity term in the brackets of Eq. (16b) gives the usual
contribution to the probe absorption coefficient modified
by the hole-burning effect of the pump beam (i.e., the dis-
tribution functions f,‘,m(l_f)—— f}O)(E) are modified by the
pump beam). The second term in the brackets, which is
proportional to I, describes the effect of the coherent
coupling of the pump and probe beams on the probe ab-
sorption coefficient. It comes about because of the oscilla-
tions in the difference in occupation probabilities for
states in the resonant region of the heavy- and light-hole
bands, which is described by fi(K)—f;"(K). For beat
frequencies A (equal to @ —_) much less than 1/ T;,(E)
and 1/ T,(l—f), the contribution due to the coherent cou-
pling of the two beams can be comparable to the contribu-
tion from the hole-burning term. As the beat frequency is
increased so that A is comparable to the scattering rates,
the contribution from the coherent coupling term de-
creases and this contribution becomes vanishingly small
for A significantly greater than the scattering rates. It is
interesting to notice that the coherent coupling term does
not vanish for orthogonally polarized pump and probe
beams (although it is significantly less for the orthogonal-
ly polarized case than for the parallel polarized case).

In Appendix A, the term R in the current-density ex-
pression is shown to lead to the generation of a third
optical beam which oscillates as (2w,—w_)t
—(21_{+-I_i_)~f’. The intensity of this generated beam
will be very weak unless K + and K_ are nearly parallel
(i.e., the pump and probe beams are nearly unidirectional).
If ﬁ+ and K _ are nearly parallel, a rough estimate of the
intensity of the generated beam (given in Appendix A)
shows that it can reach approximately a factor of £ times
the intensity of the incident probe beam where

[RD-77)/4_

§=

6(02

27rc

2(§(0).,ﬁ’+)
4,

+ (1—cosB)

a7

Here the bar over the current-density components indi-
cates a sum on K [i.e, R®= E?R'(O)(E), etc.], 77 is a

unit vector in the direction of R () and 0 is the angle (as-

T
sumed small) between K+ and K_. This expression can
be used to estimate the maximum intensity of the generat-
ed beam as a function of w_ —®_, the pump-beam inten-
sity, and the angle 6.

The inclusion of higher-order terms in the probe-field
strength leads to a modification of the pump beam and to
the generation of additional side bands at plus or minus
integral multiples of the beat frequency A from the pump
frequency. A short discussion of these higher-order terms
is included in Appendix B.

III. RESULTS AND DISCUSSION

In this section we present results for the first-order
correction to the population difference for states near the
resonant region, the effect of relative pump-and-probe po-
larizations on the nonlinear coupling of the two beams,
the effect of the nonlinear coupling on the probe absorp-
tion, and the probe absorption as a function of the detun-
ing of the pump and probe beams. At the end of this sec-
tion, a discussion is presented on the strength of the new
wave generated with frequency 2w, —w_ as a function of
the probe frequency and pump intensity. In order to cal-
culate the quantities of interest, one must first calculate

LO)(E), f}O)(E), and R©(K) in the case with only the
pump beam present. The calculational approach proceeds
as discussed in Ref. 13. The one-hole energies and
momentum matrix elements appearing in the equations

are determined by second-order degenerate ff-f)’ perturba-
tion theory.?? The cyclotron resonance parameters of Ref.
23 are used in calculating the valence-band structure and
momentum matrix elements. The hole-phonon scattering
is the dominant relaxation mechanism at room tempera-
ture for hole concentrations less than about 3 105 cm 3.
The hole-phonon scattering rates are calculated on the
basis of the deformable potential model as discussed in
Refs. 24 and 25. For more heavily doped samples, the
hole-hole and hole-ionized impurity are included follow-
ing Ref. 26. By using the calculated scattering rates, the
scattering times T,(k), T,(K), and T;(K) are computed
from Egs. (2), (9a), and (9b). Having calculated the hole
energies, momentum matrix elements, scattering times,
and occupation probabilities as a function of wave vector
E, one can perform the numerical integration over K space
to determine the probe absorption coefficient in the pres-
ence of the high-intensity pump laser.
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Only hole-phonon scattering is included in mast of the
calculated results presented in this section. For hole den-
sities in which hole-hole and "hole-ionized impurity
scattering becomes important (N, >3X10" cm™3), the
calculated results depend on the particular choice of hole
concentration. Rather than specifying the hole concentra-
tion in each figure, we present results in the low-density
limit. The transmission experiments of Ref. 11 which
measure a_(w_,I,) were performed on moderately
doped samples where one should also include hole-hole
and hole-impurity scattering. The values of a_(w_,I ),
which are compared with experiment in this section, are
calculated at the particular value of the hole concentration
corresponding to the samples used in the experiment.

Both the coherent interaction between pump and probe
beams and the generated wave at 20, —w_ result from
the first-order correction to the population difference
(f;(,li(ﬁ)—_f,(”(l_(’), which oscillates as (0, —w_)t
—(K4—K_)7). The magnitude of this population
difference is calculated from Eq. (12). In Fig. 1, we plot

- —[FP(K)—F"(K)]

0(K)= - T,
FLO(E)— F1O(E) -

(18)

as a function of #Q(K) for K in the [111] direction for two
pump intensities. Both pump and probe beams are taken
to have photon energies of 117 meV (e.g., A=10.6 um)
and to be polarized in the [001] direction. For zero beat
frequency (A=w, —w_=0), Q is purely real. For K in
the [111] direction, values of /() in Eq. (12) are in the
range of 5.0—6.5 MW/cm? over the region in K space
shown in Fig. 1. From Fig. 1, we see that the magnitude

L l I l | T
0.8 |~ ¥ IN [111] DIRECTION A=0 —

-== I,:5MW/cm?
— I,-10MW/cm®_|

S~ d

o 1 ! 1 | 1 |
105 109 13 "7 121 125 129
HQ(K) (meV)

FIG. 1. Calculated values for ReQ( K) as a function of #Q(K)
for X in the [111] direction. Both the pump and probe beams
are taken to have a wavelength of 10.6 um, and both beams are
polarized in the [001] direction. The dashed curve is for a pump
intensity of 5 MW/cm?, and the solid curve is for a pump inten-
sity of 10 MW/cm?.
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of the population pulsation increases with increasing in-
tensity. In addition, the magnitude of F;(,O)( E)—F,(O)( K) at
zero beat frequency is a maximum for states nearly
resonant [i.e., photon energy ~#%€Q(k)] and decreases for
states which are farther away from the resonant region.
For zero beat frequency, the values of Q as a function of
#Q(K) have approximately a Lorentzian line shape for
states near the resonant region.

For nonzero beat frequency, the structure of
F},l)(l—f)—F}”(fc’) vs #Q(K) becomes more complicated,
and the imaginary part becomes nonzero. In Fig. 2, the
real and imaginary parts Q are shown for a pump beam at
10.6 um with an intensity of 10 MW/cm?. The results are
for a beat frequency A= —6.07% 10'? sec™!, which corre-
sponds to a probe photon energy of 121 meV. Both the
pump and probe beams are polarized in the [001] direc-
tion. The solid curve shows the real part of Q, and the
dashed curve shows the imaginary part. As the pump and
probe beams are detuned, the real part of Q has two peaks
located at #AQ(K)~#iw, and #Q(K)=~Aiw_. For this value
of A, the imaginary part has a peak located between #iw
and 7iw_ and has approximately a Lorentzian line shape
over the range of #Q(K) shown in Fig. 2. For larger de-
tuning of the pump and probe beams, the imaginary part
also develops two distinct peaks as a function of #Q(K).
The effect of increasing the detuning of the beams is to
decrease the magnitude of the maximum value of
F},”(E)—~F}”(E) and to shift the positions at which the
peaks occur.

The relative polarization of the pump and probe beams
are important in determining the strength of the coherent
interaction between the beams. From Eq. (16) we see that
the relative polarization dependence is described by

I I [ I [ I

0.5 — TR IN[11] DIRECTION
I,= 10 MW/cm?

A=-6.07x10 sec™ ! —

105 109 113 117 121 125 129
AQ(K) (meV)

FIG. 2. Calculated values for the real and imaginary parts of
Q as a function of #Q(K) for K in the [111] direction. The
pump beam is taken to have a photon energy of 117 meV, and
the probe beam is taken to have a photon energy of 121 meV
(i.e., A=—6.07X 10" sec™!). Both beams are taken to be polar-
ized in the [001] direction. The dashed (solid) curve shows the
real (imaginary) part of Q for a pump intensity of 10 MW/cm?2.
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Values for Z(w,,w_,I,) are shown in Fig. 3 for
fiw . =#w_=117 meV as a function of the relative angle
of polarization between the pump and probe beams. In
the calculation 7 is fixed to be in the [001] direction and
if _ is rotated in the x-z plane for angles of rotation from
0—90° (i.e., 77_ is rotated about the y axis from the [001]
direction to the [100] direction). The solid line in Fig. 3 is
for a pump intensity of 1 MW/cm?, and the dashed line is
for a pump intensity of 20 MW/cm?. The difference be-
tween the two curves is contained in the angular popula-
tion effects of fi2(kK)— f;O)(l?). We note that the non-
linear coupling is at a maximum value when the pump
and probe beams are polarized in the same direction, and
that the coupling decreases monotonically as the angle be-
tween the polarization directions is increased. The cou-
pling does not vanish even in the case of orthogonal polar-
izations, although it is decreased by about a factor of 5.
This suggests that for a transmission measurement in
which one attempts to use a probe beam to investigate the
modification of the carrier distribution in the vicinity of a
saturable resonant transition, one should use a probe po-
larization which is orthogonal to the polarization of the
saturable beam, thereby minimizing the nonlinear cou-
pling of the two beams.

For parallel pump and probe polarizations, the correc-
tion to the hole-burning model for a_ (w_,I.) is con-
tained in the factor 1—1I, /I(K)ReB(K) in Eq. (16). This
factor depends on the wave vector K due to the anisotropy
in the valence-band structure. In Fig. 4, the calculated
values of 1—1I, /I(K)ReB(K) are shown as a function of
#Q(K) for K in the [111] direction. The top figure is for
zero detuning of the two beams (fiw, =#iw_ =117 meV)
and parallel polarizations (77, ||%_|| [001]). The solid
curve is for a pump intensity of 1 MW/cm?, and the
dashed curve is for a pump intensity of 10 MW/cm?. For
A =0, all values of 11 /I( K)ReB(K) are less than unity

T
for states nearly resonant with the pump and probe beams,
thus the nonlinear coupling of the beams leads to a de-
crease in the probe absorption coefficient. The contribu-
tion of the nonlinear coupling from states in k space is
largest for states near resonance and becomes small for

| T T T
1.0 POLARIZATION DEPENDENCE OF -
NONLINEAR COUPLING
Ap=A_=10.6um

os T=300K |
-4
o
[=
[8)
Z
206 _
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<]
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N
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[e]
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FIG. 3. Calculated values for the polarization function E as a
function of the angular separation between the polarizations of
the pump and probe beams. Both beams are taken to have a
wavelength of 10.6 um. Here, 77, is taken to be fixed in the
[001] direction, and 77 _ rotated in the x-z plane from 0° to 90°.
The solid curve is for a pump intensity of 1 MW/cm? and the
dashed curve is for a pump intensity of 20 MW/cm?,
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FIG. 4. Calculated values for 1—1I /I(k)ReB(K) as a func-
tion of #Q(K) for X in the [111] direction. The polarizations of
the pump and probe beams are taken to be in the [001] direction.
In the top figure, the pump and probe beams are taken to have a
photon energy of 117 meV. In the bottom figure, the pump
beam is taken to have a photon energy of 117 meV (i.e.,
A =10.6 um) and the probe beam is taken to have a photon en-
ergy of 121 meV (i.e., A=—6.07x 10" sec™!). In each figure,
the solid (dashed) curve is for a pump intensity of 1 MW/cm?
(10 MW/cm?).

states with #Q(K) out of the resonant region.

The effect of detuning the pump and probe beams on
the calculated values of 1—1, /I (K)ReB(K) is shown by
the bottom illustration in Fig. 4. Here, values of
1—I, /I(K)ReB(K) are shown for #w,=117 meV,
fio_=121 meV (or A=—6.07X102 sec™!), 7 .||
7_||[001], and K in the [111] direction. The solid curve
is for a pump intensity of 1 MW/cm?, and the dashed
curve is for a pump intensity of 10 MW/cm?. From Fig.
4(a), we see that for small detuning (A <<1/T,), the fac-
tor 1—1, /I(K)ReB(K) is less than unity for all values of
#Q(K), and the probe absorption coefficient is reduced as
compared to the absorption with only hole-burning ef-
fects. As the detuning is increased, the factor
1—1I, /I(K)ReB(k) increases and exceeds unity for some
values of #Q(K) as shown in Fig. 4(b). For
A=—6.07Xx10"? sec™! we find that for states with
#Q(K) less than about #w_, the value of 1—1I, /1K)
ReB(K) is greater than one, and for states with #Q(K)
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greater than about #iw_, 1—I, /I(K)ReB(K) is less than
unity. For a state with 1—1_ /I (K)ReB(K) greater than
unity, the probe absorption associated with that state in
the integration over K space is increased as compared with
the hole-burning results alone, and for a state with
1—-1, /I(K)ReB(K) less than one, the probe absorption
associated with that state is decreased as compared with
the hole-burning results alone. Thus for A= —6.07 X 10'?
sec™! the net effect of the nonlinear coupling of the two
beams on a_ (w_,I, ) is small due to the cancellation in
the integration over kK space in Eq. (16).

By numerically integrating Eq. (16), we calculate the
line shape for the absorption coefficient of the probe beam
in the presence of a saturating pump laser. We consider
the case in which the pump laser is at a fixed wavelength
and the probe can be tuned in wavelength in the vicinity
of the resonant region of the pump. The probe absorption
coefficient is calculated for a pump laser at 10.6 um (since
experimental information'! exists for this case) and nor-
malized to its value without the presence of the pump
laser.

The experiments of Ref. 11 were done at room tempera-
ture with a pump laser at A=10.6 um and a sample with
a hole concentration of 7.1 10'> cm 3. The polarization
directions were parallel for the pump and probe waves.
The pump and probe beams propagated in approximately
opposite directions. The intensity of the pump beam was
not determined due to a calibration problem. (See the note
added in proof of Ref. 11.) Even if the pump intensity
were accurately known, comparison of the absolute mag-
nitude of the reduction in probe absorption by the pump
beam is complicated by geometrical effects (radial beam
shapes, pump attenuation, extent of beam overlap, etc.).
For these reasons, we fix a pump intensity to give the re-
ported magnitude of the absorption reduction at A=0 and
compare the line shape with the measured results. The
calculated results for a_ (w_,I +)/alw_) are shown by
the solid curves in Fig. 5 for pump intensities of 0.39 and
1.8 MW/cm?. Also shown by the dashed curves are the
calculated results in which only the hole-burning effect is
included [i.e., replace ReB with zero in Eq. (16)] for pump
intensities of 0.39 and 1.8 MW/cm?. Having fit the mag-
nitude of the calculated absorption reduction to the mag-
nitude of the measured absorption reduction at A=0, we
see that the composite line shape of the probe absorption
as a function of the detuning of the pump and probe
beams is in good agreement with the measured results.
Comparing the complete calculation with the calculation
including only the hole-burning effect, we see that the
coherent coupling between the pump and probe signifi-
cantly modifies the probe absorption line shape. Com-
pared with the hole-burning-only result, the probe absorp-
tion is significantly reduced at small detuning and is
slightly increased at large detuning.

When the pump and probe beams are nearly unidirec-
tional (i.e., I_{+ and K_ nearly parallel), a new wave is
generated at 2w, —o_ by the current-density component
R, The maximum intensity reached by this generated
wave was estimated as a fraction £ of the incident intensi-
ty of the probe beam, where £ is given by Eq. (17). Values
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FIG. 6. Approximate values for the intensity of the generated
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FIG. 5. Values for the absorption coefficient of the probe
beam (normalized to the probe absorption coefficient for small
pump intensities) as a function of the probe photon energy for a
pump photon energy of 117 meV (i.e,, A, =10.6 um). The po-
larization of each beam is taken to be in the [001] direction. The
top (bottom) solid curve shows the normalized probe absorption
coefficient as calculated from Eq. (16b) for a pump intensity of
0.39 MW/cm? (1.8 MW/cm?. The top (bottom) dashed curve
shows the normalized probe absorption coefficient where only
the incoherent hole-burning contribution is included [i.e., Re(B)
is replaced with zero in Eq. (16b)] for a pump intensity of 0.39
MW/cm? (1.9 MW/cm?). The experimental data of Ref. 11 are
shown for comparison by the solid points in the figure.

of & are plotted in Fig. 6 as a function of probe frequency
for both 77, and % _, in the [001] direction, =0, and
fiw . =117 meV. The solid line is for a pump intensity of
1 MW/cm? (i.e., I, somewhat less than I,) and the
dashed line is for a pump intensity of 10 MW/cm? (i.e.,
I, somewhat greater than I;). We find that £ increases
monotonically with increasing I, and is strongly depen-
dent on the pump intensity (note the scale change in the
figure). We also see that £ is peaked at w , =w_, and that
the curve is more sharply peaked at low pump powers
than at high powers. For I, greater than I; and #iw_
within a few millielectron volts of #iw, the intensity of
the generated beam can become comparable to that of the
probe beam.

IV. SUMMARY AND CONCLUSIONS

We have presented a theory describing the interaction
of a high-intensity CO, pump laser with a low-intensity
probe laser which is tuned in the vicinity of the pump fre-
quency in p-type Ge. The main interaction between the
optical beams and the p-type Ge results from inter-
valence-band transitions between the heavy- and light-hole
bands. The pump beam tends to saturate those transitions

wave at frequency 2w, —w_, normalized to the intensity of the
probe beam, as a function of the photon energy of the probe.
The pump beam is taken to be unidirectional with the probe and
having a photon energy of 117 meV. The polarization of both
the pump and probe beams are taken to be in the [001] direction.
The solid (dashed) line shows values for & (~Jg/I;qpe) for a
pump intensity of 1 MW/cm? (10 MW/cm?). Values for £ at
I, =1 MW/cm? are shown to the right in the figure, and the
values at I, =10 MW/cm? are shown to the left.

in resonance with it, that is the difference in distribution
functions f10(K)—f{9(Kk) is reduced from the equilibri-
um value for states with wave vector K near resonance.
Because of the nonlinear interaction between the pump
and probe beams, a component in the population differ-
ence fi(K)—f{"(K), which oscillates at (Wp—w_ )t
—(I_{+ —K_ )T, is generated. This oscillating component
can be viewed as a spatial and temporal grating which
mixes the pump and probe beams. The pump and probe
beams induce three components in the current density by
the intervalence-band transitions: R ‘® which oscillates at
w,t—K -, T which oscillates at o_t—K_-F, and
R" which oscillates at (2w, —w_)—(2K, —K_)-T.
The current-density component R @ Jeads to absorption of
the pump beam and is independent of the probe. The
current-density component 1 ! leads to absorption of the
probe beam. It is influenced by the pump beam in two
ways: Absorption of the probe is reduced by the pump sa-
turation of the population difference [ fﬁO)(E)— 119 K)] in
the resonant region (hole-burning effect), and there exists
an oscillating component of the population difference,
which leads to an energy transfer between the two beams.
This coupling of the beams reduces the probe absorption
when the pump and probe frequencies are close and in-
creases slightly the probe absorption when there is a larger
difference between the frequencies of the two beams. The
current-density component R D leads to the generation of
a third optical beam at (2w,—w_)t—(2K,—K_)T.
For conditions in which ﬁ+ and K_ are nearly parallel,
the pump intensity is greater than I, and the pump and
probe frequencies are nearly equal, the intensity of this
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generated wave can become comparable to that of the
probe beam. We have presented detailed calculations for
the oscillating population component [ f;‘,”(ﬁ)— f,‘”(ﬁ)],
the current-density components, the absorption of the
probe beam as a function of probe frequency, and the in-
tensity of the generated beam as a function of probe fre-
quency. We have compared our calculated results for the
probe absorption line shape with the measured results of
Ref. 11 and found good agreement.
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APPENDIX A: EFFECT OF THE INDUCED
CURRENT DENSITY ON THE OPTICAL
BEAM PROPAGATION

In this appendix we discuss the effect of the induced
current density, calculated to first order in the probe-field
strength, on the propagation of the optical beams. The
propagation of the optical beams is described by the wave
equation

- A 47 =
vaA-£2L_ STy (A1)

c? or? c
where J is the induced current density owing to inter-
valence-band transitions. To first order in the probe-field

strength, Tis given by

- = He t—K _T)
T=(R©@"“+ + 7 rec)

Sy 2o, ~o_ #—2R, - )7
H(R W™+ + ltec)

ilw_t—K _-7)
(D +c.c.),

+(1 (A2)
where R©= Efl_i(m(iz), RW= Efﬁm(l—(’), and
T‘”:EE.—I’(”( K). Here, R9(K) is given by Eq. (7),
R (k) by Eq. (13), and TD(k) by Eq. (14). From the
form of J, it is clear that A will take the form?’

- A (z)) (o, t—

A= - +2 * 7_7’+(el(m+t K+z+)+C-C~)
A_(z_) |  iw_t—K_z_)
Tn_ +c.c)

G(z) ﬁei[(2w+-—w_)t—— 2K, —K _|z]

) (A3)

+c.c. |,

where z. is in the direction I_ii and z is in the direction of
2K, —K_. We assume that the amplitude functions
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A (z ), etc., are slowly varying so that we need keep only
their first (and not second) spatial derivatives. By substi-
tuting Eqgs. (A2) and (A3) into the wave equation, equat-
ing coefficients of terms with the same temporal depen-
dence and taking the dot product with the polarization
vectors, one obtains the equations

. a14+ € 87 = -
A, (K )?+2iK 5, —?m1A+——c—R(0> ,
(Ada)
94 S
AK_ P42k o= _Lo2g =3TFog
9z_  ? c
(A4b)
and
G|2K+—K_|2+2ilzﬁ+—ﬁ_|%—f
€ 817': N
*;(2w+—w_)2G=—c—R‘”-n. (Ado)

[Note: In general, the current-density components (e.g.,

TD) are not necessarily parallel to the corresponding po-
larization vector (i.e., 7 _). This implies that the polariza-
tion vectors are functions of position as the beam pro-
pagates through the medium. One could describe this ef-
fect by allowing the polarization to rotate and dotting the
wave equation with a unit vector orthogonal to the polari-
zation vector.] From the real and imaginary parts of Eq.
(Ada), one finds |K, | from which one obtains the ab-
sorption coefficient of the pump beam a,.!* From the
real and imaginary parts of Eq. (A4b), one finds

, | 8w Re(IM.)

|K_|P=S 0 c Y (A5a)
C —
and
1 94_  4rIm(TV-7_)
- = A5b
A_ 0z_ cK_A_ ( )

Equation (16) for the probe absorption coefficient follows
from Eq. (A5b).

We next consider the wave at frequency 20w, —w_,
which is generated by the current-density term R and
described by the field amplitude G(z). We first notice
that in the derivation of the current-density expression
this wave was not considered. (Notice, for example, there
is no term in the current density that describes absorption
of this wave.) For a self-consistent description of this
wave, it is necessary to rederive a current-density expres-
sion allowing for the presence of this generated wave in
addition to the pump and probe waves. Such a procedure
is quite tractable within our basic approach. Here, howev-
er, we will use the previous expressions for the current
density (correct for small G) to determine conditions
under which this wave can be generated and to approxi-
mately estimate the intensities it can reach.

Equation (A4c), which describes the generation of this
wave at 2w, —_, can be written as
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9G(z) _
32 —pG(z)=y(2), (A6a)
where
(e/c)2w,—w_)— 2K, —K_|?
p= /N0 ) — | 2K, —K | (A6b)
2i 12K, —K_|
and
S (). =
yo=3r R @7 (A6)

¢ 2i|2B,—K_|

Here 7 is in the direction of R "), RV(z) is a function of
z through the z dependence of the pump and probe intensi-
ties. (Actually, there is also a small z dependence of p be-
cause of the intensity dependences of K, and K_.!3%8
This should be included for precise calculation, but for
our purpose here, we neglect it.) We also take the z depen-
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dence of R(z) as externally fixed (i.e., the position
dependence of the pump and probe intensities are speci-
fied). For a self-consistent description, the intensities of
the probe and generated beams would have to be calculat-
ed simultaneously if the conditions were such that | G(z) |
becomes comparable to |4 _(z)].

As a boundary condition, we set G(0)=0 (i.e., the plane
z=0 is the Ge surface on which the pump and probe
lasers are incident). The solution of Eq. (A6a) is then

z '
G2)=eP [ ePy(z')dz’ . (A7)
We write
Ky | =c_62“’i+8*’ (A8)

where §_ is given by Eq. (A5a) and 8, is found in the
same way from Eq. (A4a). Taking 8. to be small quanti-
ties and w,~w_=w and expanding p to first order in
small quantities, one finds

- - 2o
.| 87 Re(fi“’)'ﬁ’_,_)(2 o) 417 Re(_f(l).ﬁ_)(2 o b)s Tew(l—cosm “)
~, — —_— O —_—
P Vew 4, O e A cos V5 —4cosb

where 6 is the angle between K+ and K_. By comparing Egs. (A9) and (A7), it is clear that unless cos6~1, p will be of
the order of 1/A and the integral will oscillate rapidly. Thus we only consider this case and write

8 Re(ﬁ(o’-ﬁ+) s Re[1 7] +2‘/E

Al0
Vew A, Vew A_ (A1)

p~i o(1—cosf) |,

where (V'ew)/c is assumed to be much larger than the first two terms in the brackets.

In order to evaluate the integral in Eq. (A7), we must know the position dependence of y(z). This could be determined
precisely by integrating Eq. (ASc) and the corresponding equation for I, (z). Here, however, we simply note that y(z) is
proportional to I | (z) and 4 _(z), and we use the simple approximate form

—la,+a_/2)z

y(z)~y(0)e , (A11)

and take a, and a_ as position independent. (Since cosf~~1, we have z, ~z_~z.) With these approximations, Eq.
(A7) is integrated and the results squared to give the following expression for the intensity of the generated beam:

_ (I:i‘”-"’/A_)
Ig(z)=I_(0) | 1—e PHo+To=r22 12| - 17 , (A12)
2 R’(O).—» ‘f(l).—»_ 2
( 77+)_ 1 +ea) (1—cos0)
A, A_ 2me

where I is the intensity of the generated wave at 20, —w_ and I_(0) is the incident intensity of the probe beam. Be-
cause of the various approximations which were made in its derivation, Eq. (A12) is very rough. But it does suggest that
the second squared quantity can give an approximate estimate of the intensity which the generated wave can reach.

APPENDIX B: HIGHER-ORDER TERMS IN THE PERTURBATION SERIES

In this appendix we derive higher-order equations in the perturbation by the probe-field strength. In general, the nth
order (n > 1) equation for the current density owing to the intervalence-band transitions is given by
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2—> — — — — > —
%J‘”’(k)+%%l(”)(k)+02(k)J("’(k)
T,
N,,e2 (n=1)7 (n—1),7 S, o= o o oo oo o A e —R-T)
= me > | AT =1 <k>]hﬂ(k)[n_'Pbc(k)Pcb(k)+n_-Pc,,(k)P,,c(k)]Tw - +c.c.)
beh
cEl

— — - > o Y | 0, t—K T
L) = fiP RO WU 4 Po KIPop(K)+ 77 4 Pop (KB ()] S+ ™+ ’+c.c.>]

(B1)

where T (), f,(,")(E), and f}")(f) are defined by Eq. (5). In a similar way, we write general expressions to calculate
£im(k) and £{™(K) as follows:

dfyP(K) A_ o - -7
fhdt — 2N ;Q(k) d (n__l)(k) —_Z_(el(w_t K _ r)+C.C)
hC
- = A i _R 7
+ [%J("’(k) '7‘7’+T+(e'(w+t KDy ce)
~ 3[R, ¢ . 3 f,ﬂ”)(f)—ch, SfK ] (B2)
c,Y’
and
(n)( 7 S
dfln(k) 1 d J("_l)(k) A——(ei(w_t—K_-r)—f—C.C.)
dt 2N, cHOU(K) 2
- N A i _% -7
+ %J(”)(k) -1'7’+—2+—(e'(w+t K+ ce)
- 2 [RI,_I?—N:,T(" I(n)(E)_Rc,Y'—bl,—lz ‘En)(E,)] : (B3)

For low-intensity probe beams (I_ <<I), the perturbation series can be truncated at first order in the probe-field

strength. The first-order expressions for J (k) and F\V(K)—F{(K) are explicitly written earlier in the manuscript.

The second-order results can be written using Egs. (B1)—(B3). From the equations it is clear that Fy2(K)—F{*(K) has
steady-state terms and terms which oscillate at +i [2(a)+ —w_)t ——2(K+ ):T]. The second-order term in the current
density T ®(K) has terms which oscillate at co_,_t—K+ T and [w+i2(w+—w )]t—[K++2(K+ )] r. The dc
terms in f,,z’(k) and f{?(K), the terms in f},”(k) F1P(K) which oscillate at twy—w_ )t—(K+ _):T] and the
terms in J (k) which oscillate at w+t—K+ T all couple in Egs. (B1)—(B3). The coupled equations can be solved for
the steady-state component in f52( K) — f{2(k), which is second-order in the probe-field strength. We then write

FE)=F2(K,00 4+ [F2(K,28)e o+ —o- 12K =K 7 (01, (B4)

FIE)=FP(K,0)+ [FP(K,28)e PO+ —0- =2 K=K 0 o e, (BS)

and

- — - — i - s - - i - —~3% ,—2K T
T OE)= [T 2(K,0,0e K+ T e J4[T QR 0, 428)e 100+ 20- 00K 22K T (1

T (R 0, —20)e 1O+ CRL2ROT (B6)
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The calculated dc values for Fi2(k,0)—F{?(k,0) give the
effect of the probe intensity on the state filling of the
resonant transition. This term slightly modifies the opti-
cal excitation rate between states in the resonant region of
the heavy-hole band, and thus produces a small change in
the rate of energy absorption of the pump beam. The
terms J 2, +2A) produce new waves at the sidebands
(v, +2A). As one goes to higher orders in the probe-field
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strength (n>3), new waves are generated at still higher-
order sidebands, and population of free holes in the
resonant region has terms which oscillate at higher-order
harmonics of the beat frequency. However, these higher-
order terms are much smaller than the terms which are
first order in the probe-field strength for probe intensities
I_ much less than the saturation intensity of the resonant
intervalence-band transition.

*Permanent address: Honeywell Systems and Research Center,
Minneapolis, MN 55440.
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