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Long-range correlated random magnetic fields in the nonlinear rJ model
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The effect of the long-range correlated random magnetic fields which behave like (h(x)h(y))
—1/

~

x —y ~" on the critical phenomena is discussed with the use of the nonlinear o model. The
crossover between the two critical behaviors dominated by the long-range and short-range disorder
fixed points is shown to occur at (m —2)o.—d+4=0 (m is the spin dimensionality). The critical ex-
ponents calculated at the long-range disorder fixed point around the lower critical dimensionality
4+o. are not the same as those in d —2 expansions in the pure system.

I. INTRODUCTION
The effect of quenched random magnetic fields on the

critical phenomena of spin systems has been discussed ex-
tensively. ' ' It has been shown that a random magnetic
field shifts the critical dimensionality by 2. However, for
Ising systems, the lower critical dimensionality is still be-
ing argued. '" ' For systems with m &2 (m is the num-
ber of spin components) it seems to be generally accepted
that the lower critical dimensionality is 4 for short-range
exchange. Both Pelcovits's calculation on the random-
axis model and our calculation' on the random-field
model using the replica method (hereafter, referred to as I)
show that the critical exponents in dimensionality
d =4+@are exactly the same as those in e=d —2 expan-
sion in pure systems, at least to first order in e. However,
these discussions are only valid for uncorrelated random
magnetic field. If the random magnetic fields are corre-
lated over long distances such that (h (x)h (y) )
—1/ ~x —y ~, the critical properties can be changed.
This possibility was first briefly considered by Aharony,
Imry, and Ma.

Very recently Kardar, McClain, and Taylor have ad-

dressed this problem. ' Following Parisi and Sourlas
they used supersymmetry arguments to discuss the
equivalence between the d-dimensional system in correlat-
ed random fields and the pure system in d —2 —o dimen-
sions. They carried out the superspace renormalization-
group calculation to second-order in e, e=6+o.—d,
around the upper critical dimensionality 6+cd. To order e
the critical exponents are the same as those of the pure
system in 4—e dimensions. However, there are deviations
from the simple rule d ~ d —2 —0 at order e . In this pa-
per we discuss this problem around the lower critical
dimensionality 4+o. using low-temperature renormal-
ization-group methods (nonlinear o model).

The paper is organized as follows. In Sec. II we use the
replica trick to find the effective Hamiltonian; differential
recursion relations are then calculated. In Sec. III we dis-
cuss the stability for each set of fixed points and some of
the implications. We offer some concluding remarks in

Sec. IV. In the Appendix we discuss a slightly generalized
model for the long-range correlation function of random
magnetic fields.
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for large [i —j (. The
Fourier transform G(k) is constant as k~0 if cr &0.
This is the short-range case. If, however, 0 & 0,
G(k)-b, &+Elk for small k. Strictly speaking there
are terms such as 5'k with 0&o'&cr. However, it will
be shown in the Appendix that these terms are not impor-
tant as far as the critical behavior is concerned.

Using the standard technique, ' ' we write S;
=(0;,m; ), where m. ; has m —1 components and 0; is
in the direction of spontaneous magnetization. We take
the Fourier transform S;~$(k) and obtain the following
functional integral by expanding the constraint
o;=(1=m.;) ~:2 1/2

II. RECURSION RELATIONS

We start with the following Hamiltonian:

H= —gZ,,S, S, —gh, S, .
(ij) i

Here S; is an m-component vector spin of unit length, and

h; is the random field. In I we assumed the h; to be in-
dependent and Gaussian-distributed with (h;),„=0 and
(h; ),„=b,. In this paper we consider a long-range corre-
lation for h; and h J such that (h; ),„=0 and
(h;hj ),„=G(

~

i —j ~

)-1/
~

i —j ~

for large
~

i —j ~

.
As usual we use the replica trick. By replicating the

Hamiltonian in Eq. (1) and averaging the free energy, we
immediately obtain
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P—I' = lim —ln f d I
m. ; I e
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dk k - - kP~= g g f d m ~( k)m.„(—k)+ [m.~(k)]2[m.~( —k)]2+
p (2m. )" 2T ~ " 8T
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In.„(k)H(—k)+ 4[m—(k).j [m~( —k)] ~

k ~[re(k)nq( —k)+ —,[~ (k)] [m~( —k)] y I+ pT[n„(k)re( —k)+ ]

where p labels the m —1 (transverse) components of m,

a,P are replica indices, and m (k),p have been defined in
Eqs. (2.8), (2.9), respectively, of I.

The next step is to use the Wilson-Kogut recursion
method' to find the differential recursion relations for
1/T, b, &, and hz. Then the fixed points can be identified,
the eigenvalues associated with them calculated, and the
stability for each set of fixed points determined. The cal-
culational details have already been given in I. They are
briefly mentioned here.

The vertices due to the h2 term in Eq. (4) are shown in
Fig. 1. The other vertices relevant to the perturbation ex-
pansions are exactly the same as those in Fig. 1 of I. The
Feynman diagrams contributing to the recursion relation

l

I

for 1/T are shown in Fig. 2 and Fig. 1 of I. We have

I 2-d-2 1
, =g b —+K~lnb+ Kdlnb

~i+~2

where Kd =2 +'m /I (d/2). We should note that
the power of the denominator of the Feynman integral in
Fig. 2 is different from that of Figs. 2(b) and 2(c) of I.
Now they all contribute Kdlnb Here, .ln"b (n &1) terms
are not needed in calculating the differential recursion re-
lations.

To determine the spin-rescaling factor g, we follow Nel-
son and Pelcovits' and add a uniform magnetic field term
(h/T) f d xo. (x), as in I. The recursion relation for
h'/T' is

h'
2 d h h (m —l)[b, , +82+ T(1+h ) ]Kdlnb

2T' 2T 4T
g2b

—d

(1+h )

g=b [1——,'(m —1)(T+b&+b,,)K&lnb] .

The recursion relations for b, &/2T and A2/2T are

bI
2b —d

2T' 2T
+

(5)+62)
Edlnb

2T2

(7)

(9)

The Feynrnan diagrams of Eq. (8) are shown in Fig. 4
(and Fig. 4 of I). Note that the one loop term does not
contribute to the recursion relation for b,z/2T', so Eq. (9)
contains only one term. As mentioned in I we still cannot
find a general proof to show that the infinite number of

The Feynman diagrams are those in Fig. 3 (and Fig. 3 of
I). Using h'/T'=gh/T, we have

terms with the coefficient 6&/2T or b,2/2T2 in Eq. (4)
can be renormalized consistently.

The differential recursion relations are obtained from
Eqs. (5) and (7)—(9). They are

1T(l)
I

= T(2 d)+ TKd(m —2)(T—+b (+62),

db, i(l)
dl

=h, (4—d)+b, ,Kd (m —3)(b,(+b2+T)

(5)+b,2)+

db, 2(l)

dl
=52(4 d+o. )+b2Kd(m —3)(T+6—)+62) . (12)

p (k) P ( k) kpy2

FIG. 1. Vertices relevant to the perturbation expansions in
Eq. (4).

FIG. 2. Feynman diagram contributing to the recursion rela-
tion for the two-point function (1/2T)m. „(k)m&( —k )k .
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FIG. 3. Feynman diagrams contributing to the recursion rela-

tion for (h/T)(m ) .
FIG. 4. Feynman diagrams contributing to the recursion rela-

tion for (b ~/2Tz)m„(k)n„( —k), o.&P.

III. RESULTS AND DISCUSSION

The fixed points can be determined from Eqs.
(10)—(12). The three eigenvalues for each set of fixed
points can be obtained by diagonalizing the 3X3 matrix
from Eqs. (10)—(12). The fixed points and the eigenvalues
are listed in Tables I and II, respectively.

The criterion for a fixed point to be stable is that two
eigenvalues are less than 0 (irrelevant) and the third one is

greater than 0 (relevant). Another condition in our case is

that in the physical region 62 must be )0. The reason is
that G(k)-Et+ b,zk must be greater than or equal to 0
for all momenta up to the cutoff since it is the Fourier
transform of the translationally invariant correlation func-
tion G.

We limit ourselves to d ~4+o, although there is still
no rigorous proof to show the absence of ferromagnetism

at d &4+cr Here . we discuss the stability of each fixed
point.

For the Gaussian fixed point (I), we have A, &, A,z, and A, 3

corresponding to the eigenvalues in the T, h~ and Az
directions, respectively. They all are irrelevant (less than
0) and not physically interesting for the critical behavior.

In the short-range-disorder fixed point (II), A, ~, Az, and
A 3 are also the same as A, T, A,z, and A,q, respectively. In

order for II to be stable, Az ——[o(m —2) —d+4]/(m —2)
must be less than 0. This gives the limitation
o &(d —4)/(m —2) for the stability of this short-range
fixed point.

We now turn to the long-range-disorder fixed point
(III). We note that A, t corresponds to A, T, while A,z and A, 3

are the eigenvalues for the scaling fields which are linear
combinations of b, ~ and bz. In the region

Fixed points

I—Gaussian

II—short-range disorder

TABLE I. Fixed points of the recursion relations.

0
d —4

K (m —2)

III—long-range disorder

IV—pure

V—short-range disorder ( T&0)

d —2
(m —2)Ed

2
Kd

(4—d+o)
(m —3) K~o

0

d+2 —2m

(m —2)Kd

(d —4—o)[4—d+(m —2)o]
(m —3)'Ego-



Fixed points

I—Gaussian

II—short-range disorder

III—long-range disor der

IV—pure

TABI.E II. Eigenvalues of the fixed points of Table I.

4m —lo+d(3 —rn )

Pl —2

8=—(d —4—o )2 +4(d —4—o.)(d —4+o (m —2) ) /(m —3)
2 (m —3)

1/2

o(m —2)—8+4~0 where the short-range-disorder fixed
point (II) is stable, we have b,i (long-range-disorder fixed
point) equal to

(d 4 o)[4—d—+'(rn ——2)o ] ~0.
(m —3) J go.

It is in the Unphysical region as mentioned earlier. There-
fore in this region of o the critical behavior is dominated

by the short-range-disorder fixed point.
When 4—d+(m —2)o =0, fixed points II and III coin-

c1de. The noHIlal ci'ossover effec't occuis. Wlieii
4—d+(m —2)o & 0, fixed point II becomes unstable. For
fixed point III,

d —o.(m —2}—4+ 2(3 —m )

m —3

is always less than 0 (m &3). Also we find Ai&0 and
A,sg0. Therefore in this region the long-range-disorder
fixed point III is stable and determines the critical
behavior. In Fig. 5 we show the regions of stability for
fixed points II and III. We want to check whether the
conjecture that the critical exponents in powers of
d 4 cr associated wi—th —the long-range fixed point (III)
in d —4—o expansion are the same as those in d —2 ex-
pansion for pure systems is still valid or not. For exam-
ple, in the pure case, v= I/(d —2). In fixed point III we
see from that v= 1/A, 2&1/(d —4—cr). Thus the conjec-
tulc fails.

d = 4+ e (m-2)

~l)l
II

cl

So far, the discussion for fixed point III has been limit-
ed to m & 3 (because of m —3 denominators). If m = 3 we
can see that the differential recursion relation in Eq. (10)
bccoIQcs

This leads to 51=0. Therefore there is no long-range-
disorder fixed point if m =3. This can also be understood
from Fig. 5. When m =3, the dividing line
a(rn —2)—8+4=0 coincides with o —8+4=0. That
means the region dominated by the long-range fixed point
shrinks to zero. Certainly this is only true to the lowest
ordcl.

It ls lntclcstlng to Ilotc that ln Rcfs. 19—21 thc case
m = 1 ls spcclal ln R sllTlllar wRy dUc to m —1 dcnoQllna-
tors in their short-range-disorder fixed point. Apparently,
this fcRtulc ls R pUrcly mathematical result. There seems
to be no physically intuitive argument to explain it. It is
well known that in m =1 case, when higher-order terms
Rrc considered, thc flxcd points Rnd thc critical cxpoIlcnts
are of order e'» (@=4—d). This can be simply under-
stood from the degeneracy in Eqs. (4.6b) and (4.6c) to
second order in u and U in Ref. 19. Our m =3 case is dif-
ferent because at m =3 there is no degeneracy in Eqs. (11)
and (12). Up to this order we have hz ——0 so there is no
long-range fixed point. If two-loop calculations were
available, there might be a long-range-disorder fixed point
with 42 being of order (d —4—o )1 instead of
(d —4—cr)'», provided the factor m —3 does not appear
in the term at two-loop order of Eq. (12).

Now let us discuss the m ~3 case. Obviously the non-
linear o. model is inapplicable at m =1. Fox' m =2 we see
that the fixed points II, IV, and V also have m =2 denom-
inators. Thus we should treat this case separately. If we
set m =2 in Eqs. (10}—(12) we find that the long-range-
disorder fixed point (III) has

FICx. 5. Regions of stability of the short-range- (II) and long- (for d & 4+cr), which is unphysical and the fixed points II,
range- (III) disorder fixed points. IV, and V do not exist. The Gaussian fixed point (I) is
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stable in all directions. Therefore it does not determine
the critical behavior. For m=2, within the nonlinear cr

model formalism at one-loop order, there is no phase tran-
sition. In the pure case (5i ——hz ——0) we know that
T'=[(d —2)/(m —2)K~] is finite as d —+2 and m~2.
This is a signal for the Kosterlitz-Thouless transition.
For the short-range-disorder case (hi&0 and h2 ——0) we
have b, i

——[(d —4)/K~(m —2)]. So it is likely to have
Kosterlitz-Thouless transition at d =4 and m =2. This
has been mentioned by Cardy. ' Furthermore, in the case
of long-range disorder, b. i and hz contain factors
4—d+o and m —3 in the numerator and denominator,
respectively. Therefore the mechanism for the transition
at d =4+o and m =3 is probably also of Kosterlitz-
Thouless type. However, at the present time we cannot
say anything about it.

Finally we make comments on the fixed points IV and
V. We again use the stability criterion that two eigen-
values are negative and the third is positive. Indeed in
some combinations of d, m, and o, there are stable fixed
points. However, we should note that the scaling fields
are not T and h~ themselves, but rather linear combina-
tions of them. Also, at low temperature (T~0) one is
quite far away froin T' in fixed points IV and V. There-
fore these fixed points are not physically interesting in dis-
cussing the critical behavior. When T~O the critical
behavior should be dominated by fixed points II and III in
which T is an irrelevant operator and the randomness is a
relevant one.

IV. CONCLUSION

In this work we have discussed the long-range correlat-
ed random magnetic fields using low-temperature
renormalization-group calculations. We have found the
long-range-disorder and short-range-disorder fixed points.
They are stable in different regions in Fig. 5. The cross-
over happens at (m —2)o —d+4=0. Also the critical ex-
ponents calculated at the long-range-disorder fixed point
in powers of d —4—o are no longer the same as those in
d —2 expansions in the pure systems or in d —4 expan-
sions in the uncorrelated random field model.

In this theory it is ambiguous to determine the flow dia-
grams exactly. The reason is that in the initial Hamiltoni-
an (unrenormalized or physical) G(k) is

N

b, i+62k + g 5;k ' (o; &o'),

and these 6; are not supposed to be zero initially. In the
Appendix we show that the fixed point 5*;&0 (i & 2) is al-
ways unstable. Therefore we can only be sure of the fol-
lowing.

(i) If (d, o) is in region II in Fig. 5 and the starting
values for T, b, i, b,i, and b,; (i & 2) are sufficiently close to
fixed point II, then flow is to that point which determines
the critical behavior.

(ii) If (d, o) is in region III in Fig. 5 fixed point III
should be dominant for the parameters close to that point.
In this case we should be careful that the relevant scaling
field is not b, i or b,z but rather a linear combination of
them.
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APPENDIX

In this Appendix we discuss the slightly generalized
model

N

G(k)-hi+52k + g b„k ', o; &cr, i &2.
I =3

We follow the same lines as in the text to derive the fol-
lowing differential recursion relations:

dT(1)
dl

=T(2 d)+TK~(—m —2)(T+bi+b2+Q), (Al)

db, i(l)
dl

=b, ,(4—d)+Tiki (m —3)(T+b, , +h2+Q)

(b, , +6,+Q)'
(A2)

1

db, i(l)
dl

=h, (4 d+o)+b, ,K„(m— 3)(T+b,, +b,,+—Q),

(A3)

db, ;)2(l)
l

=b,; (4 d+cr; )+ bcKg(m —3)(—T+b i+b2+Q) .

(A4)

Here Q= g,. 3b,;.
Besides the fixed points listed in Table I we can find

another set of fixed points with T=O, 5*i&0, b,2 ——0,
b,i&0, and b,;"=0, i,j &2. b, 'i and bj* are the same as
those in fixed point III with a replaced by o.j, and

d —4+ CT)

Kg(m —3)

We can easily obtain

{J~])—0 J og e (A5)

As long as oj&cr, there is always a o.; (i &j) such that
~ =cr; —oj &0. Since one eigenvalue (i.e., A,2, cf. Table

l

Another interesting problem which still needs further
investigation is the phase diagram. So far, we have dis-
cussed it in the ferromagnetic state. Just as in the random
axis model, in the low-T region the phase boundary
separates a spin-glass phase and a ferromagnetic phase.
We conjecture it is the same in the system with correlated
random magnetic fields. Certainly the phase diagram will
be complicated because it has at least A~, 52, and T pa-
rameters. We have mentioned before that fixed point (V)
is not physically interesting as far as critical behavior is
concerned in the low-T region. However, this point might
be related to a multicritical point.
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II) for ht and bJ is already always positive, we have at
least two positive eigenvalues, thus this set of fixed points
is always unstable.

To make the theory complete vie still have to show that
the stability of fixed points II and III is not influenced by
the addition of all the terms b,; (i =3, . . . , X). For the
long-range-disorder fixed point (III) we check A,q from

Eq. (A4). It is

Since this eigenvalue is always less than 0 it will not
change the stability. Similarly for the short-range-
disorder fixed point (II), we have

d —4
AI, =4 d+—cr +(m —3)

Nl —2

In region II of Fig. 5 where the fixed point II is stable, we
have cr(rn —2)—d+4&0. Since o & cr then

o;(I—2) —d+4
&0.

m —2

We have proved the fact that the stability of the fixed
points II and III still remain the same even if the terms

g 5;k ' are considered. Therefore we are convinced

that the critical behavior is always dominated by the fixed
points in Table I obtained from G(k)-b, ,+32k, but
tllc dctMls of tllc flow dlagI'aIlls ccrtMIlly depend oil tllc
1Illtlal values of 51 (I)I).
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