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Physics of resonant tunneling. The one-dimensional double-barrier case
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In this work we discuss how the occurrence of resonant tunneling through a one-dimensional (1D)
double barrier involves some interesting phenomena which have so far been overlooked. The effect
of an externally applied electric field is considered, and it is shown that with fully symmetrical bar-
riers it leads to weaker resonances than otherwise possible. Furthermore, the time required for reso-
nance to be fully established is discussed, and it is shown that, depending on the barrier transmis-
sion coefficients and experimental conditions, it can be exceedingly long, thus contributing to a
reduction of resonance effects on the usual experimental time scale. We alsa show that resonant
tunneling under the usual experimental conditions implies carrier trapping, hence a buildup of space
charge available for modifying the potential-energy barrier. Different current behaviors then result
from the inherent feedback mechanism. The effects of temperature an the measured current are fi-
nally discussed.

I. INTRODUCTION

In this paper, we discuss in some detail the problem of
resonant tunneling through a one-dimensional (1D) double
(potential energy) barrier. Pioneering work on this subject
is primarily due to Esaki, Chang and Tsu' who used
GaAs-Ga~ zAlzAs heterostructures, and to Hirose et al.
who, instead, worked on the Si-Si02 system. From a
theoretical point of view significant contributions came
from J. C. Penley and Sandomirskii in the 60's while re-
cently new experiments were performed by Sollner et al.
and by Ricco et al. on double barrier grown by means of
molecular-beam epitaxy.

The purpose is primarily that of showing how, although
the occurrence of resonances is a simple and well-known
result of the usual treatment of tunneling, it involves some
complicated physical effects which have so far been al-
most completely overlooked. The failure to fully under-
stand the importance of such effects and the consequent
lack of attention to their regard might, in our opinion, ex-
plain the only partial success of the pioneering experimen-
tal work' aimed at showing resonant tunneling. Al-
though truly remarkable these works share the rather un-

pleasant characteristic of finding effects much weaker and
less pronounced than expected from the theory. This im-
plicitly suggested the idea that resonant tunneling is too
critically dependent on experimental parameters to be
really controllable and (re)producible, let alone exploited,
in real life where samples' or devices conditions' (defect
concentration, surface cleanliness, actual dimensions, etc. )

are of course different from the clear-cut exact pictures of
theoretical models.

Although differences between theory and experiments
are certainly to be expected, we feel that the criticality of
resonant tunneling has been, and still is, overestimated
and that the somewhat disappointing experimental results
might well be due to nonoptimal samples and rneasure-
ment conditions.

Recently, new experiments carried out on GaAs-
Gai Al„As double barriers similar to those of Ref. 1

have produced I-V characteristics with well pronounced
peaks. The key factor for the improvement seems here to
be the better material quality available today. From a
quantitative point of view, the improvement over previous
experiments is relevant (a 6:1 ratio between peaks and val-

leys is observed) but a large discrepancy still exists with
theoretical predictions. As will be shown in this paper
this cannot, at least in part, be considered surprising since
in almost all respects, these experiments are similar to
those of Ref. 1.

Two points, in particular, are important and will be
dealt with in this paper. First, while the measurements
have been carried out with a nonnegligible electric field
applied across the double barrier, the assumed underlying
theory did not include it. ' The most important remark
with respect to this is that the electric field destroyed the
symmetry of the two realized barriers and, consequently,
contributed significantly to reduce the effects of reso-
nances. As will be shown later, better structures than
those used so far can be designed to maximize resonance
peaks but it is essential to take into account the effects of
the field. This involves some nontrivial engineering.
Futhermore, because the field cancels the intrinsic simple
symmetry, the optimization can only be performed for one
of the possible several peaks.

A second important point to grasp about the experi-
rnent is that because of the way they were realized the oc-
currence of substantial effects is not an immediate
phenomenon. Resonant tunneling is time dependent and,
to be fully established, requires a non-negligible time (ex-
ponentially long as will be explained later). Therefore, if
the experiments feature ramping voltages and no care is
taken to allow for enough time at the peaks, resonance ef-
fects might well be almost completely lost.

A further remark concerns the space-change buildup
necessarily taking place because of the accumulation of
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tunneling carriers within the resonant well which, to all
practical purposes, behaves as a dynamic trap (in the sense
that particles continuously get in and out of it). Since the
accumulating charge modifies the potential-energy bar-
riers a feedback mechanism becomes operational and com-
plicates the resonance time evolution as well as the en-
gineering for optimized experiments. In particular it will
be shown that, if the amount of charge that can be
trapped into the well is substantial, oscillating currents as
well as self-accelerating approaches to "stationary states"
are possible.

In this paper we will also briefly consider the effects of
temperature which, when increasing, can lead to decreas-
ing as well as increasing currents depending on the relative
position of Fermi level and resonance states.

Before tackling these points, in Sec. III, the method
based on the transfer-matrix technique will be presented
which allows an explict, easy treatment of the 1D double
barrier case with no restriction on the shape of the
potential-energy diagram. Futhermore, in Sec. II a brief
account is given in the known simplest case of square bar-
riers, usually treated in textbooks, which provides a good
starting point for our subsequent generalizations.

II. CASE OF RECTANGULAR BARRIERS
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FIG. 1. Potential-energy diagram of the double rectangular
barrier case.

The case of two rectangular potential-energy barriers
(such as depicted in Fig. 1) is the most elementary exam-
ple where resonant tunneling occurs. Futhermore, it
presents the advantage of exact analytical solutions. For
these reasons, it can be found in textbooks and will be
only briefiy reviewed here to be used as a guideline for the
most direct understanding of the major features of
resonant tunneling. As will be shown later, all the con-
cepts encountered in doing so can be generalized to the
most general case of double barriers of any shape.

For the potential-energy diagram of Fig. 1, the global
transmission coefficient TG of the whole barrier (i.e., from
points H and A) can be exactly derived and put in the fol-
lowing general form:

Cp

Tl Tr 1
C)TlT, +C2 +C3 +C4

Tl Tl Tr

where T~ and T„represent the transmission coefficients of
the left and right barrier, respectively (namely those be-
tween point G-Ii and C-8) which are exponentially depen-
dent on energy. In Eq. (1) the C's are (phase) factors ex-
hibiting a much weaker energy dependence and, at first
order, can essentially be treated as constants (of the same
order of magnitude). We will only consider here the case
of "strong localization" (the meaning of this term will be-
come clear later) which requires all T's to be small ( « 1).
Under this condition, the denominator of Eq. (1) is dom-
inated by the last term and it is

Cp
TG TlTr TlTr .

C4
(2)

Tmin
TG res

max

min

Tmax
(3)

where T;n and T,„represent the smaller and larger
among Ti and T„,respectively, while C is either Cp/C2 ol'

Cp/C3 depending on whether or not T,„=Ti.
By directly comparing Eqs. (2) and (3) it is obvious that

a resonance always implies an increasd transmission coef-
ficient since it is

(4)

where TG& represents the "normal" value TG would have
without resonance, i.e., if no well was present between the
two barriers of Fig. 1. Such as increase is, therefore,
larger for smaller Tm,„and vanishes in the limiting case
of T,„~l(which, on the other hand, is incompatible
with the assumption of strong localization).

The result expressed in Eq. (3) [and, consequently, in
Eq. (4)] holds even when the internal energy well is very
narrow (provided certain conditions to be specified below
are met). This offers the best opportunity to illustrate a
first important, general concept, namely that, while the
presence of the well has scarcely any effect off resonance,
it can dramatically alter the tunneling probability
throughout the global barrier at special energies. In par-
ticular, Eq. (3) shows that regardless of how small Ti and
T„are,TG„,can be of order of unity under the only con-
dition Ti ——T„while Eq. (4) clearly indicates that the
transmission coefficient can easily increase at several or-
ders of magnitude for arbitrarily small changes in energy
producing resonance.

For C4 to vanish, hence resonance to take place, the
only condition to be satisfied from a physical point of
view is that the energy (E) of the tunneling carrier(s)

In this case then, the presence of the potential-energy well
between the two barriers has, in practice, little or no effect
depending upon the way one looks at the global barrier.
In particular, everything goes as points E and D in Fig. 1

were coincident and no well was present; or, alternatively,
if seen without joining such points, the only effect pro-
duced by the well is a reduction of the (phase) area of the
total barrier.

For some special energies, however, C4 goes to zero; the
leading term is, consequently, canceled out and a reso-
nance occurs. In this case, as easily seen from Eq. (1), the
global transmission coefficient TG„,becomes



1972 B. RICCO AND M. YA. AZBEL

matches that (E, ) of the well (quasi) eigenstates. In
mathematical terms, this can be expressed as

, a2 , a4
k3d3 —tan +tan +(n —1 )lr

k3 k3

In Eq. (5) k;=A' '[2m(E E~—)j'~ and a;=A' '[2m(E&
E)—]'~ (here Ez denotes the potential energy) are used to

indicate the action absolute value in classically allowed
and forbidden regions, respectively (this notation will be
maintained throughout the present work).

Another important aspect of resonance concerns the
wave function as schematically represented in Fig. 2. In
essence, without resonance the wave function P(x) mono-
tonically and exponentially decreases within the classically
forbidden regions thus reflecting the multiplication of the
single-barrier transmission coefficients of Eq. (2).

At resonance, instead, the tunneling particle finds "its"
(eigen)state in the well where, consequently, the wave
function has to be peaked with an exponential decrease on
both sides (see Fig. 2). Since we assumed both T& and
T, «1, this implies that the state is strongly localized
(hence the name of the assumption made earlier). Because
TI and T„arenot zero, the localized states are, strictly
speaking, quasi eigenstates with a finite lifetime and ener-

gy width as described later. The assumption of strong lo-
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FIG. 2. Schematic representation of the wave function "at"
and "off" resonance.

calization, however, implies they can be considered as
"real" eigenstates to all practical purposes. In the case of
TI & T, considered in Fig. 2, it is immediately evident that
the total transmission coefficient is given by the ratio of
those of the single barriers (Ti/T„) as expressed by Eq.
(3) '

A point is immediately suggested in Fig. 2 and is worth
mentioning in anticipation of later discussions. The in-
crease in transmission coefficient at resonance is a conse-
quence of the wave function being peaked within the well.
Furthermore, Fig. 2 describes a stationary situation since
it is based on the results of the time-independent
Schrodinger equation. Hence, when starting with elec-
trons only present to the left of the global barrier (i.e., of
point H in Fig. 1) a transient is in order before any reso-
nance can be fully established. In this process, probability
density has to accumulate within the well which, there-
fore, behaves as a trap for the incoming (tunneling)
particle(s). In the final, resonant state, the well is then re-
sponsible for both carrier trapping and high current
(throughout the whole system) and the two effects, far
from contrasting with each other as it might seem at first,
are in fact complementary. The key factor for this is, of
course, that carrier retention (trapping) within the well is a
dynamic process where particles get in and out of the well

at any time. In the steady state, in particular, the in-

coming and outgoing fluxes must be the same.
When dealing with charged carriers (only electrons will

be considered hereafter), the trapping process mentioned
above implies a charge buildup which, in turn, modifies
the problem potential energy. The amount of charge (or
particle) that the well can accommodate depends on the
wave-function localization, hence on the single-barrier
transmission coefficient and, more specifically, on Tm,„.
%hen such an amount is substantial, carrier trapping has
at least two important consequences.

First, the potential energy to enter the Schrodinger
equation must be calculated self-consistently, i.e., account-
ing for the contribution due to electron trapping. This
complicates the calculations and has bearings on the con-
ditions for resonances: In particular, for instance, even

barriers intended to be rectangular are not really so and,
consequently, an approach suitable for a more general po-
tential is required. Second, during the transients leading
to the final situation, a feedback mechanism becomes
operative, since the barriers change as particles accumu-
late into the well. This modifies the resonance time evolu-

tion. As will be discussed later, either self-accelerating ap-
proaches to a stationary state, or unstable, oscillating
currents are possible depending on the carrier energy at
the cathode.

III. THE CASE OF A GENERAL POTENTIAL
THE TRANSFER-MATRIX TECHNIQUE

The best way to obtain the results of the preceding sec-
tion in a form which can be easily generalized to any
potential-energy diagram is to use the transfer-matrix
technique. With reference to Fig. 1 this requires the
knowledge of four different types of matrices, namely,
those respectively joining points: within classically al-
lowed regions (D ~E), below a barrier (8~C and
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E~G), across a discontinuity from below to outside a
barrier (A~8, E~I'), and across a discontinuity in the
opposite direction (G~H, C~D). These matrices will
hereafter be denoted with Mq, Mll, M,„„andM;„,
respectively. By including in the wave-function coeffi-
cient (at each point) a factor accounting for a shift of ori-
gin to that point and using for k and a the notation intro-
duced just after Eq. (5), these matrices have the following
express1ons:

e
—ikN O

O ~lkN

A
M11M22 —M11M22 ——.

where the upper and lower right-hand results apply when
going from a classically allowed to a forbidden region and
in the opposite direction, respectively.

Once the matrices given in Eqs. (6) are known, the M„,
for the total barrier (i.e., connecting point A to H of Fig.
1) is easily worked out since

(6b) The global transmission coefficient TG is then simply
given by

TG ——1/i(MG)il i

(6c)

.a .o.'
1—i—1+i—

k k
M—10

l+/ l —l
k

(6d)

k„coshSe ' sinhS e'~

sinkS 8 ~ cos45e (7R)

In Eqs. (6a) and (6b), w represents the distance between
the points to be connected.

It ls worth pointing out, before plocccdlllg, that, thc
above matrices are particular cases of more general forms
which can be derived by exploiting the wave-function
properties with respect to conjugation and conservation of
probability current. Considering these properties, the
matrix M~ connecting points (T +V) within —classically
allowed regions can be set in the form

By using the technique briefly described above, the case of
a general potential-energy function Ez(x) can now easily
be tackled under the conditions for the quasiclassical ap-
proximation to be applicable (see, for instance, Ref. 11,
page 164). In particular if, as a first step, we maintain the
discontinuities of Fig. 1 but let E~(x) be general in the in-
tervals G-F, E D, and C-B-, the treatment outlined so far
still holds provided the elements of M z and M a are re-
placed by the quasiclassical expressions, namely

(Mq)ll
=exp+i I k(x)dx,

(M ~)22

w11cl'c k(x)=A I2Pl [E Ep(x)] j —Rnd tIM llltcglal ls
calculated between the points to be connected (i.e., the
classical turning points at the well edges). Similarly,

(Ma)tl
=exp + f a(x)dx—8 22

where S, 5, and p are three real parameters characterizing
the region between the connected points. In particular if
this includes a barrier, S represents its phase area while 5
and p are phase factors depending on the choice of coordi-
nate reference. '

Much in the same way, it can be shown that when the
points to be connected belong to classically forbidden re-
gions M ll can be put in the form

1/2 coshS e sinhS e~
M g —— . s, (7b)sinhSe ~ coshSe

~ in, out=
I)) M11

(7c)

(Herc thc astcflsk llldlcatcs t11c co111plcx conjllgRtc. )

Furthermore, conservation of the probability current gives

where again S, 5, and P are three real parameters.
The case of matrices, such as M;„andM,„„connecting

points in qualitatively different regions, is slightly more
complicated. In both cases, taking the conjugate wave
functions, it can be shown that the matrices have the gen-
cl'Rl form

k xi=tan +tan + n —1m, (12)

where the integral is calculated between the well classical
turning points at which the parameters appearing on the
right-hand side are also taken (here I and r indicate the
left- and right-well edge, respectively).

A conceptually more complicated problem arises when
at least one of the discontinuities is removed since at turn-
ing points such as those represented by Fig. 3 the (con-
tinuous) potential energy equals that of the tunneling par-
ticle [i.e., Ez(x) =E] and the quasiclassical approximation
cannot be used as such. These points require special care
as discussed in Ref. 11 (p. 169) where connecting formulas
consistent with the quasiclassical approximation and suit-
able for this case are derived. Such an approach, however,
needs a slight improvement to be used in conjunction with
the transfer-matrix technique since it seems insufficiently

a(x)=Pi 'I2m[E~(x) —
Ej

j'~2 .

As a result, the condition for resonance (implicitly deter-
mining the resonant energy) expressed by Eq. (5) simply
becomes
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From a inathematical point of view, Eq. (15) can be de-
rived by looking at Eq. (1) and finding the energy at
which the two leading terms in the denominator have
comparable (actually equal) absolute value. From Eq. (54)
of Ref. 6, this gives

FIG. 3. Continuous turning points.

accurate to deal with both independent solutions of
Schrodinger equation on both sides of the considered
point. In particular the derived connecting formulas only
provide the (1,2)th and (2,2)th elements of the M;„(or
M,„,) matrix. We can, however, exploit the general prop-
erty expressed by Eq. (7c) to easily construct the whole
matrix with no loss of accuracy.

When crossing takes place without discontinuities, we
then obtain'

1+i 1 —i
M ou' —~2 1 i 1~i— (13a)

1 —i 1+i
M' =

1 1—1+l 1 —l
(13b)

Equations (12) and (14) implicitly provide an estimate of
the resonance energies with the accuracy of the semiclassi-
cal approximation which, therefore, increases with n

(namely when the resulting energy increases with respect
to h).

Another important feature of resonances is that the
peaks they produce in the transmission coefficient (hence
in measured currents) have a finite energy width b,E
which is physically due to the nonzero probability to tun-
nel out of the well. As known, such a width is related to
the (resonant) state lifetime. For the reason given above
hE increases with the electron escape probability, thus
essentially with T,„,namely,

(15)

As for the conditions providing resonance energies, Eq.
(12) still holds with a; /k; = 1; hence tan '(a; /k; ) =~/4
for the turning point(s) where E =E~(x).

The equation can, in fact, be put in a very compact
form covering the cases where the turning point(s) are ei-
ther "continuous" or feature a discontinuity with
Ez(x)~no (infinite wall with a~00). From Eq. (12) we
have

f I2in[E E~(x)]I' 'dx—= —,'(n —y)h, (14)

where the integral is calculated throughout the well, n is
an integer and

0 for (infinite) walls on both well edges,

&
—. 4 for one wall and one continuous edge,

—,
' for two continuous edges.

(T,„)xE +4(T,„)FE DE=0 (17)

and the linear relationship of Eq. (15) immediately fol-
lows.

The finite width of the resonance peaks plays a relevant
role in experiments. First of all it makes less critical the
energy matching condition required to produce a reso-
nance (although, of course, the effects decrease away from
the peak centers}. Furthermore, in the case where the tun-
neling electrons are nonmonochromatic, i.e., they are
spread over a whole energy range within the cathode, the
larger a peak width, the larger is the fraction of particles
taking part in resonant tunneling. Under this condition,
assuming that the electron distribution can be considered
constant over the whole AE, the current contribution due
to a resonant peak is essentially given by

Tmin
Jres ~ Tmax

Tmax

where the first term accounts for the fraction of electrons
involved and the second represents the global transmission
coefficient at resonances. Without resonance the same
amount of carriers would produce a current J,fr given by

2
Joff ~ Tmax Tmin

It is then immediately obvious that resonance can give rise
to an extremely large current increase. In particular, with
the notation used above, it is

Jres

Tmax
(20)

IV. CASE OF DOUBLE BARRIER
WITH AN APPLIED FIELD

A case of special interest from the point of view of ex-
periments is that of a double barrier subject to an external-
ly applied electric field. The structures which have been
used so far' feature barriers with the same technologi-
cal parameters (height and width) as shown in Fig. 4(a).

In the case of no field (F=0) using the notation of Fig.
4(a), resonances would occur at energies satisfying Eq. (12)
which becomes

1 ~)i j2

fi
—&2m Zw =2 tan-'

E 1/2 +(n —1}m . (21)

with w2&w& and sinwi ——0 at resonant energy Eo. Rear-
ranging Eq. (16), expanding up to first order in energy
about Ep i.e., making E =Eo+AE,

r 2
sinw&

Tmax
slnw2
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gy of the cathode conduction-band bottom (or Fermi level
witli Iiietals) aiid J vs V (rather then J vs E) is measured
Overall tlM cncIgy d1agraID pcrt1IlcIlt to such 8 problcID 1S
schematically represented in Fig. 4(b) where I'J indicates
the point at which tunnehng essentially takes place. (In
tliis we iieglect, foi" siniplicity, tlie contrlbutlon coming
froIB carriers at 8 slightly higher energy 1n tjlc cathode
which can, at first order, be accounted for by adjusting the
barrier height 40).

Such a technique, however, implies the use of relevant
fields and these drastically change the experimental condi-
tions. A first, important effect which is immediately ap-
parent in Fig. 4(b) is that the applied voltage destroys the
symmetry of the barriers whose transmission coefficients
are no longer equal. In particular it is

1I
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FIG. 4. (a) Symmetrical double barrier (no fie1d applied). (b)
DOUble bMXMr %Vlth applied field (Do 10Ilger Symmetllcal).

Here the subtracting term in the exponent becomes zero
for triangular (rather than trapezoidal) barriers. In our
case, of course, only the barrier on the right can be tri-
angular. In Eq. (22)

The special characteristics of this case is that, because of
the symmetry embedded in the structure, at any of such
energies the global transmission coefficient TG would be
of the order of 1 regardless of the values chosen for the
barrier and well parameters. This makes the engineering
of the sample to be used particularly simple although it

. must be 1cal1zcd that some iroportant expcriITlcntal
features do depend on such parameters. This is, for in-
stance the case for the increase in transmission coefficient
which becomes larger if the single barriers are made less
transparent [Eq. (4)]. Furthermore, carrier trapping (and
the consequent feedback mechanism already mentioned)
as well as the time constants required to fully establish a
resonance are also affected. These considerations suggest
the need for thoughtful choice of structure parameters,
but do Qot alter thc conclus1on that strUctural syromctry ls
"the" condition to realize when looking for resonant tun-
neling in the case of no, or rather negligible, fields.

The kind of experiments outlined above, however, re-
quires the possibility to change the energy of the tunneling
carriers so that the current ( ~ TG) versus energy curves
shovAng I'csonaQcc peaks can bc worked out.

In practice, the simplest and roost commonly used ex-
perimental setup 1s oQc %@herc thc tUQ1M11ng camcrs come
from a semiconductor (or metal) cathode. Although their
energy can be increased (for instance by using temperature
or light), it is more convenient to act on the well eigen-
states bringing them down to the same level of the carriers
by applying a voltage V~ across the structure. Under this
condition, tunnehng essentially occurs at the (fixed) ener-

(23)

4i ——40—b E i —b E2 b,E3 @o q(—2Fbd——+F~—w),

where Fi, and F represent the electric field in the barrier
and well regions, respectively, and it is

Fi, ——V, /(2d+web/e ), F =e&Fb/e

Here ei, and e denote the dielectric constants of the bar-
rier and me11 material while d and m denote the barrier
and well width, respectively.

S1QCC 1t 1S T( Q T», WC have

4 d
=exp ———&2m

3 A'

This equation, which holds for any value of V„indicates
that the transmission coefficient TG obtainable at reso-
nance cannot be too close to unity. In particular, for in-
stance, for the case considered in Fig. 2 of Ref. 1 with
V, =0.35 V it is T;„/T,„=10 and this implies a 4
order-of-magnitude reduction in the effects at resonance
with respect to the optimal possible condition. (The case
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if this can be achieved, it would be true only for a particu-
lar resonance peak (hence voltage).

To see this point in some more detail let us consider Eq.
(25). For a given set (P) of technological parameters (No,
d~, w, and d„where d~ and d„indicate the thickness of the
left and right barrier, respectively, and w the well width)
we can try to solve (25) for the voltage V, (entering the
equation through Fb), giving T;„=T,„.Depending on
the chosen set of parameters, this problem may or may
not have a solution and overall it defines a function V,'(P)
and a domain where such a function exists.

Although the obtained voltages are those at which the
two barriers (defined by the parameters I') are functionally
equal (i.e., TI = T, ) they may not necessarily give rise to a
resonance peak. In the way to be discussed just below,
another function V,"(P) can be defined for the voltages at
which resonances occur. The optimized experimental con-
ditions can then be realized if the two functions V,

'
and

V,
" intersect and the intersections define the structure to

be used.
As already anticipated, such optimized conditions do

not always exist, their search involves some not-
straightforward engineering and, in any case, they are
specific of a given resonance peak. In this sense the situa-
tion is just opposite to that of the zero-field case.

As for the voltages at which resonance occurs, the func-
tion V,"(P) defined above can be obtained by solving Eq.
(12) which, in the case under consideration, becomes

~3/2 E3/2
2 1—v'2m—

3 qI'

, c'2= tan + tan + (n —1)~, (26)

-I4 I
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I
I
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0.50

FIG. 5. Calculated transmission coefficient for the cases of
Refs. 1(a) and 3(b).

of Ref. 2 is even worse in this respect. )

Figure 5(a) shows the transmission coefficient TG for
such a case calculated by means of the transfer-matrix
technique outlined previously and good agreement is
found both with the TG value at the peak (not fully
resolved in the figure because of the voltage scale) calcu-
lated analytically from Eq. (25) and with the experimental
resonance voltage. Figure 5(b) shows, instead, the calcula-
tion for the case of Ref. 4 and the agreement with experi-
ments is excellent as far as the voltage at which resonance
occurs is concerned.

An important point to be made with regard to the above
discussion is that by using a nonsymmetrical structure
with the left barrier thinner than the right one, the condi-
tion for TI ——T, might be recreated thus enhancing the ef-
fects looked for in experiments. There are, however, two
qualitative differences with the symmetrical, zero-field
case already discussed: The possibility to realize the op-
timized condition (i.e., TG -1) is not guaranteed and, even

where the notation is that of Fig. 4(b) and

E( hE) qFbd )——, ——

E,=E, +bE, =q(Fbd, +F u) . (27)

As already mentioned the agreement with the experiments
of Ref. 4 is excellent since we get V, =0.21 V. For the
cases of Figs. 1 and 2 of Ref. 1, Eq. (26) gives V, =0.22
and 0.3 V, respectively, as positions of the lowest reso-
nance peak. No higher peak, however, can be found since
when V, &0.6 the second barrier disappears (i.e., C&q & 0).
Those shown in the mentioned reference can only be justi-
fied by assuming a large voltage drop due to series resis-
tance (so that the actual voltage applied across the double
barrier is actually lower) or invoking other phenomena.
Among these, resonant tunneling via defect-related states
of the type suggested and discussed in Ref. 13 might pro-
vide a reasonable explanation.

V. TIME DEVELOPMENT
OP RESONANT TUNNELING

As already anticipated, a crucial aspect usually over-
looked in experiments is that, depending on the initial
conditions, a non-negligible time might be required before
a high-conductivity resonant state is fully established.

In this respect, it is, perhaps, worth stressing again that
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the analysis of Sec. II is based on the solutions of the
time-independent Schrodinger equation hence describes a
stationary situation. This, in turn, requires the carrier
wave function at resonance to be (strongly) localized
within the well (to a degree which decreases with increas-
ing T,„).The mentioned condition on the wave function
is, in other words, necessary and sufficient for TG„,to be

Tmin ~Tmax'
From a physical point of view such a requirement

means that the carrier(s) must be predominantly localized
(trapped) within the well or, equivalently, that this must
be "filled up" with them (up to the level described by the
stationary wave function) before resonant tunneling is ful-

ly established. In many experiments, however, this might
well not correspond to actual initial conditions as is, in
particular, the case of Refs. 1, 2, and 4 where the well
eigenstates are initially above the energy level of the avail-
able carriers, hence completely empty. Under this condi-
tion, a transient with time constant rp is required for the
system to approach its final configuration. During such a
transient, the incoming (tunneling) particles get essentially
trapped within the well where probability density accumu-
lates thus also making the global transmission coefficient
to gradually increase.

The time constant wo must, in general, be expected to
depend on the initial condition (which might feature a
steady flux or a single carrier with well-defined or
spread-out energy). It can, in principle, be calculated by
expanding the initial wave function in terms of the eigen-
functions of the double barrier Hamiltonian (and subse-
quently, using the superposition of time-dependent states)
but a detailed calculation of this kind is here deferred to
future work.

On physical grounds, however, we believe rp to be of the
order of the resonant state lifetime, hence to exponentially
increase with the barrier phase area. In particular, we ex-
pect

Tmax
(28)

Depending on the value of T,„,rp can assume non-
negligible and even very large (exponentially large) values.
This, in turn, would have killing effects on experiments
where the resonant state is initially empty and is not given
enough time to capture the due amount of carriers. As far
as, in particular, the experiments of Refs. 1, 4, and 2 are
concerned, this is not the case for Refs. 1 and 4 where the
peak width is of the order of 10 eV and consequently
1 p 10 " sec. In the case of Ref. 2, however, because of
the much higher barrier height, T,

„

is several orders of
magnitude lower and a rough estimate gives at low volt-
ages 7.o-10 sec.

Still with regard to the times involved in resonant tun-
neling it is also worth mentioning that if (or once) the

eigenstate has all the carriers it can accomodate, a much
shorter time ~, becomes important, namely that required
to cross the double barrier. As far as this is concerned, we
expect ~, to be essentially the time required to cross a sin-
gle barrier according to the physical picture of carriers
entering the filled state hence "pushing" others out on the
other side of the double barrier. With barrier heights of
order of few eV (or substantial fraction of eV) and width
of tens of A, r, is of the order of 10 ' —10 ' sec and
therefore almost completely negligible.

For a more formal derivation of the previous time esti-
mates, we can use the results of Refs. 14 and 15 where ex-
pressions for the traversal and dwell times through little
transparent barriers are presented.

The dwell time represents the average time spent by an
electron in a considered region and can, therefore, provide
a good measure of our vo when applied to the whole dou-
ble barrier (assumed to extend from point 6 to A in Fig.
1). It is then

(29)

where J denotes the probability current through the dou-
ble barrier.

As for the transit time r„it is obviously coincident, for
all practical purposes, with the tranversal time of Ref. 14
which turns out to be longer for more transparent barriers.
In our case, once the steady state is reached, the time lim-
iting factor for the current comes from crossing the more
transparent barrier (here assumed to be the right one
which extends from C to 2) and it is then

"m dx
C $ Q(x)

(30)

C, x)A
C2e r C&X &B

C, E&x &D
1

max

1 2 (x P)C aI ', G&x&F
Tmax

(31)

where C is an arbitrary normalization factor and—2ardrT,„=T„=e" " with d„denoting the thickness of the
right barrier. %e can now easily calculate the numerator
of Eq. (29) by dividing the interval in the two barriers and
the well as follows:

where as usual a, =A' 'V2m [E„(x) E]'~ . —
Since we are interested here only in first-order esti-

mates, let us consider for simplicity the square barrier
case of Fig. 1. From the results summarized in Fig. 2 it is
then

=C 1

2ug Tmax

r

C2

max r Tm» 2nl 2Ar
t.

(32)
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where w represents the width of the central well. Since
the transmitted current is given by

the double barrier (reaching the barrier of transmission
coefficient T;„andT,„,respectively), it is

J=C —kg, I @min I

I @max I

min
7

Tmax
(36)

it is

1 m 1 1 1
7O- + +mT,

„

fi kz 2ai 2a,

From Eq. (30), instead, we have

m 17)= d„

(34)

(35)

and, when T~,„&~Tm;„, I 4~;„I
becomes negligible.

T~,„,then, controls the dominant part of 4 outside the
barrier.

Let us denote with L,„and 8' the size of the region
outside the double barrier (where 4 is not negligible) and
the well width, respectively. If we deal with one particle,
the fraction of captured carrier is essentially given by

From this, it can be seen that for comparable values of
a' s, k's, and geometrical factors ro and r, essentially differ
for the factor I/T,

„

in agreement with what was dis-
cussed previously in this section.

Another interesting phenomenon concerning the reso-
nance time dependence involves the effect of temperature.
The key point is that the thermal motion of the atoms in
any sample contributes in making the potential energy
time dependent. As far as this effect is concerned, from a
qualitative point of view different cases can be dis-
tinguished. If the variations of potential energy Ez are
very small or/and very slow (compared to ro), then Ez can
be considered not to depend on time to all practical pur-
poses. Under this circumstances the considerations
developed in this paper fully apply.

If, instead, Ez significantly varies in values on a time
scale comparable or smaller than ro, then a more compli-
cated analysis is required. Work aimed at exploring this
aspect of resonant tunneling is now in progress. '

Overall we expect the temperature to give rise to a
broadening of the resonance peaks and to a decrease in
their effects on the current measured in experiments.

As a final comment to this section, it is perhaps worth
anticipating that the described evolution of empty states
toward their final condition may be substantially affected
by the space-charge buildup inherent to the mrrier accu-
mulation taking place within the well. This can modify
the potential-energy barrier with a feedback mechanism
whose major resulting effects are described in the next sec-
tion.

VI. THE EFFECTS OF SPACE-CHARGE BUILDUP
DUE TO CARRIER TRAPPING

As already discussed, resonance implies the presence in-
side the well of a certain amount of carriers which, at
least in the most common experimental situtations, are not
there at the beginning. When dealing with electrons, this
means that a space charge builds up. If the resonant
eigenstate can accommodate enough charge this affects
the potential energy making it time dependent and giving
rise to a feedback mechanism linking the changes in po-
tential energy with mrrier trapping.

The amount of charge that a resonant state can contain
depends, in general, on its degree of localization. This, in

turn, essentially decreases with increasing T,„since, if
we denote with 4;„and4

„

the wave function outside

~+ Tmax max

If there are many particles incident on the barrier (say
from the left) the question of exclusion arises, and it be-
comes important to evaluate the number X of system lev-
els contained within the width hE, of the resonant state.
Denoting with AEI the distance between the allowed level,
it is

AE,

The number X„ofcarriers trapped into the well is then
essentially given by (here we assume all of the Ã level to
be occupied)

N„=Nf . (39)

Indicating with Lr the total system dimensions (actually
the region where 4 is not negligible), b,EI can be estimat-
ed as

VF
h

T
(40)

where vF is the electron Fermi velocity. From this, it is
immediately obvious that for an unlimited system
(LT +ao and the energy —spectrum becomes a continuum)
a resonant state with finite width can contain any number
of particles. If LT is finite, Eq. (38) has to be evaluated.
For this we use the expression

AE, =T,„hv, (41)

where v is the attempt-to-escape frequency relative to the
central well. For a rough estimate we assume u =uF/w.
It is then

I.T
~max

W
(42)

A slightly different mse, which is important because it
occurs in the experiments mentioned in this paper, is that
where the incoming particles comes from a cathode which
essentially behaves as an infinite reservoir of carriers at
different energies as schematically represented in Fig. 6.
Here the appropriate boundary condition is that the densi-

ty of carriers is kept fixed at the mthode. Two points are
relevant. First only the electrons within the energy win-
dow of the eigenstate width play a role in trapping since
the wave function of the others exponentially decreases
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CATHODE

FIG. 6. Energy configuration under the usual experimental
conditions.

below the first barrier and, consequently, their density in
the well is negligible. Second, Ti (i.e., the transmission
coefficient of the barrier facing the cathode) takes the
place of T,

„

in the previous equations (regardless of
whether or not Ti=T,„).States deep into the barrier,
hence close to its boundary on the right of Fig. 6, produce
slow (and little) trapping in spite of their T,„being high.

If the amount of charge contained in a well is not negli-
gible at any given time the potential energy must be calcu-
lated in a self-consistent way, i.e., taking into account the
contribution due to the trapped carriers.

There is, however, a point worth dealing with in some
more details which concerns the way the system ap-
proaches the steady state (if this can ever be reached).
From this point of view, we expect two different behaviors
according to whether or not the incoming particles are
monochromatic. In case they are, and their energy E is
fixed, the (negative) space-charge buildup pushes the state
energy E, upward, thus breaking the energy matching
condition for resonance. When this happens, the state
starts losing its particle content (again with a transient on
the time scale of its lifetime) thus being lowered in energy
until E =E, again and resonance is restored. The net ef-
fect is, of course, that the system oscillates in time
without ultimately reaching a stable steady state. The re-
sulting oscillations (of frequency =1/rp where 'pp is the
eigenstate lifetime) should be observable in the tunneling
current in experiments where ~o is not negligibly small.
These oscillations could also, perhaps, be exploited from a
device point of view.

A completely different behavior must, instead, be ex-
pected in the case where the energy of the incoming parti-
cles covers the whole range swept by the rising E,.
(Naturally if this reaches and exceeds the upper limit of
the tunneling carrier energy oscillations of the type
described above are in order. ) The dominant feature here
is that resonance conditions are maintained as E, moves
and, consequently, the resonant state can keep increasing
its charge content until it reaches a final steady configura-
tion. As it does so, the charge buildup changes the
potential-energy barriers on account of two different ef-
fects: It weakens and strengthens the field, respectively,
on the left- and right-hand side of the well while, at the
same time reducing the barrier heights (because E, rises).

In practice, the overall result is that both barriers become
more transparent (i.e., Ti and T„increase) as can, for in-

stance, be schematically seen in Fig. 7. Here the well, and
hence the trapped charge, has been replaced by a 5 func-
tion while, for simplicty, the depth of the eigenstate has
been kept fixed' (i.e., 4& is considered unchanged by the
charge buildup) and it is evident that the barrier (phase)
area can only decrease. This has two important conse-
quences, namely, (i) the state degree of localization de-
creases (as T,

„

increases) thus decreasing the amount of
charge the well can eventually accommodate, and (ii) for
the same reason, the transient to reach the final stationary
state becomes shorter [as indicated in Eq. (28)]. This
latter effect is very important since it implies a self-
accelerating (or positive feedback) mechanism in that as
more charge is trapped into the well, trapping itself gets
faster. If the final configuration is one of high conduc-
tivity the system will therefore, rapidly converge to it giv-

ing rise to abrupt, very large increase in tunneling current.
As described in Ref. 13, we believe this could be the

way in which breakdown phenomena occurs in thin insu-
lating films where only low voltages are required to reach
the high fields causing the material failure.

VII. TEMPERATURE EFFECTS

In Sec. V we mentioned an interesting phenomenon re-
lating the temperature ( T) with resonance time evolution.

Here we consider instead the effect due to the electron
thermal population and the important conclusion is
reached that at resonance a variety of current-versus-T re-
lationships can result depending on the relative position of
the resonant state and the Fermi energy (E~). In particu-
lar, currents increasing as well as decreasing with T and
complicated nonmonotonic temperature behaviors are pos-
sible. Each state gives rise to its own (individual) J vs T
dependence according to its energy position. In real sam-
ples where many such states are present, then a different
(individual) current behavior is to be expected at each
resonant peak. This is in agreement with experiments
showing that the conductance at a peak is proportional to
exp[(Tp/T)' ] where Tp is individual for the considered

FIG. 7. Schematic representation of the charges on the poten-
tial energy induced by electron trapping.
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peak. ' The physical effects of concern of this section are
essentially the following.

As the temperature varies the cathode carrier concen-
tration at the resonant energy also varies and so does the
current J measured in experiments. At the same time the
carrier thermal velocity also increases with T and, with
semiconductor or metal cathodes, this implies an increase
in the electron flux hitting the barrier, hence J. This latter
is, however, only a minor effect (because the thermal velo-
city depends on v T ) with respect to that mentioned ear-
lier whose temperature dependence comes fmm the ex-
ponential factor in the Fermi distribution function.

Because we essentially deal with the carrier concentra-
tion within a definite narrow energy window (the width of
a resonant eigenstate centered on E,} the effects to be ex-
pected depend on its position relative to E,. If E, and Ez
are close (compared with kT) an increase of T spreading
out the distribution function can only lead to a decrease of
particle concentration at the resonance energy, hence to a
decrease of tunneling current. In this case J exhibits a
metallic type of behavior.

In any case, for large increase of temperature a subse-
quent increase in current may occur since, as the distribu-
tion function spreads out, the carrier concentration can
become non-negligible at other, higher eigenstates whose
contribution will rapidly become important. If, on the
other hand, the distance between E, and E~ is large, an in-
crease in current is first expected to occur as a conse-
quence of the increase in carrier concentration available
for resonant tunneling. Here too, however, a subsequent
metallic type of behavior can arise for the same reasons
given above.

VIII. CONCLUSIONS

In this paper, we have presented an assessment of the
basic physical phenomena involved in resonant tunneling
through a one-dimensional double barrier structure. In
particular we have shown that, although they are a
straightfoward, well-known feature of the transmission
coefficient versus energy (or field) characteristics, the oc-
currence of resonances involves interesting physical phe-
nomena which complicate the search for experimental
conditions able to emphasize their effects.

In this respect, me have shown that experiments per-
formed on structures with semiconductor electrodes with
varying applied voltages, can, at most, only be optimized
for a particular resonance peak.

%'e have also pointed out that, under the most usual ex-
perimental conditions, a time-dependent process with
non-negligible time constant is necessary to reach the
steady state situation. At the beginning of the mentioned
transient, the conductivity throughout the double barrier
can be much lower than in the final state and this might
explain some experimental results. Furthermore, we have
discussed how at resonance carrier trapping (as well as
high conductivity} occurs. This, in turn, brings about a
space-charge effect making the potential-energy barrier
time dependent. Because of this a feedback mechanism
takes place and either a self-accelerating approach to an
equilibrium state or a permanent oscillating current can
result.

Finally the effect of temperature has been briefly treat-
ed and the conclusion is reached that metallic- as mell as
semiconductor-type behavior can be found.
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