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%'e demonstrate that the usual Kubo formula for thermal response functions is invalid if a mag-
netic field is present. There exists a fundamental correction due to a lack of time-reversal symme-

try. We show in particular that, in addition to being of general importance in the theory of trans-

port, this leads to a novel thermoelectric effect in a weakly disordered two-dimensional electron gas
subject to a quantizing magnetic field. The thermopower tensor is calculated within the self-
consistent Born approximation using a generalized Mott formula, which is derive, d.

I. INTRODUCTION

In a two-dimensional system such as an electron inver-
sion layer the particles are free to move in a plane while
they are localized and the eigenstates are quantized
(discrete) in the third direction. In a strong perpendicular
magnetic field the motion of the electrons in the plane is
restricted to Landau orbits. Only certain orbits are al-
lowed and the corresponding energy eigenstates are quan-
tized; hence we have a completely quantized system. The
theoretical picture of transport in such quantum systems
has been revolutiomzed by the discovery of the quantum
Hall effect' which manifests itself as extremely well-
defined plateaus in the Hall resistance measured as a func-
tion of electron density or magnetic field. This discovery
has generated a great deal of interest in transport proper-
ties of quantum systems in general. A particularly in-
teresting transport property is the thermoelectric effect,
which traditionally has been used as a sensitive probe of
transport mechanisms in metals and semiconductors. Re-
cently, we presented a calculation of the thermopower of
an ideal two-dimensional electron gas in a quantizing
magnetic field. The thermopower of that system was
shown to be a universal function of a reduced temperature
(kttT/fico, ) and it displayed a novel dependence on the
chemical potential: The thermopower is thermally ac-
tivated for values of the chemical potential between Lan-
dau levels. The analysis in this earlier work relied on
some general properties of the eigenfunctions and eigenen-
erglcs of a particular system: the two-dimensional free-
electron gas bounded in one direction, extended in the oth-
ers. Our analysis was simple, but had the benefit of being
explicit and of demonstrating the importance of edge
currents.

In the present work we use the more general and power-
ful Kubo formalism to calculate the transport coefficients
that determine the thermoelectric effect. We demonstrate
that the usual Kubo formula for the thermal response
function is invalid if a magnetic field is present. There

exists a fundamental correction due to the lack of time-
reversal symmetry in a magnetic field. In addition to be-
ing of general importance in the theory of transport we
demonstrate in particular that this leads to the existence
of the novel thermoelectric effect in the two-dimensional
electron gas that was found for a special case in our earlier
work. Our present analysis allows us to investigate also
the effect of disorder on the thermoelectric effect. We
find that in the presence of static disorder treated in the
so-called self-consistent Born approximation, the thermo-
power tensor develops off-diagonal as well as diagonal
components. The thermopower tensor varies in a rather
complex manner for values of the chemical potential in-
side Landau levels (nonzero density of single-particle
states). For values of the chemical potential between Lan-
dau levels (zero density of single-particle states) only the
diagonal components are nonzero and retain the activated
behavior found for the case of no disorder.

The paper is organized as follows. In Sec. II we derive
formal expressions for the response functions and illus-
trate the results by calculating the thermopower of an in-
version layer in the free-electron approximation. Section
III contains a derivation of a generalized Mott formula
for the thermopower and in Sec. IV we present a model
calculation, the result of which is discussed and favorably
compared with recent experimental information in Sec. V.

II. TRANSPORT COEFFICIENTS
IN THE KUBO FORMALISM

The thermoelectric effect is due to the interdependence
of potciltlR1 gl'Rdlcilts Rlld tcillpclatllrc gladlcnts ill R sys-
tem where no particle current flows. Hence we need to be
able to calculate the nonequilibrium particle-current densi-
ty in a system influenced by temperature (T) and potential
(V) gradients. The fundamental phenomenological ex-
pression for this current is '

Jt L'(e/T)d V+L —d (1/T),
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where —e is the electronic charge. In the presence of a
magnetic field the response functions are tensor quantities
and so the thermopowex', which is defined by the zero-
currcnt condIt1on,

in the heat-current operator which thus affects the
thermal conductivity. By defining P

BJ V = Sgj—."r}JT,
satisfies

(2) it follows directly from I.uttinger's expressions that the
complete thermal response function is given by the modi-
fied formula

SJ ——( —1/eT)(L ");g'Lg~j~ . (3)

The coefficient L;J is related to the conductivity via
L~J. (T/e ——)o;1 and. so it can be calculated using the stan-
dard Kubo formula involving the current-current correla-
tion function. ' Luttinger first provided a so-called
"mechanical" derivation of a Kubo formula for L' by
notiIlg that thc rcsponsc to a temperature gradient
'dj(l/T) can be shown to be equal to the response to
( —1/T)B f, where g is a pseudogravitational field which
couples to the Hamiltonian via

H =Ho+ ,
'

(WHO+—Hop),

where IIo is the unperturbed Hamiltonian. Luttingex'
showed that in the absence ofa magnetic field the response
to ( —I/T)BJP is given by the usual Kubo formula ' in-
volving the particle-current —heat-curxent correlation
function with the heat-current operator defined by

Jg ——(Ho J + JHo) /2 pJ, —

where p is the chemical potential. In the absence of a
magnetic field all the response functions can thus be ob-
tained from the expression '

LPz~ Re lim —L—/v~(~+i5), (6)

where 5 is a positive infinitesimal and L(co+i5) is the
analytical continuation of

L~(i ))a= f dr e'"'( J;"(r)Jf(0) } .
R(i co)v

In (7) v is the volume of the system, 13=(k&T) ' is the in-
+

verse temperature, J = J is the particle-current operator,
2=and J = J~ is the heat-current operator.

It is known that this standard expression for the case of
the thermal response tensor L ' must be modified if a
magnetic field is present. This is due to the appearance of
diamagnetic surface currents. %C hcncc wish to make
the point that the familiar expression (6) does not give the
thermal response function in the presence of a magnetic
field. The formal reason is that part of the linear response
to the g field is due to a change in the Hamiltoman. It
follows from (4) that the current operator itself is changed
by

5J =(gJ+ Jg)/2.
This extra "diathermal" current is analogous to the
diamagnetic current which appears in the presence of a
vector potential. We will show that because of the lack of
time-revex'sal symmetry, the diathermal current has a
nonzero equilibrium expectation value if a magnetic field
is present. We note in passing that there is also a change

12'

Ljj itj +Pjj s

Ho ——( I/2m)( p+eA/c) + V,

where the vector potential is in the Landau gauge

A=x8y . {12)

and V contains all scalar potentials and interactions. As-
suming a constant gradient such that /=M it follows
from (8) and (9) that

Using the definition of the current operator, one may
write

I' =(ET/2hv)([Ho, x ]}. (14)

If boundary contributions may be neglected in the
matrix-clement intcgx'al then I vanishes. This is thc
case in the examples which will be discussed shortly. Us-
ing (12) we may also write

Py„———(T/28)( J.A+A J },
or equivalently in the absence of spin

Tc BQ
~~y =+

ev BB

(15)

11 11
L~x =Lyy =0

11 11

oc= ——g t{X+1)[np(Ace~)—n~(fico~+i)]],"x=o
—12 12L~ =Lay =O

where 0 is the thermodynaxnic potential.
We now treat a simple example in order to illustrate the

importance of this extra contribution to the thermally in-
duced current. Consider a quasi-two-dimensional system
such as an electronic inversion layer in which particles are
free to move in a plane while motion is essentially frozen
out in the third direction by discrete quantization. In the
limit of a strong magnetic field normal to the plane the
electronic energy states are completely quantized into
Landau levels. For illustrative purposes we take as the
Hamiltonian the expression in (11) but neglect V. The ef-
fects of disorder will be discussed later. We will find that
the thermopower of this type of system exhibits very
unusual behavior. It is straightforward to evaluate the
Kubo formula given in (7) for this simple model to obtain
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12 12
L~y = —Ly~

00

(N + 1)[np(ficoic ) n~—(fun~+ i ) jI ~=0

(20)

where nz is the Fermi function. In order to gain some
understanding of these expressions, suppose that the
chemical potential lies between levels N and %+I and
that the temperature is low (kii T &~ fico, ); then we obtain

(21)

where Q is the so-called heat of transport given by

150—
hC

o 100-
Q
Q.0
E 50-
I-

1.0 1.5 2.0
Chemical Potential

FIG. 1. Diagonal component of the thermopomer vs chemical
potential in units @chere fm, =l and k~T=0.05. This corre-
sponds to T =4.3 K at 8 = 12 T in a Si(110) inversion layer. Ef-
fects of spin and valley splitting have not been included.

(22)

oo

+ d»(» p)n~(—») (24)

The first term in this expression exactly cancels the con-
tribution from (20) so that (10) becomes

I.„'y g f d—»(—» p)np(»—) .
Il

Thus the thermal transport coefficient is drastically modi-
fied by the existence of the diathermal current.

The physical implication of (25) can best be understood
by rederiving this expression from a completely different
picture which is valid for this special case. Consider a
long rectangular strip in which electrons are held by a
confining potential. There exist large, oppositely directed
currents at each edge carried by electrons in so-called
skipping orbits. Taylor and Halperin' have recently
shown that the quantized Hall resistance can be derived

by considering the change in edge currents when the two
edges suffer a chemical-potential difference. A similar
calculation for the case when the two edges have slightly
different temperatures was performed in our earlier work
and the result is precisely that obtained in (25).

The thermopower calculated using (25) is for the sake
of coiilpleteiless agalll displayed ill Fig. 1. Tllel'e al"e two
remarkable features worth pointing out. The first is that
as a function of chemical potential the thermopomer has a
series of large (=40 pV/K) peaks near the Landau-level

In the absence of the diathermal current, evaluation of (3)
would yield

5"= —(Q/eT)5;

This predicts that the thermopomer mould be very large at
low temperatures since Q is of the order of the magnetic
energy. This form is reminiscent of that obtained for a
semiconductor in which case Q is of the order of the band

gap (although the analogy is actually not very close).
Let us now consider how the existence of the dia-

theHIlal cufreilt affects tllls ieslllt. Eqllatioil (16) is i'eadl-

ly evaluated ylcldj. ng

positions. At low temperatures the height of the peak as-
sociated with Landau level X approaches the universal
value in2(ks/—e)/(N+ —,') independent of the magnetic
field, the effective mass, etc. However, this universal re-
sult is only obtained for free electrons as we shall see later.
The second noteworthy feature is that for values of the
chemical potential in between Landau levels the thermo-
power is thermally activated with an activation energy
which is of the order of the magnetic energy. The source
of this activation is the gap at the Fermi level. At zero
temperature the system looks similar to a superconductor
with zero resistance (even with impurities present as will
be shown below) and zero thermopower.

Up to this point wc have only dealt with free electrons.
We shall now examine how the thermopower is affected
by (weak) disorder.

III. MOTT FORMUI. A FOR THE THERMOPGWER

In the example discussed above we saw that in the free-
electron case an important cancellation of terms in the ex-
pression (10) for the thermal response function I. '~ took
place. In the presence of disorder this exact cancellation
does not arise unless the effects of the boundary conditions
on the electron wave functions are accurately included in
the calculation of all terms. To avoid this difficulty we
shall relate the transport coefficients I.;~ to the coeffi-
cients Lcj. and hence obtain a Mott formula for the
thermopower. " When calculating the I " transport coef-
ficients the boundary conditions do not enter in such a
crucial may. To derive the desired relation we shall use a
method that amounts to taking advantage of the cancella-
tion of terms in the formal expression for I.;i .

The thermal response function L' is a sum of the
correlation function term I. ' and the correction term P.
Both these terms can be expressed in terms of matrix ele-
ments of the particle-current operator I and the heat-
currcnt operator Jg using exact SInglc-particle clgcnfunc-
tions f g„J and in terms of the corresponding exact energy
eigenvalues I E„I .
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Recall that the heat-current operator can be related to
the Hamiltonian and the particle-current operator as

where W is the length of the sample. This implies the
following relation between the corresponding matrix ele-
ments:

Jg = (H J + JH) /2 p—J, (26)

by using (26) and the relation between the particle current
and thc posltlon opclatol given by

J;=W 'r; = [II,r;],
fi

(J~)„=„(E„—E )(r;)„

and onc f1nds that thc entire corrcct1oIl terID P 1s canceled
by part of the correlation-function term I. ' . The result
for I.' is (see the Appendix)

T g Re[(r; ) „(Ji )„]
m, n

+AT g Re[(J;)~„(Ji)„~]

BnF—(E )
(E —p)5E,~

—Bn (E
(E~ p)m5(—E~ E„), — (29)

and for L" it is (see the Appendix)

+Re[(r;) „(JJ)„~]
—Bnp(E )

5E E +A'T +Re[(J;) „(JJ)„]
ttl Ptl, 8

B&—r(Em)
BE

ir5(E E„) . —(30)

It is interesting to note that these results are written in a
form where the states g„and g have the same energy,
which would seem to make sense for the present case
which only involves static scattering. Furthermor'e, only
states around the Fermi level contribute to the conductivi-
ties. The diagonal part of the conductivity is normally
written in this form, but the Off-diagonal conductivity
(the Hall conductivity) is usually written as an integral
over all states up to the Fermi level emphasizing the dissi-
pationless nature of the drift of electrons in a magnetic
field.

In passing, we note that the standard textbook expres-
sion for I." in Chap. 30 of Ref. 5 has no counterpart to
the first term of (30). This term is important here, since it
vanishes only in zero magnetic field.

For the free-electron case it is not difficult to recover
our earlier result (25) using (29) and (30). It is, however,
essential to realize that the boundary conditions in the x
direction cause the energy eigenvalues to differ from the
energy eigenvalues of a system which is periodically con-
tinued (infinite) in both the x and y directions. On the
other hand, as shown in our earlier work, one does not
need to know the explicit form of the eigenvalues to be
able to get the correct result.

With (29) we have shown that an essential cancellation
of terms takes place in the expression for the thermal
response function also in the presence of disorder. In this
case it is, however, not easy to do numerical work starting
from (29) as we now would have to know the explicit form
of the energy eigenvalues and matrix elements. In
evaluating I."we do not have to worry about finding can-
celing terms and we may use a formulation where boun-
dary effects are not important. Hence we would like to
find a connection between the thermal response function
1.' and the conductivity I.",and then evaluate the latter
in the most convement way. To find this connection wc
first observe that (29) and (30) have the form

—Bnp(E )
(E —p), (3l)

where F „ is the common factor and

m, n

—BnF(E )

BE

Equation (31) can be written as

L, "=I" des
—BnF(e) gF „5(e+p E) . (3—3)

. m, n

Now recalling that, at T =0,

onc rccogn1zcs imIDediatcly that

gF „5(e+p E)=L"(T=—0, e+p),

S"=—(m /3)(kii/e)(ks T)[o '] i, [Bcr/Bp]k (37)

where the conductivity tensor o is directly proportional to
%'e shall now turn to calculating I.;»" and hence S;»

in a particular model for static disorder.

I. (T,i )= f d~~( —Bn (~)/B~)

yl. ,j"(T=o„e+p) .

This is the desired relation between the transport coeffi-
cients. In the zero-temperature limit (which cannot be
used in thc inversion-layer case as the temperature is typi-
cally not small compared to the level broadening) we ob-
tain a generalized Mott formula"' for the therrnopower
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IV. THERMOPOWER IN THE PRESENCE
OF DISORDER

(V(r;)V(rl)),„=2irl fi o 5 (r; —rj), (38)

where o is a measure of the disorder and for dimensional
convenience we have included two powers of the magnetic
length I.

The effect of the random potential (38) on the broaden-
ing of the Landau levels and possible localization of states
in the tails are poorly understood at the moment. For il-
lustrative purposes we therefore treat the disorder in the
simplest possible manner using the self-consistent Born
approximation (SCBA). We will work in a representation
where Ho is diagonal and hence we need the eigenfunc-
tions of the kinetic energy operator. With the use of the
Landau gauge (12), these have the form

fkN(x, y) =W '~2e'+FN(x+kl2), (39)

For an explicit model calculation of the thermopower of
a weakly disordered inversion layer in a strong magnetic
field we consider a two-dimensional system described by
the Hamiltonian (11)with a random impurity potential, V,
obeying

where coL is the center of the nearest Landau level to e.
Together with (41) this leads to a semielliptical density of
states for each Landau level,

p=(2m l bio) '[1—(co/2o )2]'~ (44)

ff lCO V ~ „

XG„(ip+ico)G (ip) . (45)

It is straightforward to establish that the only nonzero
matrix elements of the particle-current operator are

(k,N
i
J„ i k,N+1) =

mls 2

1/2

(46)

Here co is the deviation of the energy from the center of
the nearest level.

To calculate the conductivity we start from the funda-
mental expression (7) for L ", and use Eqs. (A3)—(A8) to
express it in terms of Green's functions and current ma-
trix elements. As all vertex corrections vanish in the
SCBA in the limit of a short-range potential the response
function is simply given by

where W is the length of the normalizing box in the y
direction and Fz is the Xth harmonic-oscillator wave
function. The eigenvalue associated with 11kN is

AcoN (N + —,
' )fi—c—o, ,

' 1/2

(k,N
~ Jy

~
k,N+1) =

ml
(47)

GN(z) =1/[z —coN —X(z)], (41)

where the self-energy is independent of k and N and obeys

where co, is the classical cyclotron frequency. The levels
are highly degenerate since the eigenvalue is independent
of k.

In the SCBA the dressed Green's function for propaga-
tion in the ¹hLandau level satisfies

where
~
k,N) are the eigenstates of the kinetic energy

operator. As there are W /2irl allowed k values' one
finds for the tensor L "

iT ~c2 1 —1

L "(ico)= g (N + 1) .
1

QN(i co)
lco v 4B'

N 0
1

00 1
X(z)=o

M =o z ~~ X(z)
(42)

where

(48)

Making the usual high-field approximation (o &&co, )

yields
' 2 1/2

QN(ico}=Ap ' g GN(ip)GN+l(ip+ico) .
P

(49)

6' —COI
X(e+i5)= io 1 ——

2
The real and imaginary part of QN(co+i5) is readily
evaluated and one finds that

and

T 2 BnF(e)—g [(N+1)AN(e)AN+i(e)]
N

(50)

TCO~ co B ReGN+l(e)L~= f denF(e)g (N+1) AN(e)
8 N

B6'

B ReGN(e)

Be

where A(e}=—2ImG(e+i5) is the spectral density of
the Green's function G.

The results (50) and (51) for L" can then be used in (36)
which gives L, ' and hence the thermopower tensor from

I

(3). If the temperature is small compared to the width of
the Landau levels the simpler Mott formula (37) for the
thermopower can be used. Under typical experimental
conditions this is, however, not the case.
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V. RESULTS AND DISCUSSION

The diagonal and off-diagonal components, S and

S„„,of the thermopower tensor are displayed in Figs. 1—4
for a fixed temperature and varying amount of disorder.
Figure 1 shows the free-electron result already discussed
above. Only S is nonzero so the thermopower tensor is
diagonal in the absence of disorder and has large (=40
pV/K) peaks for values of the chemical potential, p, near
the Landau-level positions. At low temperatures the
height of the peak associated with Landau level N ap-
proaches the universal value —(ln2)(ks/e)(N+ —,

'
)

' in-

dependent of the magnetic field, the effective mass, etc.
However, this universal result is only obtained for free
electrons. With disorder the thermopower tensor develops
off-diagonal components increasing in magnitude with in-
creasing disorder. Compared to the disorder-free case the
diagonal component becomes somewhat broadened and
develops structure as the disorder increases and p is inside
a Landau level, especially for higher Landau levels where
the thermally activated contribution is relatively less
prominent. The structure of the results in Figs. 1—4 can
be understood from an analysis of the relevant conductivi-
ty and thermal-response-function tensor components in
the low-temperature small-disorder limit, but we shall not
carry out this analysis. When the chemical potential lies
outside the Landau levels the thermopower is thermally
activated with an activation energy which is of the order
of the magnetic energy. Even in the presence of disorder
the system looks similar to a superconductor with zero
resistance and zero thermopower. This has important
consequences for the high-accuracy determinations of the
fine structure constant using the quantum Hall effect as
errors due to thermal voltages will be exponentially small
at the center of a Hall step at low temperature.

For some time only limited preliminary experimental
results for the thermopower of a two-dimensional system
in a quantizing magnetic field were available. ' However,
very recently Obloh et al. have presented measurements of
the thermopower tensor of GaAs heterostructures. ' The
shape and magnitude of the diagonal as well as the off-
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FIG. 3. Diagonal and off-diagonal components of the
thermopower tensor vs chemical potential in the same units as in

Figs. 1 and 2 except that the disorder has been increased to cor-
respond to A'o. =0.05 or 1.5 meV (17 K) if B = 12 T.

In this appendix we shall derive the results (29) and (30)
for the transport coefficients L' and I.". First, we con-
sider the thermal response coefficient I ' which is a sum
of a correlation-function term L ' and a correction term
P. Let us start by expressing the correction term P given
by (13) using a complete set of eigenstates If I. We do

diagonal components of the measured thermopower ten-
sor' seem to agree quite well with the results of the
present work. The smaller maximum value of —S~ for a
low-mobility sample compared to a high-mobilty sample
is consistent with our results as is the reported dependence
of S~ on temperature and temperature gradient. A de-
tailed quantitative comparison between the present theory
and these recent experimental results will be presented
elsewhere. ' Further experimental work on systems with
varying mobility would be a valuable source of informa-
tion about transport properties of disordered Landau-level
systems.
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not need to know the explicit form of either the eigen-
states or the corresponding set of energy eigenvalues {E )
to write I' as

P;, = gnF(E )[(r;) „(J,)„+(J,) „(r;)„]T

m, n

G„(q.) = —( T,[c„(v)c„(0)]}

Gn(r) =P ' g e '~'G„(ip),
P

(A6)

(A7)

Jg (H J——+ JH)/2 pJ . —

Hence if we write the particle-current operator as

(A2)

g JmnCmCn
m, n

(A3)

using single-particle creation and destruction operators,
the heat-current operator takes the form

T g (r; ) „(JJ )„[nF(E ) +nF(E„)] . (Al)
m, n

To evaluate the particle-current —heat-current correla-
tion term L ' given by (7) we first note that the heat-
current operator can be written as

we find that (A5) becomes

RPG„(0)5„Gq(0)5~—P g G„(iP +ice)5„FG (iP)5 q .

(A8)

Before we proceed to evaluate the Matsubara sum over ip
in (A8) we pause to note that whereas the correction term
P as given by (Al) contains one matrix element of the
particle-current operator and one of the position operator,
the term L at present contains two particle-current ma-12

trix elements as we have used (A3) and (A4). With respect
to combining the two terms we note that the following re-
lation between the position operator and the particle-
current operator holds:

Jg ——Q [(EF+Eq)/2 —P] J~qcFcq .
J;=W 'r';= [H r ] .l (A9)

By employing the operator expressions (A3) and (A4) in
the formula (7) for the particle-current —heat-current
correlation function one finds an expression containing
the following integral over "time" r:

I dr e'"'( T,[ cm( r) c„( r)c F( 0)c q(0)] }, (A5)

where T, is a time-ordering operator. Having a single-
particle Hamiltonian we can use Wick's theorem. Defin-
ing the Matsubara Green's function and its Fourier
transform by the relations

It follows that the relation between the corresponding ma-
trix elements is

(J;)„= (E„E)(r;)„—nm (Alo)

We can now evaluate the Matsubara sum using the expli-
cit form of the Green's function

G„(z)=1/(z+ p E„), — (A 1 1)

and perform the analytical continuation iu~co+i5. The
result is

I.,J = lim +Re[(r;) „(JJ)„](E E„) ——p [nF(E ) —nF(E„)]H

T+ lim g Re[(J;)m„(JJ)„m] — —p [nF( E)mnF(E„)]m5(E —E„+co)— (A12)

The principal-part factor in (A12) can be expanded as

1

E —E„+co
—co&

I

(E E )~
(A13)

The first term of (A13), which would lead to a divergence as co~0, vanishes as can readily be verified by exchanging
dummy indices m and n and noting that

Re[(r; )„m (JJ )m„]=Re{[(r; ) „(JJ )„m )" I =Re[(r; ) „(Ji )„] (A14)

as the current operator is Hermitian. The second part of (A13) can be written as
r

1
(1—5E E ).

(E E )2 Em ~En (A15)

If we take the contribution of the 5-function part of (A15) to the first term and all of the second term of (A12) we find
that
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T g Re[(r;)~„(Ji)„]
m, n

—t3n~(E )
(E —p)5s E

m

—Bnp(E )
(E p—)sr5(E E„—) . (A16)

The remaining part of (A15) (the 1) gives together with the correction term I' after a rearrangement of terms

g Re[(r;) „(Jz)„](E E„)—'[(E p)n—F(E )—(E„p)n—F(E„)],
m, n

(A17)

where the sum runs over all states. The expression (A17)
is in fact zero. To see this we first note that it is finite. In
our geometry where the system is bounded in the x direc-
tion and infinite (periodically extended) in the y direction
the matrix elements entering (A17) are finite if i =x and

j=y. We invoke the relation (A10) once more and change
dummy indices to obtain

(A18)

With j=y some care must be taken as (y)„ is not well
defined. However, by introducing a damping factor
v riexp( —sl

~ y ~
) to the wave function and interpreting

(y)„as the limiting value when st~0, this difficulty can
be circumvented.

Equation (A18) can be simplified by summing over
states P„which yields an expression containing the factor

(A19)

This is zero as the position operators commute. Hence
(A16) is indeed the result (29) for the thermal response
function L J .

It is straightforward to derive an expression for L;1"
that has a similar form as (A16). The starting equation is
the same as (A12) except for the factor [(E +E„)/2—p]
which appeared there because I. ' but not L" contains the
heat-current operator. There is no correction term analo-
gous to P. The steps are very similar to those detailed
above for the thermal response coefficient and shall not be
repeated. Again a term containing the factor (A19) (ex-
cept for E —p) vanishes and the result is

T g Re[(r; ) „(JJ )„~]
m, n

—Bnp(E~ )
5E E +AT g Re[(Jt) „(J.)„]

m m, n

Bnp(E )—
m'5(E E„) . —

m

Finally we note that the two expressions (A16) and (A20) are identical except for the extra factor of (E~ —p) in the ex-
pression for the thermal response function. This factor is just the amount of heat carried in the state f~.
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