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A forI11811sIIl ls dcvclopcd which allows 8 QonpcrtUrbat1vc calculation of tllc cffccts of thc electric
f1cld on electron-iIIlpurity scattering. Thc S1nglc-s1tc T matrix ls cvalURtcd exactly Rnd stud1cd QU-

merically for a model potential. For a dilute concentration of random impurities, the impurity-

averaging procedure is carried out in a finite external field and a nonlinear integral equation is de-

rived for the Green function. This equation is solved in an approximate, but consistent, manner.

Finally, a quantum-transport equation is constructed with the generalized Baym-Kadanoff method

of noncqU111br1UIQ quantum statlst1cRl mechanics. Spcclal attcnt1on 1s p81d to thc f1cld dcpcndcncc
of the collision integral. IQ particular, in the limit of slow spatial variations, 8 Boltzmann-type

transport equation is derived with a nonlocal field-dependent collision integral.

I. INTRODUCTIQN

It has been a long-standing theoretical problem to de-
vise a scheme for calculating nonlinear transport phenom-
ena. Most formalisms have been restricted to perturbation
expansions in the external fields. ' " The Keldysh tech-
nique is a notable exception: The fields are included in
the free Hamiltonian„ thus permitting, at least in princi-
ple, a nonperturbative calculation. However, to our
knowledge, the Keldysh formalism has not been applied in
practi. ce to problems beyond quadratic Iesponse. ' '

The development of submicron semiconductor devices
(where extremely high electric fields are commonplace)
has increased the need for a formulation capable of going
beyond the conventional semiclassical Boltzmann theory
of transport. In semiconductor transport theory, the

Boltzmann equation is usually written as

+V'-e(k). V' f+[—P'-U(r)] V-f

=g [&(p,p ')f(p ') —&(p ', p)f(p)] . (1.1)

The research described in the present paper attempts to
shed some light on the following questions.

(i) Under what conditions can the quantum-transport
equations be cast in the form of Eq. (1.1)?

(ii) How does one include microscopically (and
rigorously) the effect of the driving fields in the scattering
rates E(p, p ')'?

(iii) Does the structure of (1.1) prevail'? One might ex-

pect to get additional time dependence or nonlocality on
the right-hand side.

Rather than attempting to treat these questions exhaus-

tively, and for a realistic submicron device, we have made

several drastic simplifications to make the problem tract-
able. In doing so, wc alc able to carry out microscopic
calculations which lead to explicit results under controlled
approximations.

The system considered in this study consists of nonin-
teracting electrons scattering off a dilute concentration of
resonant scatterers under the influence of an arbitrarily
strong, static, and uniform electric field. This system is
simple enough to allow explicit calculations, but also suf-
ficiently complex so as to reveal interesting physics when
subjected to an analysis with the methods of quantum-
transport theory. Our calculations must be viewed only as
a first step towards a rigorous theory of transport in a
small semiconductor device. In any calculation pertaining
to a real device one should consider (i) electron-phonon
scattering (which is not included in our explicit results;
see, however, Appendix A), and (ii) some aspects of the
spatial nonuniformity of the external field (important ef-
fects can be expected to take place in the transitional re-
gion between the low- and high-field areas of a realistic
device). The greatest utility of our final results is that
they can be used to study, and, in principle, exactly, how
the electric field modifies the electron-resonant impurity
collision integral. Many of the forrnal results and tech
n1qucs dcvclopcd ln this woIk do have however R much
wider range of validity and can be applied to any system
where a nonperturbative treatment of the external field is
desired.

The outline of this report is the following. In Sec. II we
review the generalized Kadanoff-Baym (GKB) formalism
for nonequilibrium quantum statistical mechanics. ' In
Sec. III we derive exphcit expressions for field-dependent
free Green functions which then are used as basic building
blocks for the subsequent developments of the theory,
Sees. IV and V. In Sec. IV we discuss the dynamics
(single-particle properties) of the electron-impurity sys-
tem, wliei'eas Sec. V is clevotecl to the klnetlc (clistribiition
properties) of the system. In Appendix A we inake a con-
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nection to the other existing formulations; in particular,
the formalism developed in this study is used to derive, in
a simple and self-contained fashion, results which former-
ly have emerged only after considerably more tedious cal-
culations. Finally, Appendix 8 contains a technical note
on the zero-field-limiting properties of the field-dependent
Green functions.

II. FORMULATION OF THE THEORY

In nonequilibrium problems one is concerned, say, with
calculating currents arising due to the forces which drive
the system out of equilibrium. A typical quantity one
might want to evaluate is the current which is given by

(2.1)

j (R T)= i g pG—(p po'R T) (2.3)

In (2.3) we have introduced the so-called Wigner coordi-
nates,

r=x —x ', r=t t', R= —,(x+x ')—, T= —,(t+t ) .

This is a convenient way of separating the fast and slow
spatial and temporal scales; in what follows, a.Fourier
transformation is performed with respect to r and ~, and
quantities are often expanded in terms of the gradients of
the slow variables R and T (see below).

Another quantity of great importance, which is directly
expressible in terms of 6, is the %igner distribution

function f(p, R, T),

f(p, R, T)= f d r e '~''(1(tH(R —,' r, T)p(R+ ,
' r,T)—)—

i g 6 ~(p—,po, R, T) .
&o

Thus the main task of the nonequilibrium theory is to
set up a calculational scheme for the functions (2.2). The
main difficulty lies in the fact that the Feynman-Dyson
perturbation expansion does not exist for functions such
as (2.2}. However, one can obtain equations for the corre-
lation functions (2.2) by analytic continuation from the

The expectation value of the two Heisenberg-picture field
operators closely resembles a Green function, and one
might hope to be able to apply the conventional calcula-
tional schemes to extract the correlation function appear-
ing in (2.1). In fact, in linear response this procedure be-
comes feasible due to the existence of the fluctuation-
dissipation theorem. In the nonlinear case, however, one
has to resort to the full nonequilibrium theory.

The expression (2.1) for the current suggests defining
the following real-time correlation functions:

G '( l, l') = —i (QH(1)QH( I') ),
(2.2)

G (1,1')=i (QH(1')QH(1) ) .

The current is then readily expressed in terms of 6

Dyson equations satisfied by the imaginary-time Green
functions. There are many equivalent ways of performing
this step; our method is closest to the GKB scheme, 'z
even though some essential ingredients can be found in
Keldysh's work as well.

Conceptually, the nonequilibrium calculation splits into
two steps. First, the dynamics, or single-particle proper-
ties, are described by quantities which possess well-defined
Dyson equations, and hence, at least in principle, are
tractable. Examples of these quantities are the retarded
and advanced Green functions. Second, the description of
the distribution of the particles requires the aforemen-
tioned correlation functions which satisfy a "kinetic"
equation derived by analytic continuation.

In the GKB formalism, the basic equations are

(2.6a)

[(G )
' —U —X, 6 ]—[X, G]

G&]+ ' |X& G&] (2.6b)

in terms of which the GKB equations are

In (2.6) all external forces are denoted by the operator U,
whereas all scattering processes (impurities, phonons, and
electron-electron interactions) are collected in the self-
energy X„,. We have also defined the real part of the
Green function and the self-energy by 6= —,

' (6, +6, } and
X= —,'(X, +X„), respectively. To have a closed set of
equations one needs to know the self-energy as a function-
al of the Green function. The two-step structure dis-
cussed above is evident: One needs the solutions of the
Dyson equation (2.6a) as an input for the "quantum kinet-
ic" equation (2.6b). Equations (2.6) should be interpreted
as matrix equations: Integrals over intermediate position
and time variables are implied throughout. For the
derivation of (2.6) the reader is referred to Appendix A of
Ref. 2(a); it should be noted that in the present study we
use slightly different definitions for the correlation func-
tions than what was used in Ref. 2. Consequently, our
basic equation (2.6b) differs slightly from the correspond-
ing equation (A19) of Ref. 2(a).

A very similar two-step structure is obtained in the Kel-
dysh formalism: Our equations (2.6a) and (2.6b) corre-
spond to the diagonal and off-diagonal components of the
Keldysh matrix equation, respectively.

The main emphasis of our work will be on the study of
transport phenomena which are nonlinear in the external
fields. In particular, we aim at a nonperturbative treat-
ment of the external fields. In practice this amounts to
treating the system consisting of noninteracting particles
and the external fields exactly. In other words, the parti-
cles are "dressed" with the external fields, and the Green
functions describing these dressed particles are then used
as the basic building blocks in the subsequent develop-
ments of the theory.

The field-dependent Green functions are defined by

(2.7)
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U U
Gt;0 G,Q +G,c~, Gl;0

[(G')-' —X G'] —[r' G]

Ig( G&I+ Ig& G(I (2.8)

The idea of including the external fields exactly in the
Green functions occurs already in Keldysh's work (but
only on a formal level); to our knowledge, however, our
work is the first practical realization of such a procedure.

In many physical situations the external fields vary
slowly on Inicroscopic time or length scales. This suggests
a div1s10Il bctwccn macroscopic and microscopic
quantities; the microscopic quantities are treated exactly,
whereas oIlc performs a gradient cxpanslon 1n thc slowly
varying macroscopic quantities. More explicitly, one
transforms into center-of-mass and difference variables
[i.e., to the Wigner coordinates defined in (2.4)], Fourier-
transforms with respect to the difference variables, and
gradient-expands in the center-of-mass variables. What
onc nccds then 1s a pIcscript1on foI' cvaluat1ng commuta-
tors and anticommutators. The rules are

1 4, , 5 ~ 5
d x[2(x,x )8(x,x') —8(x,x )2 (x,x')]~ A( p,po,'R, T) 8( p,po,'R, T)

I Bpo BT

A ( p,po', R, T) 8( p,po, R, T)aT ago

V-A(p po R T) V RB(p po R T)

+ V' A(p,po, R, T).V 8(p,po,'R, T)+ (2.9a)

x 3 x,x 8 x,x' +8 x,x 3 x,x' —+A p,po', R, T 8 p,po', R, T + . (2.9b)

[Go
' G ]~5 (po E-)~TG-

Bpo ~ dT

—V (po —e )*V-G
p p R (2.10)

We identify the contribution arising from (2.10) as pieces
of the driving terms of the Boltzmann equation. This is
an important feature of the gradient expansion: It can be
used as a device to derive Boltzmann equations from more
fundamental equations (such as the GKB equations).

This concludes our discussion of the theoretical prelim-
inaries; in subsequent sections we construct tr'anspor't
equations for the resonant-level model (RLM; see below)
starting from the modified basic equations (2.8) which al-
low a nonperturbative treatment of the external fields.

The somewhat tedious derivation for (2.9) can be found in
Ref. 2(a). As an application of (2.9) let us consider the
first term in the kinetic equation (2.6a),

I

dependent (but slowly varying) electric and magnetic
fields. We will also compare our results with those ob-
tained elsewhere. ' Some of the results of this section
have been briefly discussed before. '

B. Exact expressions

The exact expressions are constructed by solving the
equations of motion. In a general electromagnetic field,
these equations read

i —e( i V——A—(x, t))—P(x, t) G(x, x ', t, t')

=5(x —x ')5(t t'), —

(3.1)

i, —e(i V ' —A—(x ', t')) —P(x ', t') G(x, x ';t, t')

nr. FEEI.D-DEPENDENT FREE GREEN FUNCTIONS

A. IlltlodQction

In this section we derive expressions for the field-
dependent free Green functions (2.6) discussed in the
preceding section. Exact expressions are given for time-
dependent but spatially uniform electric fields. The gen-
eralization to nonuniform fields seems to be difficult (see
below). However, within the gradient expansion the prob-
lem simplifies considerably. As an example, we derive the
Boltzmann equation driving terms for position- and time-

=5(x —x')5(t —t') .

To determine these functions completely, a boundary con-
dition is needed. This condition can be, for example, that
the solution of (3.1) is of the retarded or of the advanced
type. In (3.1) we denote the single-particle dispersion by
e(k), and we have chosen a system of units where
Pl~ ='6=8 = I.

Equations (3.1), in their present form, cannot be solved
explicitly. Consider now the case where there is no mag-
netic field, and the system is subject to a time-dependent
electric field F(t). Then we can choose
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A(t)= —f dt F(t), y(x, t)—=0. (3.2)

With this assumption one can Fourier-transform with
respect to the spatial coordinates to obtain

i——e(k —A(r)} G A(k, k ';r, t') =5(r —r')5(k —k '),

which can be integrated to yield

G„(k,k ';t, t') = —i6(t —t')5(k —k ')

&&exp —i f dt e(k —A(t)) . (3.4)

In (3.4) the boundary condition has been chosen to corre-
spond to thc retarded fUnct1on. Thc advaIlccd fUnct1on

G," is obtained from (3.4) with the replacement
—i6(t —t')~i6(t' —t). Finally, the superscript A indi-
cates that the external field is represented by a vector po-
tcntlal.

Consider now the case where the electric field is
represented by a scalar potential,

A(x, t)=0, p(x, t)= —x F(r) .

The equation of motion now reads

(3.5)

i e(—k)+—iF(t) V „G~(k,k ';t, t')

=5(r-t')5(k-k '), (3.6)

from which the retarded function is as follows:

G~(k, k ', t, t')

and has a simple interpretation when compared to the
zero-field Green function

G„(k;k ';r t') =—i6(t —r—')5(k —k ')

Xexp[ —ie(k)(t —r')] .

The two changes are the following: (i) the shift in the
momentum-conservation law to account for the accelera-
tion due to the electric field, and (ii) the time evolution of
thc kinetic cncrgy.

The two different expressions derived for the Green
function for a uniform electric field [(3.4} and (3.7)] corre-
spond to the same physical situation. It is therefore
reasonable to expect that the two expressions (3.4) and

i6(t r—')5 k ——k' —f dt F(t)
t t

&(exp i f d—to k —f dr&F(t&)

In the case of a dc electric field (3.7) reduces «
G&(k, k ';r r') = —i6(r —r—')5(k —k ' —F(t —t'))

t —t
Xexp i d—t& e(k t&F)—

0

(3.8}

(3.7) be linked in a simple way. The explanation is the fol-

lowing. The labels k and k' in (3.3) and (3.4) refer to the
cQPloPsEcQI momentum, 1.c., Plot to the vcloclty. If onc pcl-
forms a variable change in (3.4) via k=v+A(t), i.e.,
cxplesscs thc Grreen fUIlctloIl in the velocity basis, thc
two expressions (3.4} and (3.8) agree. The connection be-
tween (3.4) and (3.8} can also be established by a suitable
gauge transformation. '

Consider now external fields which are position depen-
dent. One might hope that a clever choice of gauge
renders the mathematics in a tractable form. Unfor-
tunately, this seems unlikely except for some special cases.
The reason is that in any gauge the equation of motion al-
ways contains a term where thc Green function is multi-
plied by the position-dependent field. One usually
Fourier-transforms the equation to simplify the kinetic
energy operator, but since a product of two functions does
not possess a simple Fourier transform, progress seems
difficult. One has to solve a second-order (in the position
space) differential equation which is considerably more
difficult than the first-order (in the time domain) equa-
tions discussed above. It is worth noting that the case of a
uniform magnetic field which requires a position-
dependent vector potential can be treated along the lines
discussed above because the resulting second-order dif-
ferential equation can be solved in terms of the well-

known Landau states. The case when the external pertur-
bations are slowly varying can be treated within the gra-
dient of expansion and is discussed below.

i [G ~(p,~—;R,T) G~(p, m; RT—)] .

(3.10)

The second»ne in (3.10) follows from the definitions and
we used the Wigner coordinates in anticipation of a gra-
dient expansion. Note that the spectral density satisfies
the sum rule

"Ap, -;RT=l
2%.

(3.11)

1n both cquilibriuQl and noncquilibriuITl S1tuatlons. Onc
can say that (3.11) is a restatement of the anticommuta-
tion rule for the field operators.

Substituting now the expressions for G„and 6, in
(3.10), one obtains

A(p, co;R, T)= f dec'"'
T+7-/2

&exp —i tg p —A t

(3.12)

C. Spectral density and exact expressions

The spectral density plays a central role in the construc-
tion of quantum kinetic equations. It is therefore of in-
terest to derive exact expressions for t'his quantity, which
are then later used in the derivation of transport equa-
tions. The spectral density is defined as

A(p, m;R, T}=—[G,(p, co;R, T)—G„(p,co;R, T)]
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Note that (3.1) is exact: No gradient expansion has been
carried out so far.

It is instructive to derive an equation for the spectral
density starting from the basic equation (2.6b). By sub-
tracting the two equations (2.6b) and making use of 2 =0
(the scattering has not yet been turned on) gives

[6 (p,co;R, T)] '=co —H(p, R, T) . (3.18)

An application of the rule (2.9a} now gives the following
expression for the driving terms (equal to W):

the Boltzmann equation. In particular, we will evaluate
the piece [(6 ) ', 6 ~j of the GKB equation (2.8) with

[{6')-'—U, W]=0. (3.13) &=tBT+BTH(p, R, T)8~+[7' H(p, R, T)] V'

It can be verified by direct calculation that (3.12) indeed
satisfies (3.13). Equation (3.13) will be useful in con-
structing Ansatze for the distribution function (see below).

—[V H(p, R, T)] V )6~(p, a);R, T) .

(3.19)

D. Gradient expansions

The next step is to derive expressions for the field-
dependent Green functions for systems under the influ-
ence of time- and position-dependent, but slowly varying,
electric and magnetic fields. We will then use the derived
Green functions to obtain an expression for the spectral
density and to construct the driving terms in the
Boltzmann equation.

Note that the driving terms are derived from the com-
mutators on the left-hand side of the GKB equations (2.6)
or (2.8). From the expansion rule (2.9a) for commutators
we observe that the leading term is of the first order with
respect to the small gradients Bz and V'-. Therefore, to
apply (2.9a) consistently, we need the quantities "A" and"8"appearing in (2.9a) to zeroth order in the small gra-
dients. Thus instead of the exact equation of motion we
are led to consider the first term in its gradient expansion,

We now make the following Ansatze for 6 ~ and 6 ~:

6 ~(p, co;R, T)=iA(p, co;R, T)f(p, R, T),
(3.20)

6~(p, co;R, T)= —iA(p, co;R, T)[I—f(p, R, T)] .

The choice (3.20) is by no means unique but it is particu-
larly coilveilieilt lii tllls colltext becallse (i) tile dlffelelltial
operator in (3.19) commutes with the spectral function
[this is a consequence of (3.13)],and (ii) Eq. (3.20) satisfies
the connection (2.5) between 6 ~ and the Wigner distribu-
tion function. By using (3.20) in (3.19) we obtain

A(p, a), R, T)[Br+V' H(p, R, T).V

—V-H(p, R, T) V' ]f(p,R, T)=I(6 ),
(3.21)

—e( —iV —A(R, T))—P(R, T) 6(r,~;R,T)r

In writing (3.14), we used

8 d1 8 dT 8 5
Bt dt 87 dt dT 87

=5(r )5(r) . (3.14)

A(p, co;R, T)=2m5(co —H(p, R, T)), (3.16)

where we have defined the classical Hamiltonian function
for a charged particle in an electromagnetic field,

H(p, R, T)=e{p—A(R, T))+P(R, T) . (3.17)

Equation (3.16) also applies to situations where there is a
magnetic field and it is therefore a generalization of
Barker's recent result [cf. Eq. (20) in Ref. 7].

Let us now apply (3.16) to derive the driving terms in

and analogously for the position variables. Equation
(3.14) is readily solved as follows:

6,(p, a);R, T)= [to —e(p —A(R, T)) P(R, T)+iri]—
{3.15)

The advanced function is obtained from (3.15} by the re-
placement +ig~ i ri, and the expre—ssion for the spectral
density becomes

where we denoted the collision term by I(6 ).
Let us now work out the explicit form of the driving

terms. One would expect to get the ordinary Boltzmann
driving terms because we recognize the Hamiltonian equa-
tions of classical mechanics in (3.21) as

(3.22)

Indeed, the first of Eqs. (3.22) yields the velocity, whereas
the second gives the Lorentz force. ' Integrating over fre-
quency, one obtains

[Bz+v V-+[E(R,T)+vXB(R,T)].B If(p, R, T)

I G, 3232'

E(R, T)= —VP(R, T)— A(R, T),
(3.24)

B(R,T)= V'XA(R, T) .
Some comments are now in order. We have not (until
now) discussed the terms on the left-hand side of the
GKB equation (2.8) which involve the self-energies.
These terms may lead to important renormalization ef-
fects of the driving terms [see, e.g., Ref. 2{a)]. Further-
more, no account of interactions has been taken in the ex-
pression used for the spectral density. It will be important



to study to what extent we can relax the gradient expan-
sion while still keeping the Inathematics tractable. Some
of these points will be touched upon in the remainder of
this paper.

E. Exact results versus gradient expansion

In this section we develop the techniques to extract
gradient-expanded forms from the exact results derived in
Sec. III B. The basic quantity we need is the gradient ex-
pansion of the time integral appearing in the exponent of
(3.4) or (3.12). We find

T+&&2
tep —At =up —AT &+OS . 3.25

By substituting (3.25) in (3.12) we obtain

A {p, co;R, T) =2m 5(co —&( p —&{T) ) )+&I,
where the correction term Al involves Airy functions
wlllcll arc characfcrIstlc of tllc clcctrIC flcld. Wc I'ccog-
nize (3.26) as a special case (i.e., spatially uniform electric
field represented via a vector potential) of the result (3.16)
derived in the preceding section.

ln the scalar potential gauge the algebra is somewhat
more tedious. The first step is to rewrite the exponential
in (3.7) in a form symmetric with respect to k and k ',
with the aid of the 5 function, one derives

6&{k,k';t, t')= ie{t —t')5
~
k——k' —I dt F(t)

Xcxp i,—dt c(K-)f

(3.28)

By transforming the time variables into the Wigner coor-
dinates alld cvalllRtlIlg tllc tIIIlc 111tcgl'als II1 thc sp1rlt of
(3.25) one obtains

te K-, =-~e KT -—~e —, k+k' +0 . 3.29

The spectral density is given to leading order in ~ by

A(k, k ', T,r) =5(k —k ' —F(T)v)exp[ —i~a( —,(k+ k '))],

or, in terms of Wigner coordinates,

A(r, R;T,r)= gexpIi(k r+r[R F(T) e(k)]J, (3.31)—

Wc now apply the field-dependent Green functions of
the preceding section to study the high-electric-field prop-
erties of a system consisting of electrons interacting with a
dilute concentration of impurities. The main objectives of
this section are (i) to derive a self-energy functional, and
(ii) to find expressions for G„, which can be used in the
GKB equations (2.8) to construct quantum-transport
equations for the R.LM.

When choosing the model interaction between electrons
and impurities we have kept the following considerations
in mind. The main emphasis of this study is on the gen-
eral structure of the nonlinear theory; however, we want
to apply the techniques developed in the preceding sec-
tions to a model for which exphcit, and if possible, analyt-
ic, results can be obtained. The elastic impurity problem
would be a good candidate for a simple but nontrivial
scattering mechanism. Its properties (at least in the low-
concentration limit) have been extensively studied and are
in general well understood. However, it has the slightly
complicating feature that the single-site T matrix satisfies
an equation which is not analytically solvable. Instead of
treating the elastic impurity problem in an approximate
way (for example, in the Born approximation), we have
studied the RLM for which the T-matrix equation is
readily solved (see below).

Physically, the RLM [aslo known as the virtual bound-
state model (VBM)] describes a localized state in a contin-
uurn: The conduction electrons make transitions between
the localized level and the conduction band, thus forming
a scattering resonance. By varying the parameters of the
model, one can adjust the position of the scattering reso-
nance with I'cspcct to thc Fc~i lcvcl, thUs dlsplaylng a
variety of physical phenomena. Numerous applications
have been found for the RLM;" ' from our point of
view, the RI.M is a model of an energy-dependent scatter™
1Ilg mechanism with particularly convcnlcnt matheITlatlcs
related to it. The energy dependence of the RLM scatter-
ing mechanism allows one to study the in.tracollisional
field effect in a very simple context.

The outline of this section is the following. We briefly
review some of the standard results for the single-site
RLM, then couple it to a static external field, and finally
consider the effects of a dilute concentration of the
scatterers. Some of the results of this section have been
briefly discussed elsewhere.

which finally ylclds

A(p, R;co,T):2Ir5(a) c+—R F(T))—. (3.32)

8. Single-site results

The RLM Hamiltonian is given by

Qnc should keep in mind the physical equivalence of
(3.16) and (3.32) as revealed by the general expression
(3.16).

This concludes oUI dlscussioIl of the forIQal propcrtlcs
of the field-dependent free Green functions. Table I sum-
marizes central results obtained in this section.

+Eb b+ g [V(k)c-„b+V'(k)btc-„] .
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Here c 's refer to the conduction electrons, and b is the
k

localized-level destruction operator. The energy E gives
the position of the localized level and V(k) is the hybridi-
zation matrix element. We omit all spin indices.

The interaction (4.1) is separable; from this it follows
that the Green function corresponding to (4.1) can be
evaluated exactly. A straightforward equation-of-motion
analysis yields

G(k, k ';co) =5- -,Gp(k, co)

+G (pk, co)T(k, k', co)G (pk', co), (4.2)

where the single-site T matrix is given by

U= —iF V-„. (4.7)

The equation-of-motion analysis leading to (4.2) can be re-
peated, essentially unchanged, with the result

G(k, k ', co) =G~(k, k ',co)

where I =irp( V ) is the level width, and c is the concen-
tration of impurities. Below, we will examine the field
dependence of I .

Let us now consider the effects of a uniform static elec-
tric field. The Hamiltonian acquires an additional term
(we use here the scalar potential gauge; see Sec. III B),

(k k, )
V(k)V(k')

g, '(~)—Mp(~)
(4.3)

+ g Gi(k, qi, co)T'(qi, q2;co)
q&, q2

The free (retarded) Green functions for the conduction
electrons and the localized level are given by

~G (q„k', co), (4.8)

Gp(k, co)=[co—e(k)+i'] '& gp(co)=(co E+iri)—

(4.4)

where the field-dependent free Green function G~ is de-
fined in (3.8), and the field-dependent T matrix is given by

respectively, and finally Mp(co) is defined by

Mp(co)—= g ~

V(k)
~

Gp(k, co) .

(qz)
co E —M&(co)—

(4.9)

The imaginary part of the diagonal piece of the T matrix
is closely related to the scattering rate 1/r(co), and has the
resonant structure

r'=c ImT=
2r(co) np (co —E)i+12 '

M~(co)= g V*(pi)G~(pi, p2', co) V(p2) .
P)i P2

(4.10)

The field-dependent level width I ~(co) [i.e., the ima-
ginary part of M~(co)] for a Gaussian model V(k)
= Vpexp( —A, k /2) (A, is a parameter describing the range
of the interaction) is calculated as follows:

I ~(co)=1m i J —dte'"'g V(p —,'tF)V(p+ ——,'tF)expI i [e(p)t+—F t /24]I

= ——,
'

Vpp dt de exp[ —i[e(p) —co]t iF t'l24 —,'A, F t —Xp—J—
00 0 P

a(,F)= —I (co)exp( —', A, F ) I dx Ai( —x), (4.11)

where I (co) =op Vpexp( —2A, co) is the zero-field level
width. Here a(F)=2co/F ~

A, F ~, and A—i(x) is the
Airy function. A numerical evaluation of (4.11), with pa-
rameter values A, =20 A and m=0.01 eV, yields the result
shown in Fig. 1(a). We distinguish three regions: (i) low-
field regime where the level width retains approximately
its zero-field value, (ii) transitional regime where the level

width is a decreasing function of the electric field, and (iii)
high-field regime where the level width is very small, thus
indicating decoupling of the conduction electrons from
the resonant level. Figure 1(b) shows these three regimes
for general values of energy and electric fidd. The most
important conclusions obtained from Fig. 1 are (i) the
coupling between the conduction electrons and the
resonant level [which is characterized by the level width
I ~(co)] uanishes for very high fields, and (ii) it approaches

its zero field value as the-energy is increased. We will
make use of these observations below, where we construct
a field-dependent Green function including the effects of
impurity scattering. Reference 8 gives a more detailed
discussion on (4.11).

C. Dilute concentration of resonant scatterers

We follow the standard procedure: The Dyson equa-
tion for a fixed configuration of impurities is iterated and
averaged term by term, and, finally, a partial infinite
resummation is carried out to construct a self-energy
functional. One has to bear in mind, however, that the
impurity averaging takes place with the external field
turned on, and that some care must be exercised when
generalizing the zero-field results. Specifically, consider
the Dyson equation
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G(k, k', co, [R j)=6 (k, k';co)+ g 6 (k, qi, co)exp[ —&(q& —q2) R ]V(qi, qi'co)6(qi, k', co, IR j),

IR

(4.12)

where we explicitly indicate that the Green function de-

pends on the sites of the impurity locations. In (4.12)
we have introduced a generalized scattering vertex

V(qi, q2, co) because this will allow us to treat both the
RLM and the elastic impurity problem on equal footing;
for RLM we have

I

where 0 is the volume of the system.
Sum now all scattering events at a given site R . This

procedure replaces the matrix element V in (4.12) by the
single-site T matrix

6(k, k';co, [R j)=6 (k, k', co)

d R~
G=(G(IRj)),„=g f 6([R j),

a
(4.13}

V (qi, q2,'co) = V(qi) V(q2}go(co),

and for the elastic impurity case

V' '(qi q2;~)=V(qi —q2)

respectively. We neglect impurity-impurity correlations
and calculate the averaged Green function 6 with the
prescription

+ g' G~(kq, i ,co')T (qi, q2;co)

ql q2

IR

XG(q2, k';co, [R j) . (4.14)

The prime in the summation indicates that the R label is
not allowed to be the same twice in succession when (4.14)
is iterated because, by definition, the T matrix contains all
scattering events at a given site. The site-dependent T ma-
trix in (4.14) satisfies

T (q i, q2, co) =e ' ' V(q „qz,'co)

0 go
3
L

3
I

0.5

+ g V(qi, pi,'co)e

» P2

XG (pi, pq,'~)T (p2, q2', ~)

(4.15)

I

&oo iO4
F (ViM)

,o6

Note that the T matrix defined according to (4.1S) is a
functional of the free field-dependent Green function,

T =T [6~].
We now iterate (4.14) and calculate the average term by

term with (4.13). One obtains terms such as

)7 (b)
10

1013

11

1o

io4100 ~o6 go8

F {VIM)

FIG. 1 (a) Level width for a Gaussian-model interaction for
0

A, =20 A and co=0.01 eV. The field strengths E» and F23 mark
the transitions between low-field, transitional, and high-field re-
gimes (see text). (b) Three regimes for general values of co. The
line co=no denotes the energy which was used while construct-
ing (a).

6= . +(G~T [G~]G~T s[G~]G~T [G~]G~),„

+(G&T [G&]G&T s[G~]G~T '[6~]

XG~T'[6~]6~ &,„+ (4.16)

X[G]=cf T [G] . (4.17)

When carrying out the impurity averaging, one can com-
mute the R; integrals in such a way that the innermost in-
tegrals are always done first. For example, in (4.16) the

Rii (in the first tenn) and RIi and Rr (in the second term)
integrals are done first. The effect of this procedure is to
build in parts of the impurity-averaged Green function as
an internal line. It is easy to convince oneself that this
part of the analysis is entirely equivalent to the standard
one for vanishing external fields. The net result is that
terms such as the ones in (4.16) can all be collected togeth-
er by choosing a self-energy functional which equals the
single-site T matrix averaged over its site label,
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V(q i) V(qi)

E —M —(ri) )

(4.19)

M (N)= y e ' ' V{PI)G{P1P2'oi)V{P2) .

(4.20)

Lct Us now IQake R connection to thc cqullibriUIIl case.
For vanishing external fields the impurity-averaged Green
function is diagoiial iil its momentum labels, G( p i, p2)
~5 G(p&), and the R integration in (4.19) is trivial

P)~P2
with thc rcsUlt

Note that the argument of the T matrix is the full
impurity-aveI'aged Green function.

The choice (4.17) does not, however, repmduce all the
terms generated by iterating (4.14). Consider, for exam-
ple, structures such as

G = + &
G~T".[G~]G~T'~[G~]G~T '[G~]

XG~r e[G~]G~) + (4 is)

These terms correspond to the so-called crossed diagrams.
Conventionally, these terms are neglected due to a phase-
spacc RrgUIDcnt, bUt it is Qot necessarily obvioUs that thc
argument holds In the nonequlhbrlum sltuatlon. Howev-
er» thc crossed diagrams will R1%vays lead to R contnbutlon
to the self-energy which is of second or higher order in the
concentration, and we use this as a formal justification for
omlttlng them 1Q subsequent dlscusslon.

The result (4.17) holds both for elastic impurity scatter-
ing and for the RLM. However, only in the RLM case is
the T-matrix equation (4.15) explicitly solvable, and we
find

&RLM[G] &
~
V(q)

~

co —Z —M{a) )
(4.21)

M(~)= g ~

V(k)
j
'G(k, co) .

The coherent potential approximation self-energy for the
RLM (Ref. 19) reduces to (4.21) in the limit of a dilute
1Dlpurity concentration.

The explicit R dependence in the denominator of (4.19)
coIDpllcatcs thc IDRthcmatlcal structure considerably, Rnd
we have only been able to find an approximate, but physi-
cRlly motivated, solUtioQ to thc self-consistent problem de-
fined by the Dyson equation and the self-energy (4.19}.

D. Approximate solution for the field-dependent
ImpurI[ty-averaged Green function

M "(m)=iI ~{co+F R) (4.23)

where I ~ is defined in (4.11) and. we suppress the real
part. U»ng (4.23) in the expression for the self-energy
(4.19), we get the following equation for the careen func-
tion:

We use the results obtained for equilibrium as a guide-
line in constructing an approximate solution for the
impurity-averaged field-dependent Green function. In
equilibrium, it is found' that the self-consistent solu-
tion of (4.21) and (4.22) is M(co) = —iI, with I =m p( V ).
The crucial observation is that the same solution would
have emerged even with the free Green function Go(k, co)
in (4.22); in other words one could equally well have used
Mo (4.5) instead of M (4.22). We use this piece of infor-
mation in making our first approximation: It is assumed
that M (4.20) can be evaluated with the field dependent-
free Green function G&. The calculation is similar to the
one performed in the evaluation of (4.11), and the result is

G(k~~, kl~, ki, a)}=G (k~~, kl~, kg,'co)+ g G (k~~, qi, ki, ~)
q Il, q II

—g(qII —qll )+II ~~

—+
~~

—+

ee ' ' V(q, , kz) V(q2, ki)
G (q2, k I~, kq', co) .

co E i I"~(co+—FR—
~ ~

)
(4.24)

In writing (4.24) we have defined a coordinate system
where the electric field defines a parallel direction, and the
two other directions are rcfened to as perpendicular direc-
tions.

The physical interpretation of (4.24) is the following.
We imagine the charge carrier entering fmm a field-free
region to a region of space 0 g R & I. where there is a uni-

form electric field. 6(k~~, kI~,'ki,'co) then describes the
propagation of a charge carrier from a state (k~~, ki,'m) to
a state (kl~, kz, ro) under the influence of a constant elec-
tric field and the resonant interaction with impurities.

Th]ts interpretation 1IDplics that a new approxlGlation

has been made. In the calculation of G& it was not taken
into account that the electric field extends over a finite re-

gion in space. Allowing for this would have complicated
the analysis enormously Rnd analytic progress mould hard-

ly have been possible. When writing (4.24) we assume that
the boundary effects do not play an important role and
that the physics is run by the "bulk" properties.

As it stands, (4.24) still seems impossible to solve
analytically. However» a QUITlerlcal solution may well bc
possible: One can evaluate the E.

~I
integral once and for

all and then pmceed by gome suitable iterative technique.
Instead of pursuing this line further in the present context,



we introduce yet another approximation which is motivat-
ed by our numerical experience for the field-dependent
level width (4.11); see the discussion below (4.11) and espe-
cially Pig. I. There we found that increasing the energy
brings the level width closer to its zero-field value. For
example, for F =10 V/m and R

~

=100 A the shift in the
cllcr'gy Rlglllllcllt [scc (4.23)] ls sll flclcllt to reduce tllc lev-
el width to essentially its zero-field value. Thus only the
first few scatterings have a width which significantly
differs from the zero-field value. Since we are neglecting
boundary effects anyway, we assume that the significant
contribution to the integral in (4.24) comes from the re-
gion &herc thc lcvcl width has relaxed to its zcro-
field value. In what follows, we approximate
I ~(co+I'R

~t )=Pm). But now a major simplification
Qcculs: Thc fclTlaInIng R

I~
dependence ls trIvlal, and ihc

intcgI ation is readily performed. Qnc obtaiIls

G(k~~, kj~, ki;co) =6~(k~~, kj~, k.;co)

cV(qadi, kr)
+ g G&(k~~, q~~, kr;co)

XG(q~(, kj~, kr, co) .

Equation (4.25) is now in a form which can be solved ex-
actly.

Before turning to the solution of (4.25), we mention that
the above approximations have resulted in a self'-energy
which does not depend explicitly on the external field.
The functions G& take into account the effects of the field
betueen the collisions exactly, and to our knowledge this
problem has not been treated in the literature. We will
show below that thc solutgons Qf thc approxiI11atc equation
(4.25) in a certain sense also constitute a self-consistent
solution to the full equations (4.19) and (4.20).

Let us now solve (4.25). Introducing a shorthand nota-
tion, wc rewrite It as

G(k, k') =G&(k,k')+ g G~(k, q)X(q)G(q, k') . (4.26)

I„(k,k') satisfies the boundary conditions
k

I„(k,k) =0, II(k, k') = I dq X(q),

and the difference equation

dI„(k,k')
=X(k)I„ I(k, k') .

(4.30)

By using (4.30) and (4.31) and inductive reasoning, it is
seen that I„(k,k') is given as

k
I„(k,k') =, I,dq X(q) (4.32)

and we obtain the final result

G(k((, k j(,kr, ro) =6~'(k ((,k j), kr, ro)

I k(( cV(q~~, kr)
g Cxp

co E i 1—"(RI —)
(4.33)

Equation (4.33) is an important result: To our
knowledge it is the first explicit solution to a field-
dcpcndcnt Dysoll cquRtlo11, and, 111 Rddltlon, it forms Ril
essential ingredient for the 6KB transport equations to be
constructed ln thc next section.

The first thing one has to check is that the solution
(4.33) reduces to the correct zero-field limit as I' +0. The-
limiting process is nontrivial, and one has to interpret
(4.33) as a generalized function to obtain a meaningful re-
sult. In Appendix 8 we show that

lim [e(x)(1/S )e ~&""'e""'""'"']=I 5(x)
F-+0 g(x =0)+iri

I„(k,k')= J„,dqi J,dqz . J, dq„X(qi) X(q„) .

The nth iterate of (4.26) is

G„(k,k')

cxp — [k —(k') ]6F

e(k —qi) . . 8(q —k')X(qi) . X(q )
g lp ~ o ~ p

Making the identifications

x =kii kii

g(x) =co ——,
'
[(x+kj~)I+kj~(x+kj~ )+kj~ ]

"ii+ cV(qadi, k I) + 2k',
kj( co E i 1 (co)——

(4.34)

(4.35)

whcl'c wc llscd tlic time Follrier transform of (3.g) for GII

(scc Table 1). The q; IIltegl'als can be manipulated to yield
Pl

OO

G(k, k')=G&(k, k') g ——' I„(k,k'), (4.2g)

(4.36)

which 18 the correct result. Thus our appx'oxIIDatc solu-
tion satisfies the correct boundary condition.
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y( )
c[V(q)]

co E —M —=
(co)

(4.37)

I.et us now turn to the consistency of our solution. The
result (4.33) was obtained for a self-energy which did not
depent exphcitly on the Green function itself [see (4.25)].
However, in constructing transport equations one needs a
self-energy which is an explicit functional of the Green
function. Therefore, we must now find a self-energy func-
tional which (i) explicitly involves G, and (ii) yields (4.33)
as a self-consistent solution to the Dyson equation. We

shall now show that neglecting the R dependence of M "
[see (4.20)], i.e., using M =, leads to a self-energy
which satisfies both of the above criteria. Consider now

M "=0(co)=iI (a)) . (4.39)

The proof of (4.39) is a direct calculation. We consider
here only the case for which the momentum dependence
of tile hybrldlzation matrix eleiiieilt V( q ) is so weak tlia't

it can be neglected, i.e., we choose V(q)=VO. Equation
(4.39) then becomes

(~)= g V(pi)G(pi, pi, ai) V(p2), (4.38)
P]» P2

and where G is given by (4.33). The consistency requjre-
ments are satisfied if one can show that

——8{ i
—u2)5(pi —p»II II

F

p2

6F (Pi Pz)(Pi +P—iPz+Pz ) — (Pi P2) 2PiF pir (~—E)2+I o

(4.40)

where I 0
———pm. VO (this sign choice corresponds to the retarded function) and we only consider the imaginary part of

the self-energy. The sum in (4.40) is conveniently evaluated by defining new variables via

k=pi —p2 Q=2{pi+p2»
when (4.40) transforms into

2
kll . c I

6{kll)exp i co+i
2

—e(Q)
pir (a) —E) +I'0

(4.41)

(4.42)

The calculation of the Q sum is straightforward,

g exp i e(Q) —=p f de(Q)exp i e(—Q) =2irp5F F

and we obtain

2

)=2 &VoX ~ kll "p „kll+ II
+'F F 24F F pir (~ E)'+I,'

In (4.44) one uses e(x =0)= —,
'

and finally obtains

M =
(co) =impVO =i I 0, —

(4.44)

(4.45)

which is the desired result (4.39). Thus the approximate solution (4.33) is also a self-consistent solution if one {i)

suppresses the R dependence in M (which seems plausible according to our numerical experience), and (ii) considers
only interactions which are weakly dependent on the momentum (which is almost invariable done).

This concludes our discussion on the dynamics (single-particle properties) of the RI.M in an external field; in the next
section we discuss kinetic equations derived with the aid of the main results of this section.

V. QUANTUM KINETIC EQUATIONS FOR THE RI.M

A. Ana1ytic continuation of the self-energy

In the GKB kinetic equation one needs the analytic continuations X of the self-energy [cf. (2.8)]. This is achieved by
repeated applications of the following "theorems. " If
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D(t, t')= f eh[A(t, t[)B(t[,t'),
then

)
D (t, t')= f ch, [A„(t,t, )B (t, ,t')+A (t, t, )B.(t„t')].

The self-energy functional of Sec. IV was

(5.1)

(5.2)

C g exp[ —i(q[ —qz) R]V(q[)V(q2)
X(q[, q2', (o) =c

co &—— y V(p[)6(p[, pz', ~)V(p2)
PI PZ

(5.3)

and X can be obtained from (5.3) with a straightforward series expansion. The nth-order expansion of (5.3) reads, in
time space (we suppress here all inessential variables),

X (thh')= f dt[ ' ' dt2»g[)(h —t[)6(t[—h2)g (pt 2
—h3) ' G(tp» [ —tz»)gp(tp» —h') (5.4)

Applying (5.2) repeatedly, one obtains

'(h h )"=I'Ch] hhhh [gp(h h, )G—(h] h'])' —'' gp (hh —h )+gp(h —h]) '' ' G (h] ] h] )gp(hh —h )+

+gp (t t[)G'(t[ ——t2} ' ' ' g p(h2 —h }] (5.5)

The series can be resummed, and the final result in io space is (note V's are suppressed)

0O

(~)= g &'"'(~o)
n=0

1

gp '(co) —6"(co)

1 1 1(to), , + gp (to)
gp '(to —6'(to) I —gp(~)6'(to) I gp(g—o)6'(to)

(5.6)

The second term in (5.6) vanishes because gp '(co}gp ((o)—=0. Reintroducing the momentum variables, we identify
T [G, „]in (5.6) and have therefore obtained

3

& (q[, qz, ~)=c g f T-' - [6"]6 (p[ p2'}T- - [6']
P) P2

(5.7)

This is an important result: Among other things it can be used to derive a Boltzmann equation with the full T matrix
rather than the Born approximation for the scattering probability, which is what the standard derivations usually lead to.
We also note that the above derivation is valid for cases where the T matrix is not explicitly solvable (for example, for
the elastic impurity case) and that it can be extended to the case where the Green functions depends separately on two
time labels, i.e., to the case of time-dependent external fields.

B. Quantum kinetic equations for the RLM

Using the notation of the preceding section, we can state the GI( B kinetic equations for the RLM [cf. (2.8)],
3

G„(k,k';]p)=G, ,(k, k';]p)kc f g G (k, q„]P)T [G, ,]G„(q„k', ]P), (5.8a)

6& ——,'c f (T "[G„] T"[6,]), 6 — c f (T"[6„]6 T"[6,]), —,'(6, +G„)

= ——,'c f IT [G„]6 T [G,], G j —,
' f IT"[G„]6 T [6,], 6 j . (5.8b)

In Eq. (5.8b) we have suppressed the intermediate position
and time integrations. The extremely nonlinear character
of these equations has been stressed by explicitly indicat-
ing how the various self-energy terms depend on the re-
tarded and advanced Green functions. Equations (5.8)
also clearly indicate the two-step structure inherent in all
(nonlinear) nonequilibrium calculations: The expressions

I

for the retarded and advanced Green functions are needed
as an input to the kinetic equation.

In the derivation of (5.8) the only approximation made
is that in the construction of the self-energy functional
only terms linear in the concentration were accounted for.
Other than that, Eqs. (5.8} give an exact prescription for
determining the transport properties of a system consist-
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ing of noninteracting electrons coupled to a dilute concen-
tration of resonant scatterers under the influence of an ar-
bitrarily strong static field.

One should note, however, that in the electron-impurity
system there is no mechanism to dissipate the energy fed
in by the electric field. Thus if one were to use Eqs. (5.8)
to determine the nonlinear current, for example, singulari-
ties may arise due to Joule heating. One should add terms
to (5.8) which would allow the dissipation of the Joule
heat. This could be done, for example, by coupling the
system to a phonon bath. An even more ambitious ap-
proach would be to consider simultaneously the nonequili-
brium phonon system as well. In our opinion the most
important feature of Eqs. (5.8) is that they allow an expli-
cit study of how the conventional impurity Boltzmann
equation is modified by an arbitrarily strong electric field.

TR [6] V( q &
) V( qz)exp[ i —( q ~

—q 2) R]
q ), qp m —E+iI 0

(5.9)

T [6,] is obtained from (5.9) by setting iI O~ il —
0

The use of (5.9) in the self-energy part of the collision in-
tegral of (5.8b) yields

To solve Eqs. (5.8) we use the approximate, but con-
sistent, solutions for 6'" obtained in the preceding sec-
tion. In particular, in the expression for T [cf. (4.17)
and (4.19)], M (to) is replaced by i I o' see (4.45) and the
discussion following it.

Consider now the terms which involve T[6„]. In
Secs. IVD and IVE it was shown that the solutions of
(5.8a), when substituted in the expression for the self-
energy, lead to the simple result

O'R(k, k';to)=c g f 2 exp[ i (k —q—, +q2 —k').R]V(k)V(q))V(q2)V(k')6 (q), q2,'co) . (5.10)0 (~—E)2+I 0q)~ qp

We recognize in (5.10) the resonant prefactor which is reminiscent of the energy-dependent relaxation time used in the
Boltzmann equation for the RLM. ' The energy-dependent prefactor in (5.10) will give rise to interesting additional
structure even in the Boltzmann limit, as compared to the elastic impurity problem, and we will now discuss this limit
where the physics is more transparent than in the cumbersome equations (5.8) or (5.10).

C. RLM transport equation in the limit of slow spatial and temporal variations

In order to use the gradient-expansion technique described in Sec. II, we transform the self-energy into the Wigner
coordinates. After some algebra one obtains

X(p,R;co)= 2 f O 8' g V(p+q)V(p'+q)G(p', R')V(p' —q)V(p —q)exp[2iq (R—R')] .
(to —E) +I'0

q~P

(5.11)

To appreciate the consequences of (5.11) let us make, once again, a connection with the more familiar elastic impurity
case. The prescription of obtaining the elastic impurity result from (5.11) is to replace V(k)V(k') by V(k —k') (and
suppress the resonant prefactor which resulted from using the T matrix instead of the Born approximation),

r' (p, R;to)=8c f O'Z' g ~
V(p —p') ~'6(p', R')exp[2iq. (R—R')] . (5.12)

The q summation can be performed to give —,5(R—R'); hence, (5.12) is identical to the conventional result (A15).
There is a fundamental difference between (5.11) and (5.12): The collision integral resulting from (5.11) is nonlocal in the
R variables (because the summation variable q appears explicitly in the scattering matrix elements). To be explicit, the
collision integral for the elastic impurity case is (within the gradient approximation)

I' ~[6]= —c g ~

V( p —p ')
~ [6 ~

( p ', to; R, T)6 ~
( p, co;R, T) G~ ( p ', co; R, T)6—~

( p, to; R, T)],
+ p

P

whereas for the RLM it is given by

I " [6]=— —f O R' g exp[2iq (R—R')]V(p+q)V(p'+q)V(p' —q)V(p —q)
(to E) +I—

(5.13)

X [6~(p ', co;R', r)6 ~(p, to;R, T)—6 ~(p ', to;R', T)G ~(p, co;R, T)] . (5.14)

To simplify (5.14) further (and to include the driving terms as well), we use the Ansatz (3.20) for the Green functions; the
spectral density is given by (3.32). Note that it would be inconsistent to use here a spectral density which includes
scattering because we are working in the lowest order in the concentration, and (5.14) already is of the first order in c.
By putting all the pieces together, and specializing to the Gaussian-model interaction discussed in Sec. IVC, (5.14)
reduces to
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[V e(p). V-+F.V-]f(p, R)= g f O'R'- p, V (p)V (p')
[e{p) F.R Q]2+1 02, {21rA, )

X5(e(p) —e(p ') —F (R—R'))[f(p, R)—f(p ',R')] .

D. Special case: A localized interaction

In the limit A, ~O, the exponential factor in (5.15) be-
comes a representation of a 5 function and further simpli-
fication can be achieved. For A.~O, we have

[V'-, e(p). V-„+F.&-, ]f(p, R)

cV()

[e(p)—F.R—E]2+I 0

X g 5(e(p ) —e(p '))[f(p, R)—f(p ', R)]

Tliis forni is exactly tile RLM Boltzmann eqliation, apar't
from the field dependence of the resonant prefactor.
Equation (5.16) can be transformed into

I
e( p ).7-+I' cos8———sin8

P R p Jp
f (p, 8,R)

[f(/»8, R}—f{/»R) l
r(e(p) —F R)

where f is the angular average of f,

f(p,R)= f f(p, 8,R), (5.18)

cp V()

r(e) (e—E)'+I.,' (5.19)

In obtaining (5.17) we changed variables via

p —+(p —=
~ p ~, 8) and used the constant —density-of-states

Equation (5.15) contains the following important features.
(i) Nonlocality in space. This is due to the finite range of
the model interaction. (ii) Field dependence in the col-
Ilslon 1ntcgral. This ls a conscqucncc of the cncI'gy-
dependent prefactor characteristic of the RLM. For elas-
tic impurity scattering, no such field dependence would
occur. The field-dependent energy shifts in (5.15}are easi-
ly understood if one recalls that the potential energy is po-
sition dependent as a result of the applied electric field.
(iii) Equation (5.15) cannot be reduced to a relaxation-time
form as is the case with the ordinary impurity Boltzmann
equation. (iv) Equation (5.15) is consistent with the con-
tinuity equation only when coarse-grained over a distance
several times the range of the Gaussian-model interaction.
Accordingly, 1Q thc next scctlon wc consider a Iocallzcd
interaction for which the continuity equation is explicitly
satisfied.

(5.15)

approximation.
Equation (5.17) is not a relaxation-time Boltzmann

equation in the usual sense: The nonequilibrium distribu-

tion function f (p, 8,R) relaxes towards its angular average
rather than towards a local equilibrium distribution func-
tion. This point was incorrectly formulated in the recent
Letter by the present authors. The angular average f
does not relax at all: This behavior is a reflection of the
lack of dissipation (i.e., no inelastic scattering mechanisms
are included) in the system under study.

The lack of dissipation makes it meaningless to try to
evaluate a nonlinear current from (5.17). To clarify the is-

sue let us consider a simplified case where spatial varia-
tlons can bc supprcsscd Rnd whcrc thc relaxation time can
be viewed as a constant. In one dimension, where the
variable 8 acquires only values +1, (5.17) reduces to

f (/ ) = —— [f{/» —f{—/»] .1
(5.20)

Bp 2'r

It is not difficult to see " that (5.20) has no solutions
(apart from f =const, which is a trivial one and leads to a
vanishing current), even though it does have a well-
defined /inear (in F) solution in agreement with the
Boltzmann theory.

One might attempt to transform (5.17) into a more
tractable form with the substitution

f(p) =f (e(p)) —F ' p X(e(p)), (5.21)
Be(p )

which is very useful in ordinary Boltzmann theory. Sub-
stituting (5.21) in (5.17), one finds (we consider again only
the spatially homogeneous case)

Fp cos8 —E X(e(p))+@2cos28 pep
Be(p}

Fp cos8X(e( p )—) . (5.22)
I

However, (5.22) is a well-defined equation only in /inear
theory when the quantity in brackets can be neglected;
otherwise, the 8 dependence does not cancel, which is an
inconsistency because X is assumed to be independent of 8.
Therefore, contrary to the arguments put forward in our
Letter, it is not possible to transform the high-fidd RLM
Boltzmann to a form where a local equilibrium function
appcRI's.

Arai ' ' has recently discussed a model system where
the electrons scatter off from (i) elastic impurities, and (ii)
phonons. The latter scattering mechanism is modeled by
a relaxation-time approximation. Owing to the presence
of dissipation, this model is well defined even in the non-
linear regime, and its behavior is quite interesting. How-
ever, a microscopical justification for Arai's model (in the
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sense of our treatment of the RLM) has not yct been
given.

To summarize, the specific example of RLM must be
viewed as a partial description of any realistic high-field
transport situation; what we have done in Secs. IV and V
is to apply the general techniques developed in Secs. II
and III to give a rigorous description of an energy-
dependent impurity scattering mechanism under high-
field conditions.
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APPENDIX A: HIGH-FIELD COLLISION
INTEGRALS FOR ELECTRON-PHONON
AND ELECTRON-ELASTIC IMPURITY

SCATTERING

1. Introduction

In recent years a number of quantum-transport equa-
tions with explicitly field-dependent collision integrals
have been reported. These include (i) Barker's early work
based on a superoperator technique, (ii) his more re-

cent calculations with the Kadanoff-Baym formalism, zs

(iii) the extensive series of papers by Seminozhenko,
Yatsenko, and collaborators (see Seminozhenko's review

article for references to original papers), and (iv)
Calecki's and Pottier's further developments of
Levinson's classic work. Many of the results quoted
above are partially overlapping though obtained with dif-
ferent formalisms; the details of the calculations are, how-

ever, not always easily reconstructed, and the aim of this
L

2. General form of the collision integra1

The form (2.6b) of the 6KB quantum kinetic equation
is well suited for studies where one performs a gradient
expansion in the slowly varying variables. For example,
the Boltzmann equation follows from (2.6b) as the
lowest-order term in the gradient expansion if one dis-

cards the terms [X, 6 ] and [X, 6] on the left-hand
side of (2.6b). This omission is consistent if the self-
energy contains a small parameter (the electron-phonon
coupling, the impurity concentration, etc.), because in that
case these terms are of second order in small quantities
[see the gradient-expansion rules for commutators and an-
ticommutators (2.9)]. In cases where one wants to retain
the full time dependence, the omission is not permissible

and the terms [X, 6 ] and [X, 6] must bc included ln
the analysis. We move these two terms to the right-hand
side of the GKB kinetic equation and obtain the following
coll181on 1ntegral:

I[6 ]=[X,6 ]+[X,6]——,
' jX», 6'j

jg) 6» j

For 6», (Al) assumes the following explicit form:

(Al)

appendix is to present a unified, simple, and fully self-
contained derivation of what .seems to be an accepted
form for the high-field electron-phonon and electron-
elastic impurity collision integrals. Our derivation is
based on the GKB formalism introduced in Sec. 11 of this
report, and serves as an illustration of the utility of the
field-dependent Green functions discussed in Sec. III.

tI(6»)= —f dhX»(t t)6'(t, t') f dt 6~(—t tX)»( tt') +f dhX'(t t)6»(t, t')

+ f dh6»(t, t)X'(t, t')+ f dt[6»(t, t)X»(t, t') —X»(t, t)6»( tt')].

In the derivation of (A2) we made use of the following
identities valid both for 6 and X:

A (t, t') = —,
' [A.(t, t')+A„(t, t')],

A, (t, t') =B(t' t)[A»(t, t') A—~(t, t')], —

A„(t,t') =B(t t')[A (—t, t') A'(t, t')] . —

The result recently reported by Barker [Ref. 9, Eq. (7)]
contains a typographical error in which thc last line of
(A2) is missing. However, in the construction of the
VA'gner function one requires the equal time piece of G ~

[see (2.5)], and this missing term vanishes. The equal time
piece of (A2) is

I(6'(t, t))= —f dt(jX», G~ j —jX', 6» j) . (A4)

The important point to note about (A2) is that the col-
lision integral is explicitly time dependent, and hence the
Boltzmann picture with completed collisions is no longer
valid. In other words, neglecting the commutator terms in

I

(Al) and performing the lowest-order gradient expansion
amounts to making the classic Stosszahlansatz.

In the next two sections, we will work out the explicit
form of (A4) for electron-phonon and electron-elastic im-

pur1ty scattering.

3. E1ectron-phonon co11181on kntegra1

In what follows we perform a gradient expansion in the
position variables while keeping the complete time depen-
dence in its exact form. In thc evaluation of (A4) we need
an expression for the electron-phonon self-energy; we
choose

X (p, R;t, t')= g i V(q)
i

6 (p —q;R;t, t')

XDO (q, t —t'),

where we used the analytic continuation theorem for
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"parallel" functions" and assume, for simplicity, that
the phonons are in thermal equilibrium. We make the an-
satz (3.20) for the nonequilibrium electron Green function,

(A7) in the collision integral.
For completeness we also quote the standard expres-

sions for the equilibrium phonon Green functions,

6 (p, R;t, t') =iA (p, R;t, t')f(p, R;(t+t')l2),
(A6)

Do (k, t) = g (N -+—,g+ —,
'

)exp( i—rtcokt),
qktf=+]

6 (p, R;t, t')= iA—(p, R;t, t')[1—f(p, R;(t+t')/2)],

where

A (p, R;t, t') =exp, i f—dt e( p —A(t) )
h

(A7)

(see Sec. III 6). Since we assume that the phonon matrix
element

~
V(q)

~
is small, it is consistent to use the form

Do (k, t) = g (X -„+—,g+ —,
'

)exp(igcokt) .
q=+1

In (Ag), g=+1 ( —1) corresponds to phonon emission
(absorption), respectively.

We now substitute (A5) and (A6) in the collision in-
tegral (A4); after some simplification one obtains, using
the shorthand f(p) —=f(p, R; —,(t+t)),

I[f]=—f dt g ~
V(p —p')

~

f(p')[1 —f(p)]2Re[A(p', t, t)A(p, t, t)D (p —p', t —t)]

+ f «g
~

V(p —p') ~'[1—f(p')]f(p)2Re[A(p', t, t)A(p, t, t)DO (p —p', t —t)]. (A9)

Use of (Ag) in (A9) allows us to write

I[f]=—f dt gS'"(P, P ';t, t)f(P')[1 —f(P)]+ f dt QS'""(P,P ', t t)[1—f(P )lf(P)
p

P P

where the incoming and outgoing scattering kernels are given by
—+

S'"(p, p';t, t)= g ~

V(q)
~

2Re exp i —dt&[e(p') —e(p) —geo~] (N + —, +Tri)5

q=+ ].

S'"'(p, p', t, t)= g ~

V(q)
~

2Re exp i f dt—~[e(p') e(p)—+rico~] (X + —,'+ —,'g)5

fl=+ j

respectively, and where

p=p —A(t&), p'=p' A(t~) . — (A12)

where we inserted a factor exp[(t —to)5], 5—+0, to ensure
convergence. Equation (A13) is readily evaluated as

J(to)=m5(e(p) —e(p ')+geo~) .

Thus when the external fields are turned off we recover

We note that the scattering kernels satisfy
Sktl( + ~ f. t t) SQLlt(~t ~.t t)

It is interesting to compare our result to those obtained
in the literature. In Refs. 7 and 23—25, the external field
is turned on at the time t =0, and the time integrals in ex-

pressions analogous to (A10) run from 0 to t. This ap-
pears very natural; before the external field is turned on
the system is in thermal equilibrium and the collision in-

tegral should vanish. It is, therefore, an important con-
sistency check to verify that our results meet this require-
ment. In equilibrium the distribution functions do not de-

pend on time, and for any time to before t =0 the time in-

tegrals reduce to the form

J'(to)= f dt cos[(t —to)[e(p ') e( p)+rico~]]-
Xe" "", (A13)

the conventional energy-conserving 5 function and the col-
lision integral vanishes by the same argument as in ordi-
nary Boltzmann theory.

On comparing our results with Barker's results, ' we
find a discrepancy in the time arguments of the Wigner
functions: We have —,'(t+t), whereas Barker has t. Else-
where in the literature, Calecki and Pottier ' agree with
Barker, whereas Seminozhenko's and Yatsenko's results
coincide with ours. In practice, this difference may not be
very significant because the time dependence of the
scattering kernel S(t, t') dominates that of the slowly vary-
ing VA'gner function and one may well approximate
f( —,'(t+t))=f(t). Theoretically, it would be interesting
to understand the origin of this difference. While we can-
not offer a definite explanation of this point, we speculate
that it arises from the nonuniqueness of the Wigner func-
tion: It is possible to construct several different "distribu-
tion" functions from the density matrix which satisfy the
same relations to expectation values as our choice (2.5).

Also our specific Ansatz (A6) for 6 may play a role in
this curious phenomenon. We refer the reader to Ref. 28
for a further discussion on the different representations of
the Wigner function.

Finally, the scattering kernel reported by Barker '

contains an exponential damping term exp[(t t )lr J, —
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where I/~ represents the "joint collision broadening of
states p, p

' against all scattering processes. " In the next
section we give an explicit derivation of such a damping
term.

4. Electron-elastic impurity collision term

3

X (p, R;t, t')=c I i V(p —p ')
i

26 (p ';t, t') .
(2m )

(A15)

In the dilute concentration limit we may use the Born
approximation to the self-energy

The self-energy (A15} leads to the following collision in-
tegral:

3 I

I(f)= I dt f c
~

V(p —p')
~

[A(p', t, t)A(p, t, t)+A(p, t, t)A(p', t, t)][f(p, —,'(t+t)) —f(p', ,'(t—+t))]
(2n. )

3

3
V p —p

' 2 cos dt
&

e p —A t ]
—E' p —A t

(2m. )'

x[f(p, —,'(t+t})—f(p', —,'(t+t))] . (A16)

Equation (A16) is analyzed in detail in Seminozheko s re-
view article. For dc fields and in the limit of large
times, the field dependence of the collision integral (A16)
can be analyzed in terms of Fresnel integrals.

Let us now turn to the evaluation of the damping term
exp[(t t)lr] menti—oned in the preceding section. Clear-
ly, this additional term must arise from the spectral func-
tions. In other words, one has to solve the Dyson equa-
tions for the retarded and advanced Green functions
including impurity scattering, and then construct the
spectral function according to the prescription
A = i(G, ——6„}. For the impurity problem, the Dyson
equation reads

6(p, t, t') =6~(p, t, t')+ I dt, dt, G"(p, t, t, )

&(X(p, t&, tz)6(p, t2, t'),
(A17)

where we use the field-dependent Green function in vector
potential gauge (3.4) and make use of the fact that since
we are dealing with a uniform system all quantities are in-

dependent of R. Finally, the self-energy is given by (A15).
As it stands, (A17) is a nonlinear integral equation (be-

cause X involves 6) and its exact solution seems difficult.
However, in equilibrium the solution of (A17) is well
known (see, for example, Ref. 20) and it leads to the fol-
lowing self-consistently determined self-energy:

X,,q."'(p, t, t') =+ 5(t t'), —
27

where

(A19)

In (A19), p is the free-electron density of states at the Fer-
mi surface and the angular brackets stand for an angular
average. We now assume that (A18) also holds in the
nonequilibrium situation. This assumption can be charac-
terized by saying that instead of the normal elastic impur-
ity problem one considers the so-called Gaussian white-
noise problem (GWN). GWN has recently been studied
extensively by Hansch and Mahan.

The explicit solution of (A17) with the assumption
(A18) is a straightforward calculation. Consider, for ex-
ample, the first iterate of (A17). For definiteness, let us
first calculate the retarded function. One finds

G„(p,t, t') =G„(p,t, t')exp
27

(A21)

A similar calculation for 6, yields

G, (p, t, t, ')=G, (p, t, t')exp

and one finally obtains the spectral function

A (p, t, t, ') =exp i dt—&e(p A(t,)}—
Q exp

27
(A23)

The use of (A23) in the collision (A4) leads to an exponen-
tial damping term as introduced by Barker. ' ' One
may also include a finite width in the phonon Green func-
tions (AS); a straightforward calculation then leads to the
"joint width"

1 1 1+
7eff 7 7ph

in the exponential damping term. It should be noted,
however, that the above solution depends crucially on the
assumption (A18) made on the self-energy. In the main
body of the text, we perform a similar calculation for the
RLM with less restrictive assumptions (see discussion in
Sec. IVD).

6„'(p, t, t') = —— dt, G„(p, t, t& )6, (p, t&, t')
00

t —t'
6„(p,t, t') .

27

The iteration can easily be repeated and the resulting
series summed to give
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APPENDIX 8: ZERO-FIELD LIMITS
OF FIELD-DEPENDENT GREEN FUNCTIONS

D(x)= lim e(x) e—"("/ te'"/Ft1

F~o
(B1)

where g is a positive infinitesimal. We want to show that

The frequency representations of the free field-depen-
dent Green function (3.8) and the Green function of Sec.
IV D are formally divergent in the limit F~O. We show
now how the correct zero-field limit can be obtained if
these functions are interpreted in the distribution sense.

Consider a generalized function D (x) defined as

D( )
6(x)

g(x =0)+ill
Consider now the effect of D(x) on a suitable test func-
tion f(x),

d= f dxD(x)f(x) . (B3)

If we can show that

f (0)
g (0)+ig

the proof is complete. The proof proceeds by a direct cal-
culation:

d = lim dx —e "'" 'e'" 'g'"'f (x)
1

F o o F

= lim
F~O

gt +itg (Ft)f—(Ft) f (Ft)—gt + itg (,F~)

+ (F)+ F '(F), I' & — + (F)+ F '(F) (B5)

Upon arriving at the second line of (B5) we changed the
variables via x/F =t and integrated by parts. The first
term in (B5) leads to the desired final result (B4) and the
second term vanishes, which can be seen by the following
reasoning: Consider the derivative of the term in the
square brackets. The differentiation produces a multipli-

cative factor of F which can be moved outside the in-
tegral. The remaining integral is convergent [note the im-
portance of the convergence factor exp( rit)), a—nd hence
a zero net result is obtained as the external field tends to
zero. This completes the proof of (B2).
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