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Electronic excitations in semiconductors. II. Application of the theory to diamond
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A previously developed theory for calculating electronic excitations in semiconductors is applied
to diamond. The starting point is a self-consistent-field calculation within a given basis set of
Gaussian-type orbitals. From that the fully correlated electronic wave function and correlation en-

ergy are calculated. The reduction of the direct energy gap and the widths of valence and conduc-
tion bands due to correlations are studied and compared with experiments. The results can be un-

derstood in terms of simple physical pictures. The largest correlation energy contribution results
from the polarization cloud of the excited electron and hole pair, but changes in the ground-state
correlations due to the presence of the excited electron are also of importance. Intra-atomic correla-
tions such as relaxation effects are only estimated from molecular calculations. A detailed compar-
ison with other methods is made, in particular with the local approximation to the density-
functional formalism.

I. INTRODUCTION

In an earlier paper, ' denoted in the following by I, a cal-
culation scheme was developed which allows for a quanti-
tative treatment of electron correlations in the excited
state of semiconductors. It is based on a previously
developed local approach to thc COITclat1on problem,
which has been tested before for atoms and small mole-
cules. It also was applied to ground-state calculations of
diamond, where it was demonstrated that the correlated
ground-state wave function of a solid can be calculated
with an accuracy which is comparable to that of quantum
chemistry calculations for small systems.

The aim of the present investigation is to apply the gen-
eral theory of electronic excitations in semiconductors to
the special case of diamond. There are several reasons for
choosing that substance. First of all, there are relatively
good self-consistent-field (SCF) calculations available4
which are required as a prerequisite for correlation energy
calculations. Furthermore, the ground-state wave func-
t1on an«i cnclgy have bccn calculate«i bcforc as mentioned
above. Also, the Wannier orbitals which describe the
valence bands are well localized. This facilitates the nu-

merical part of the correlation energy calculations. Final-
ly, it is well known that electronic correlations are very
important for an understanding of the excitation spectrum
of diamond. For example, SCF calculations yield a direct
energy gap which is approximately twice as large as the
experimentally observed one, i.e., 15 CV as compared with
7.3 CV. This difference must then be due to correlations.
It is, therefore, of interest to study how the different
correlation energy contributions discussed in I result in
such a reduction of the gap. Furthermore, the width of
the valence bands comes out too large in a SCF calcula-
tion, namely 29 CV, as compared with the experimental
value of 24.2+1 CV. Intuitively, it is obvious that corre-
lations should lead to a reduction of the bandwidth. This
is so since the hole (or electron) drags with it a cloud con-

sisting of bond polarizations, relaxed charge distributions,
changed ground-state correlations, etc. , which Inake up
thc quaslpartlcle.

The present application to diamond of the general
theory developed in I is limited to interatomic correla-
tions. They can be described within the space spanned by
the bonding and antibonding Wannier functions. This im-
plies that here we can exclude relaxation effects. Their
treatment would require working with a larger basis set.
This does not pose any problems, but has not bccn done
yet. Their contribution, e.g., to the reduction of the ener-

gy gap can be estimated from molecular calculations and
is considerably less important than the one due to inter-
atomic correlations. Therefore we will leave a detailed
treatment of intra-atomic correlations to a future investi-
gation.

The paper is organized as follows. In Sec. II we list the
basic relations which are required for the correlation ener-

gy calculations for diamond. Section III is devoted to
SCF calculations. They are a prerequisite for correlation
energy calculations. In Ref. 3 SCF calculations for dia-
mond were presented. However, while their accuracy was
sufficient for ground-state calculations they are not accu-
rate enough for the computation of the SCF energy bands;
therefore we improve these calculations by applying a
Slatcr-Koster fit9 to the SCF band structure of Mauger
and I annoo. Section IV contains the interatomic correla-
tion energy calculations for diamond without the changes
due to ground-state correlations. The latter are calculated
111 Sce. V wllci'c a dlseusslo11 of the cffcet of iilti'a-ato1111e
correlations is also given. These two sections not only
give the numerical results for the theory developed in I
but also contain their physical interpretation. Although
the formalism which is required for a quantitative treat-
ment of the correlation energy is not particularly simple,
the final results and the physical picture which emerges
from them are simple. Section VI is devoted to a cornpar-
ison of the present theory with alternative methods. Par-
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ticular attention is thereby paid to the local appxoximation
to the density-functional method. Other approaches like
the Green's-function method are also discussed. Finally,
Sec. VII contains a brief summary and the conclusions.

II. BASIC RELATIONS

Wc summarize in the following the basic equations
which are needed for a correlation energy calculation for
diamond. Their derivation as well as further details can
be found in I.

The starting point is a basis set of E functions f;(r)
within which all calculations are done. The f;(r) consist
of groups of Gaussian-type orbitals (GTO's). Their over-
lap is given by (f;

~ fj &=SJ. Within the Hilbert space
spanned by those functions, the Hamiltonian is written as

II = ~ &Ijai.oaj~+ T ~ ~ij'kha~&k0'aha'aj'o .
i j,k, I,

Ia, o

The a; are the expansion coefficients of the field opera-
tors 4 (r) when expressed in terms of the basis set f~(r).
The ej and VIkl are defined as

e,j = I d'r f,*(r) — b, + V(r) f)(r),2'

The O~„are local operators which generate a correlation
hole around each electron. We want to consider only that
part of 0 „~ @scp& which generates two-particle excita-
tions out of the ground state. This is done by forbidding
any contractions within the O~„operators when expecta-
tion values are evaluated. The Om„operators take the fol-
lowing three forms:

IIm IIIm Pmn

I

0 . "m "n = g "mn+IInn'
mn 0' ~l

sm s~

Furthermore n =b b and ( s ) =b s bm
The indices m (and n) refer to local regions which are

characterized by local functions gm(r). The bm create an
electron in state g (r). Again m =(m, ib) consists of a
cell index m and an index p for different functions within
a cell. The g ( r ) are expressed in terms of the f;(r ) as

g (r)= g y;f (r)
. i=1

and are specified by the matrix y;.
The operators P „(k,b) and Q „(k,b) have the proper-

ties of projection operators. They are defined by

I
c'scp& =c'- 0m. I

~'scp&
(8)

V(r) is the single-electron potential and e and m are the
electronic charge and mass, respectively. The index i is
assumed to contain the cell index i of a crystal as well as
the index I describing different functions within the unit
cell, i.e., i =(i I) The s.ame holds true for the indices j, k,
and l.

The SCF ground state of diamond is denoted by

~
Nscp&. When an electron is added to or taken out of

~ @scp &, one obtains the SCF excited states
r

[ 4.(k, b) &
=

c~
~
Cscp&p & lp ~ ~ p 4

c~
~
4scp&y 6 —5p ~ ~ p 8

(3a)

(3b)

The operator S is of the form

S=—g fI)' „'0 „P „(k,b)+I)'„'0 „Q „(k,b)] .

The operator c creates an electron with momentum k
kho

in the conduction band b =1, . . . , 4, while c- destroys

khan

an electron in the valence band b =5, . . . , 8.
In the following we shall consider the case (3a) where

an electron is added. All the following equations can be
easily changed to the case where an electron is destroyed.
The correlated wave function is written as

I @scp& .

0 Q (k 6) i@ scp&= 0.

The parameters I)' „' are determined by ground-state cal-
culatlolls. Tllc Pal'RI11ctcrs Y/mn do II01' follow froln a
ground-state calculation and are characteristic for the
added electron. They are obtained from minimizing the
quasiparticle energy e(k, b). The latter is calculated with
the help of a linked cluster expansion

e(k, b) = (9)
c„, (e~)fe'cf

khan

k ba

Here the subscript c indicates that only connected contrac-
tions must be taken when the expectation value is evaluat-
ed. The notation ( & is an abbreviation for
(@scp

~

'
~
Nscp &. Tllc dctcA111nlng cqllatlolls for thc

I)m„are then

Be( k, b)
(e)

9mn

One can decompose e(k, b) into a SCF part escp(k, g)
=(c- Hc- &

—(H& and a correlation energy partkbo kbo
e„~(k,b), i.e.,

e(k, b)=Escp(k, b)+E (k,5) ~

%'e proceed by showing first how the q„'~ are determined
in practice and how e„(k,b) is evaluated. This implies
the evaluation of the expectation value [Eq. (9)t for dia-
IDond, which 18 t4e central ptobleID of this paper. There-
by, one replaces expS =1+S. The further evaluation is
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done in several steps.
First, one expresses the Bloch states in terms of Wan-

nier functions utt, i.e., the corresponding operators are re-
lated by

c-„=E, ' ge, (k, b)wt exp(ik Rt) . (12)

Here, r =(L,i), and Rt denotes the position of the tth unit
cell and X, their number.

Then, the evaluation of Eq. (11) is reduced to the com-
putation of local expectation values

(~)(tttt'oIfomnttito }o ~

(13)

where the abbreviations Om„= Om„Pm„and Om„'

=O~„g~„have been introduced. As it is shown in I, the
evaluation of these local matrix elements can be reduced

I

to multiplications of matrices of the form

z, = (a,.b .}, D,„=(a,.b .),
F „=(b .b„.), D „=(b .i„.),
Cit = (tIiolttlo }i Cmt =(bttloutto } ~

together with the Pock rllatrix and the interaction matrix
Vjki. Having evaluated these matrices and from them the
above local expectation values, one introduces the function

G„(k,b)=e*,(k,b)eq(k, b)exp[ik (R, —Rt)] .

With its help, one can convert for any operator A the local
matrix elements ( wt +wt ), into the Bloch basis through

(A) =X, 'g G«(k, b)(lit;QWto },.
t, t

Within that notation the determining Eq. (9) for the pa-
rameters I)'„'(k, b) leads to (see I)

r

(ao",'„, ) —g ~"'„-((o"'.„-)t[II—C(k,b)]o"'„)-„„ I((o", ) [H —C(k, b)]oj' )-„„I
m', n'

Thc lRst factoI' denotes R matrix 1IlvcI'sion. Since on thc

right-hand side (rhs) of that equation e(k, b) appears,

which depends on I)'„'(k,b) itself, Eq. (17) must be solved
self-consistently.

The physical meaning of the different terms entering
that equation is the following. The first term on the rhs
defines the gain of interaction energy between the charge
of the quasiparticle and its polarization cloud as compared
to the unpolarized system. The second term containing
the ground-state parameters 11 „ introduces the effect of
the ground-state correlations on the polarizability of the
system. The polarization of the medium is due to
particle-hole excitations, their energy together with thc
dipole-dipole interaction energy enters the denominator of
Eq. (17). The parameters I)~„are determined by the bal-

ance of thc cncIgy 1Il thc numerator RIld denominator.

After one has determined the I)'„'(k,b) the correlation

energy can be evaluated according to

c,.„(k,b) =~,".,',(k, b)+c,".„(k,b),

c,".„(k,b) = —g q'„'(ao'„') „, ,

with

D =1+ g g ~'"„'(k,b)~'."'.„'.(k, b)(O'".'„'.O.'"„')
m, n, a m', n', x'

(19)

I

In the next sections this computational scheme will be ap-
plied to diamond and we will follow, thereby, the
described procedure step by step.

Ill this scctlo11 wc describe tllc collstluc'tlo11 of tllc WaI1-
nier functions which are required for the correlation ener-

gy calculations. SCF calculations for diamond were
presented in connection with the ground-state calcula-
tions.

The bonding Wannier functions are closely related to
bonding functions P;(r ) which span the space of occupied
SCF orbitals in the ground state of diamond and have
been calculated in Ref. 3. We first recall the construction
of the P;(r). It is based on a method developed by Stoll
and Preuss, ' '" which uses localization potentials and ap-
plies to closed-shell systems. For the details of the
method we refer to the original literature. The calcula-
tions of the P;(r) employ for each atom a 7s/3p GTO
basis set in a form optimized by Ross and Siegbahn for an
lsolatcd C atoII1. Tllls sct ls colltlactcd 11lto a sct 4$/2p
with a contraction 4+ 1+ 1/2+ 1 and contraction coef-
ficients taken from Ref. 12. The normalized Gaussian
groups &pl(r), . . . , t(t6(r) are listed explicitly in Table I of
Ref. 3. Here these functions are denoted by f„(r},where
n =(n, v) consists of a cell index n and an index v count-
ing the basis functions per cell. ' Per atom there are 12
basis functions, since each of the p-type Gaussian groups
1(5(r} and 1(t6(r) contains four nonorthogonal functions of
p symmetry pointing into the four different bond direc-
tions. The occupied SCF orbitals in the ground state are
given by

P;(r)= g'c;„f„(r), (20)
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where the c;„can be found in Table II of Ref. 3. For a
given cell i the intracell index ~= 1, . . . , 6, since there are
two ls-core functions and four bonds per cell. The prime
in the sum over n implies that only one site contributes to
a ls-core orbital, while for a given bond orbital only those
two sites contribute which are adjacent to the bond.

At this point it is advantageous to define from the bond
functions P;(r) atomic hybrid functions f„(r) which con-
tain only functions f„(r) centered at one particular atom.
After they have been orthogonalized to the ls-core func-
tion of the same atom and normalized, the f„(r) are
given by

f„(r)=gc„;f(r), (21)

where the c„; follow from the c;„of Eq. (20). The
nonorthogonal f„(r ) can be considered as a minimal basis
set for the valence electrons, which will be used later when
the interatomic correlations are treated. Next we con-
struct from the hybrid functions f„(r) bonding and anti-
bonding functions 8„(r ) and A „(r ),

B„(r) =(2+S„„) '/ [f„(r)+f„(r)],
A„(r)=(2—S„„) ' '[f„(r)—f„(r)],

(22)

where n and n denote the two hybrids out of which the
bond n is formed and S„„=(f„I

f„)is the overl-ap be-

tween these orbitals. The core orbitals can already be con-
sidered as Wannier functions since their overlap is negligi-
ble. The functions 8;(r) and A;(r) must be orthogonal-
ized in two further steps. Firstly, they are orthogonalized
with respect to all core states. The resulting bonding
functions (labeled by a prime) are then orthogonalized
with respect to each other according to

8;(r)=g(U ' )JB;(r), (23)
J

with UJ ——(8
I BJ ). For the computation of U '/ we

employed an iteration procedure which is an extension of
a technique due to Lowdin. ' The iteration equation

( U
—I/2) I [3I ( U

—I/2) U( U
—I/2) ](U

—I/2)

with (U '/
)o

——A, I, has been solved for a cluster of 79
unit cells leading to a high accuracy for (U '/

);i, i.e., the

relative error is less than 10 . Rapid convergency is ob-
tained for A, =0.7. The same procedure is repeated for the
antibonding functions A (r). They are first orthogonal-
ized with respect to the 8;(r) and then with respect to
each other.

The completely orthogonalized bonding and antibond-
ing functions 8;(r ) and A;(r) do not yet have the proper-
ties of Wannier orbitals as (A;

I
Ho

I 8; )&0 in distinction
to true Wannier functions. A further rotation is required
in the space spanned by the 8; ( r ) and A; ( r ) in order to
find the true Wannier functions. This is achieved by per-
turbation theory and resembles therefore, the extended
bond orbital approximation (EBOA). ' The Wannier
functions 8; (r) and A; (r) which block diagonalize the
Hamiltonian are

—I /2

8, (r)= 1++
J

8;(r)+ g AJ(r), (25)
J

and a similar expression holds for the A,E(r ).
Here

~=&A; IHo IA;& —&8 IHo IB, &, F;, =&A; IHo IB, &

are the coupling matrix elements, and Ho is the SCF part
of the Hamiltonian. Instead of calculating 5 and the I'ij.
from the functions A;( r ) and 8; ( r ), we determine them by
means of a Slater-Koster representation of the SCF ener-

gy bands of Mauger and Lannoo. This compensates for
the relatively small set of basis functions used in Ref. 3.
The point is that the functions P;( r ), as determined by the
method of Stoll and Preuss, are slightly too localized as
compared to Ref. 4, where a basis of Slater functions has
been used. The SCF bands of Mauger and Lannoo are
more accurate and have also been used in other investiga-
tions. ' But it should be pointed out that even these bands
contain overall uncertainties of about 1 eV.

The Slater-Koster fit has been done for the princi-
pal directions b, =[100] and A=[111], where one can
make use of symmetry considerations. Thereby the cou-
pling matrix elements FJ are taken into account up to
second-nearest neighbors (Table I). The vectors
Ra=(a/4)(n„, ns, n, ) denote the lattice vectors between
different bonds i and j, and a is the lattice constant. The
energy eigenvalues esc„(k,b) which result from the

TABLE I. Parameters of the Slater-Koster representation of the Hartree-Fock (HF) band structure
of Mauger and Lannoo. The columns from left to right are the bond coordinates in units of a/4, the
number of equivalent bonds Nb, the matrix elements between bonding and antibonding functions,
respectively, up to third-nearest-neighbor bonds, and the coupling matrix elements between bonding and
antibonding functions up to second-nearest neighbors in units of eV.

ko

g4

n = (nz, ny, nz )

(0,0,0)
(1,'1,'0)

(2,2,0)
(2,1, —1)
(2, —2,0)
(3,—1,0)
(32 1)
(3,3,0)

1

6
6

12
6

12
24

6

(&s IH I&~+~, )

—10.10
—2.80

0.68
—0.22

0.02
0.05

—0.15
—0.30

(Ag
I

H
I A~+~ )

21.85
—0.55
—1.00

1.25
0.29

—0.36
0.04
0.04

(S.IH IA,+,.)

0.39
—1.34
—0.87
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PIG. 2. Cluster containing 25 bonds used for the microscopic
calculations of the correlation energy. The arrows indicate the
size of the polarization of the bonds around an extra electron lo-
cated in the central bond of the cluster.

FIG. 1. HF band structure of diamond (dashed lines) ob-
tained by a Slatcr-Kostcr rcprcscntat1on of thc data of Rcf. 4.
In comparison, the bands (solid lines) are given as obtained
within the framework of the present paper, when only polariza-
tion effects are taken into account [I.A(1) approximation].

est entities. Here we introduce a set of orthogonal g (r)
constructed from the orthogonal functions (23), 8~(r)
and A ( r ), according to

g (r)=2 'i [8 (r)+A (r)] . (26)

Slater-Koster representation are shown in Fig. 1.
Finally we want to mention that the one-particle density

matrix shows some deviations when it is calculated with
the functions 8;(r) or 8; (r). The changes occur for
those matrix elements which refer to second-nearest
neighbors where they can be up to 20%. However, at
these distances the density matrix elements are already
very small for a strongly localized system such as dia-
mond.

IV. INTERATOMIC CORRELATIONS

Interatomic correlations are the doniinant electron
correlations in covalent semiconductors as far as their
contributions to the quasiparticle energy bands are con-
cerned. This is due to the fact that the dielectric response
is mainly determined by the polarization of the bonds,
which is an interatomic correlation effect. The micro-
scopic correlation energy calculations can, of course, only
be performed within a finite cluster around the quasiparti-
cle which is moving with it through the crystal. %e shall
cons1dcI' 1Q thc follow1ng a clostcl coIlslst1Ilg of a ccntx'al
bond and up to second-nearest-neighbor bonds, Fig. 2.
This implies a total of 25 bonds or 130 basis functions
f„(r). In order to calculate the correlation energy which
results from regions outside the cluster, a continuum ap-
proximation can be made as will be shown in detail. This
section concludes with a discussion of the numerical re-
sults obtained for the bands.

The appropriate choice for the functions g ( r ) [see Eq.
(7)] which define the 0 „[Eq. (6)] in the case of inter-
atoImc colIelat1ons arc atolIllc hybr1d functions as small-

Making use of Eqs. (21)—(23), the matrix y; in Eq. (7)
defining the g (r) in terms of the original basis f;(r ) can
be determined. Constructing the g (r) according to (26)
instead from, e.g. , the nonorthogonal basis (22) avoids
projecting twice out of overlap regions when the correla-
tion operators O~„are applied. In the following we shall
consider only density operators 0 „[Eq. (6)] and neglect
spin-spin correlations since they play a minor role in co-
valent semiconductors. For the numerical calculations ii
is advantageous to formulate the Hamiltonian also in
terms of hybrid functions in order to reduce the number
of matrix clcmcnts V; k». Hc1c, thc Qonorthogonal sct
f„(r) (21) is better suited than the g (r), since the latter
have orthogonalization tails which would imply signifi-
cantly larger con1putation times for the Vzk~. All quanti-
ties in the Hamiltonian (1) will be denoted by
a t1lde, 1.e., egg VgjkI, Sgj, etc., and operators a g~ and ag~
replace the a;~ and a;~, respectively. For example,

(27)

The dimension of the Vjki matrix is reduced for the clus-
ter containing 50 hybrids from 130 to 50 . The computa-
tional effort is further reduced considerably by taking into
account the symmetry properties of the V~jki. Within the
cluster all four center matrix elements are taken into ac-
count except exchange integrals connecting hybrid func-
tions, which are further separated than are second-
nearest-neighbor bonds. A careful analysis has shown
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that this approximation has negligible effect on the corre-
lation energy. The evaluation of the various density ma-
trices defined by Eqs. (14) and required for the computa-
tioI1 of fhe expec'tation VRlues (13) is outliIled ln Appeildix
A.

Vfc Rrc now 1n thc pos1t1on to dctcrm1ne the variationa1

parameters Ij'„'(k,b) according to Eq. (17) within the
cluster defined above. As is seen from Fig. 3, there are 14
different rj'„' parameters for given values of k and b
which describe density correlations. We shall first neglect
the influence of the ground-state correlations on the Ij '„,
implying that we set rj' „' =0 in Eq. (17). Their influence
will be discussed in the next section; therefore, the follow-
ing set of equations must be solved self-consistently

(e)+Oij ) j m'n'mnkb

together with Eq. (18).
It has been pointed out before that the parameters II '„

refer to a cluster of 25 bonds called CI. However, in dia-
mond roughly —,

' of the correlation energy comes from
contributions from outside that cluster. They must be in-
corporated in e(k, b) and therefore in the solution of Eq.
(28). Therefore we shall now discuss their inclusion.

For the contribntions to the correlation energy coming
from outside CI we adopt a continuum approximation.
Thereby we make use of the fact that for large distances R
the field energy of the additional electron in the dielectric
medium is proportional to R . This implies that the

coITcspondlng coITelatloII eiieigy contrlblltioiis olltslde R

cluster of radius 8 should be proportional to R '. In or-
der to find the proportionality constant we divide the
correlation energy contributions from inside the cluster CI
into two parts:

e„(k,b;CI)=e„„(k,b;C„)+5m„(k,b;C„),
Here e„(k,b;C„) is the correlation energy contribution
from inside the cluster C„, which is smaller than C2 and
given either by Co (central bond) or Ci (central bond plus
nearest neighbors) (sm Fig. 3). The total correlation ener-

gy iilcludIIlg tile contrlbutlOns froiII oUtside tile ellis'teI' C2
is then obtained by scahng the energy 5e„(k,b;C„) of
the shell formed by the two clusters C„and CI:

e,'",' (k,b)=e„(k,b;C2)+S„5e„(k,b;Cn) .

The scaling factor Sn=A„ /(1 —8„) is defined in
terms of the volume ratio Rn = V(C„)/V(Cz) of the two
clusters C„and C2. The volume ratio is determined by
the numbers of bonds within the clusters; hence no addi-
tional parRIDctcrs appear. Por Co 1t 1s 80 =

&&
Rnd

So ——0.520, while for Ci one finds R I
———„and Si ——1.892.

While the scaling becomes exact for large clusters, the
quality of the procedure for small clusters can be tested by
calculating e,'0' (k, b) first with Co and then with Ci and
comparing the results for e'"'(k, b) in both cases. We list
in Table II the energy differences for four selected points
within the Brillouin zone. It is seen that the results vary
only by approximately 0.1—0.2 CV when Co and Ci are
used. This indicates that the cluster C2 is sufficiently
large in order to yield a reliable extrapolation to infinite
range. Note that local field effects are also included out-
side the cluster C2 because of the chosen extrapolation
procedure and the fact that they are contained in the con-
tribution resulting from inside Cz. The results for the
band structure are shown. in Fig. I. They aI'e obtained by
solving Eqs. (28) and (18), and using Eq. (30) with
Cn =Ci.

As pointed out before, the band-structure results con-
tain the polarization effects but not the changes in the
ground-state correlations nor relaxation effects. The main
features of the correlated bands as compared with those of

TABLE II. Test of the continuum approximation for selected
excitation energies. The first two columns are the SCF excita-
tion cncI'glcs and thc excitation cncrglcs when only thc polaIlza"
tion energy is included within the cluster C2. Thc data of the
last two columns also contain the field energy from outside the
cluster C2, which is obtained fIom Eq. (30) for n=0 and 1,
rcspcctlvcly.

FIG. 3. Schematic view of the cluster C2 containing 25
bonds. The smaller clusters Co and Ci containing one and seven
bonds, respectively, are required for the estimate of the energy
contribution from outside the cluster C2. The 14 density-density
opclatoI's O~„connecting dlffcrcnt hybrids as dcflncd in Eq. (6)
aIc lndlcatcd by allows.

29.0
11.5
15.0
23.9

24.6
10.1
9.5

17.9

23.0
9.8
7.0

15.1
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the SCF calculation are upward (downward) shifts of the
valence (conduction) bands. This results in a reduction of
the direct gap from 15.0 to 7.0 eV. The energy corrections
are significantly larger for the bottom of the valence band
than for the top, leading to a reduction of the valence-
band width from 29.0 to 23.1 eV. These trends are in
agreement with the arguments resulting from second-
order perturbation theory. ' The closeness of the direct
gap and of the valence-band width to the experimental
values of 7.3 (Ref. 7) and 24.2 eV, (Ref. 8) respectively, in-
dicates a near cancellation of the changes in the ground-
state correlations and the relaxation effects. Both are dis-
cussed in more detail in the next section.

We finish this section by a discussion of the physical ef-
fects which have led to the energy band changes seen in
Fig. 1. The dominant effect is the polarization of the
bonds in the neighborhood of the additional electron. The
polarization of bond j is described by the difference in the
Yj~„paraIDctcrs

(31)

Here tile flirst subscript deilo'tes the hybrid ln tile ceiltl'al

bond 0, while the second subscript refers to the hybrid in
bond j. According to Eq. (6), the i)" parameters refer to
density or charge correlations between these two regions.
We found from our calculations that three mj. (k, b) pa-
rameters for each pair of values (k, b) are sufficient in or-
der to reproduce about 98% of the correlation energy
which is obtained with the set of 14 independent i)'„' pa-
rameters. This indicates the small contribution of charge
transfer (see Sec. V of I) to the correlation energy of dia-

mond. The three irj(k, b) parameters are listed in Table
III for the highest valence and lowest conduction band at
the points I and X. They describe the polarization of the
nearest-neighbor and second-nearest-neighbor bond in
parallel and nonparallel position. This polarization is
shown in Fig. 2. For larger distances the polarization is
according to the continuum approximation. It is seen
from Table III that the polarization has different signs for
the electron and the hole. Furthermore, there is no strict
electron-hole symmetry present due to the differences in
the conduction and valence bands.

In addition to the bond polarization, there is a further
contribution to the total polarization which can be inter-
preted as a charge transfer. Its main effect is to reduce
the charge within the central bond containing the extra

0.149
—0.112
—0.137
—0.174

0.049
—0.053
—0.065
—0.088

0.041
—0.044
—0.051
—0.056

TABLE III. Variation parameters mj.(k, b) at selected sym-
rnetry points characterizing the polarization of the first-
neighbor bonds m.

~ and of the second-nearest-neighbor bonds
parallel H2 and nonparallel mP.

m~( k, b)

electron by an amount 5q. This charge is transferred from
bond to bond up to the surface. This resembles to some
extent the screening mechanism in metallic systems. It is
important to notice that there is no charge transfer if the
Wannier functions are chosen within the BOA [see Eq.
(23)]. In that case, the charge in a bond is always two.
Charge transfer can occur only when the Wannier func-
tions are chosen according to the EBOA [see Eq. (25)].
This has been discussed in detail in I. In order to estimate
the size of the charge transfer contribution to the correla-
tion cncrgy, wc have performed Rn independent calcula-
tion of the latter. Thereby we have chosen Wannier func-
tions as given by Eq. (23). The corresponding changes in

e„(k,b) were found to be small. In particular, the direct
gap was found to be 7.5 eV instead of 7.0 eV. This corre-
sponds to a reduction of the charge in the central bond by
about 0.05e. That the changes due to the EBOA are small
is mainly a consequence of the large gap and the good lo-
calization of the Wannier functions in diamond. For Si or
Ge we expect the charge transfer to be more important, .

This concludes our discussion of the polarization ef-
fects. It is seen that the corresponding physical picture is
very simple and intuitive. What remains is a discussion of
the changes in the ground-state correlations and the relax-
ation in the neighborhood of the extra electron and hole.

V. GROUND-STATE CORRELATION
AND RELAXATION EFFECTS

In the preceding section the polarization caused by an
extra electron has been evaluated under two restrictions.
FIrstly, thc calculations wcIc done withIn a miniIDRl basis
set, thus excluding orbital relaxation effects, and secondly,
the influence of the ground-state correlations on the corre-
lation energy of the quasiparticle was neglected by putting
g~„' =0 in the respective equations.

I.et us start by discussing the effect of the ground-state
correlations. As can be seen from Eqs. (17) and (18), their
influence on the correlation energy is twofold. They
modify the variational parameters i)~~'„'{k,b) through Eq.
(17), and they contribute an additional term e,'„',(k, b) to
e„„(k,b) [see Eq. (18)]. Physically, the energy change

e,', ' (k, b) is due to the blocking of two-particle excited
states within the central bond in the presence of the extra
electron (when a hole is present there is also no correlation

energy left in the central bond). Thus e",,'
( k, b) has only a

weak k dependence (see Sec. V of I). Therefore instead of
evaluating e„~(k,b) from Eq. (18) numerically, we identi-
fy it with the negative of the interatomic correlation ener-

gy within a bond found in Ref. 3 for the ground state of
diamond, i.e., e,'„',= —0.4 cV. The related variational pa-
rameter g„„was denoted there by rl, and was found to be
0.32, implying a reduction of double occupancy within a
hybrid by about 16%. This value for e,', ' is used for the
extra electron as well as for the hole.

The second effect of the ground-state correlations is to
affect Eq. {17). The reduction of double occupancy of the
hybrid orbitals in the correlated ground state countcracts
the bond polarization and leads to a reduction of the pa-
rameters q~„'. The evaluation of Eq. {17)requires matrix
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elements of the form ((O~'„-)WHO~'„) as additionalm 1l

input which can be calculated with the help of Eq. (B9) of
I. The reduction of the correlation energy e"(k,b) again
depends on k and b and varies between 0.5 and 1.2 eV for
the top and bottom of the valence band. The parameters

are reduced by 10—15%. The band structure con-
taining the ground-state correlation effects is plotted in
Fig. 4, where the band structure including only polariza-
tion effects is also shown.

Next we consider those contributions to the correlation
energy which cannot be described within the minimal
basis set. The most important among those is the relaxa-
tion of the orbitals close to the charge of the quasiparticle.
The electron orbitals in the central and nearby bonds con-
tract or expand in the same way as atomic orbtials do
when a charge is taken off or added to an atom. This ef-
fect can be described within the formalism of I by simply
working within a larger basis set. However, the extended
basis set is only required for the atoms close to the extra
particle and not for the whole cluster. The necessary cal-
culations have not yet been done though. Therefore we
use molecular data in order to obtain an estimate for the
energy gain by relaxation. For ethane (CqH6), which has
an electronic structure similar to that of diamond, Mos-
cardo et al. ' performed independent SCF calculations for
the ground state and various ionized states of the ion
CqH6 . By comparing the ionization potentials as ob-
tained from Koopmans's theorem on one side and from
the energy differences of the SCF calculations on the oth-
er side, one can infer a relaxation energy of 0.76+0.05 eV
for the different states of the C2H6+ ion. If we assume
that the same relaxation occurs for the hole and the elec-
tron in diamond, then this leads to a reduction of the

+30-
2I

+20-
1

Eo 1

2
eo r,

(32)

Here Ep is the bare electric field of an electron, i.e., in the
absence of the polarization P, and r, is a cutoff which is
of the order of a bond length. Let us assume that a larger
basis set leads to a change in the dielectric constant eo by
an amount 5ep. Then the resulting change in the polariza-
tion energy is

5ep

eo—1 eo
(33)

and therefore considerably smaller than 5'/ep. For that
reason we can neglect it here.

In Table IV we list the energy shifts at selected symme-
try points as obtained without taking ground-state correla-
tion effects into account [LA(1)], with inclusion of these
effects [LA(2)] and including also the estimated relaxation
effects [LA(3)]. Also shown for comparison are the re-
sults of the screened-exchange —plus —Coulomb-hole ap-
proach (SECH) as obtained by Brener' and these of the
time-dependent screened Hartree-Fock (TDSHF) or
Green's-function approach. ' '

The general trend of our results is in agreement with
those of the two other approaches, with the SECH some-
what better than with the TDSHF. As far as the SECH is

direct gap by 1.5 eV, and therefore to an almost complete
compensation of the corrections resulting from the
ground-state correlations.

There is another correction which can occur when the
basis set is enlarged, namely an increase in the polarizabil-
ity of the bonds. Until now we have calculated it only
within the minimal basis set. Although this will certainly
yield the dominant contribution to it, there can be an ad-
ditional increase when the basis set is enlarged.

However, the resulting change in the correlation energy
is small. This is seen by writing the polarization energy
8'in a continuum approximation in the form

1 38'= —, d rPEO

~ +)0-

c9 0=
UJ

ill i0

25'
TABLE IV. Comparison of the correlation energy corrections

to the SCF energies at typical symmetry points in units of eV.
Columns LA(1) through LA(3) give results of this work, LA(1)
includes polarization only, LA(2) contains, in addition, the effect
due to the ground-state correlation, and LA(3) contains estimat-
ed corrections resulting from orbital relaxation as well.

-20

-30-
X

FIG. 4. Quasiparticle bands as obtained by taking ground-
state correlation effects into account LA(2) (dashed-dotted lines).
For comparison, the bands are shown which include polarization
effects [LA(l)] only (solid lines).

'I
2

I 1s
"I 2s

"r,
'X
"X4

5.0
3.6
2.5
5.5
4.2
3.7

4.1

3.4
4.1

8.4
3.1
5.3

'From Ref. 19.
From Ref. 16.

SFCH+ TDSHFb LA(l)

6.5
45
3.5

4
4.6
4.2

5.3
3.6
2.6
7.9
3.6
3.3

6.0
4.3
3.3
8.5
4.3
4.0

LA(2) LA(3)
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concerned, our values are significantly larger for large
quasiparticle energies, e.g., at the bottom of the valence
band. This can be argued to result from the neglect of the
frequency dependence of the dielectric function in the
SECH approach. Also the reduction of the valence-band
width is only 3.1 CV in that approach, as compared with
5.9 eV in the LA(1) calculation. In the TDSHF calcula-
tion, a slightly larger energy change is found at the top of
the valence band then for the bottom of the conduction
band. This is contrary to our findings and those in the
SECH approach. In our treatment the slightly larger
correction for the bottom of the conduction band results
from the fact that the conduction band is narrower than
the valcncc band.

In Table V a comparison is given for the results of the
direct gap and the valence-band width as obtained by the
different approaches including the density-functional
method in its local approximation (LDA). As mentioned
before we find that a minimal basis set is not sufficient in
OI'dcI' to pI'oducc cncI'gy bands with RQ accuracy of a fcw
tenths of an electron volt, i.e., that relaxation effects are
important. This contrasts the findings of Refs. 16 and 20.
A more detailed comparison with the LDA and the
TDSHF approach is found in the next section.

In the following we want to compare the physical pic-
ture which has emerged from the above correlation energy
treatment with that of alternative methods. Of those we
want to consider in particular the LDA. As is well

known, this method is by far the simplest and most effi-
cient method for calculating energy bands in solids. In
particular, its application to semiconductors shows that it
does not have the shortcomings of the SCF calculations
which lead to too large energy gaps. On the contrary, in
most cases tbe energy gap is found to be smaller in the
LDA than the experimental one. In particular, this holds
true for diamond, where all-electron local-density-
functional calculations ' yield a direct energy gap of 5.55
eV when the linear combination of muffin-tin orbitals
method is used within the atomic sphere approximation.
The larger value of 6.3 eV (Ref. 22) found within the
linear combination of atomic orbitals scheme may be

caused by the highly anomalous dispersion of the conduc-
t1on band 1Q the 6 d1rect1on close to the 'X& pont.

It is instructive to analyze the source of the reduction of
the SCF energy gap in that case. When one does a SCF
calculation with the non10eal exchange replaced by a local
exchange potential, one finds for diamond an energy gap
which comes close to the experimental one, i.e., of the or-
der of 6—7 eV. It is, therefore, much smaller than that
which results when a nonlocal exchange is used. Addi-
tional inclusions of correlations, i.e., replacing the local
exchange potential by a local exchange-correlation poten-
tial, do not change the value of the energy gap appreci-
ably. The LDA calculations are, therefore, relatively in-
sensitive to the inclusion of correlation effects in distinc-
tion to the present investigation. One can, of course, ar-
gue that it is the compensation of errors in the local ap-
proximation to thc cxchangc Rnd corrclatlon potcntlals
which makes the LDA such a successful scheme, and that
it is therefore unjustified to use a local approximation for
the exchange only when performing a SCF calculation.
Fox' that reason 1t 1s instructivc to cons1dcl thc cxchangc"
correlation potential p„,(r) from a different point of view
which is from Gunnarsson and Lundqvist. It is

5 1 3 3,p(r)p„,(r, r —r ')

5p(r) 2
i
r

1

p„,{r,r —r ') p(F') f 1).[)((r,r', A, ) —() .
(34)

Here p(1 ) ls the density and p„(r, r —r ) is a fictitious
exchange-correlation hole charge of an electron at position
r. The function p„,(r, r —r ') is related to the pair distri-
bution function g(r, r ', A, ), where A, denotes the coupling
constant. Furthermore, p„,( r —r ') satisfies the sum rule

P' P„ I', I' = —1 . (35)

In the LDA, g ( r, r ', A, ) is replaced by that of a homogene-
ous electron gas gi, (r —r ';A, ",p(r)) and furthermore p(r ')

by p(r).
For diamond gq(r —r ') appears qualitatively as shown

in Fig. 5(a). In distinction to this the exchange-correlation
hole around an additional electron in the conduction band
appears as shown in Fig. 5(b), and around an electron in a

TABLE V. Comparison of the experimental direct band gap and the valence-band width with resolts
from various calculations in units of eV. The results of this work LA(1)—LA(3) are: as defined in Table
IV.

"~2s ~'I ~s

"I'i~"I 2s
"X4~'X)

'From Ref. 7.
bFrom Ref. 8.
'From Ref. 4.
"From Ref. 21.
'From Ref. 16.

Expt.

7.3'
24.2'
12.5'

15.0
29.0
23.9

5.5
21.3
10.5

TDSHF'

7.4
25.2
15.9

LA{1)

7.0
23.1

15.1

8.8
23.7
17.0

LA{3)

7.4
23.8
15.6
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(b) o 1

r/b

g(r-r') Q+

l

1 2 3

r'Ib

FIG. 5. Schematic comparison of the pair correlation func-

tion g(r —r ') for (a) the homogeneous electron gas and for an
electron in diamond sitting in a bond together with (b) an extra
electron or (c) a hole. The oscillatory behavior of g(r —r ') for
(b) and (c) indicates the polarization cloud decaying proportional
to

~

r —r '
~

2. The dashed line indicates the changes resulting

from charge transfer. Here the vector r —r ' follows a bond se-

quence, and b is the bond length.

bond containing a hole as indicated in Fig. 5(c). It has
been shown in Sec. IV that for diamond the charge
transfer to the surface is only 0.05 of an electmn charge
when an electron is added. Therefore integration over

[g(r, r ') —1) yields almost zero in Fig. 5(b) and almost
—2 in Fig. 5(c). Assuming that the charge transfer in-

creases up to the metallic case, then the integration should

yield —1 in the electron and hole case as in Fig. 5(a). The
oscillations in Figs. 5(b) and 5(c) fall off proportionally to
r and result from the bond polarizations. It is apparent
that no polarization effect proportional to r is present
in the I.DA which is based on the homogeneous electron
gas. It is that part of the pair distribution function which
leads to the reduction of the SCF direct energy gap, while
the part within the first bond is responsible for the
changes in the ground-state correlations. It should be
mentioned that in the ground state of diamond the pair
distribution function looks different than Figs. 5(b) and
5(c). In that case one has a van der Waals interaction be-
tween clcctrons ln diffcrcrlt bonds, RIld thc oscillations faH

off as r 6 Then the p. air distribution function resembles
more closely that of Fig. 5(a). The I.DA cannot distin-

00 ~0~4900

10 20

FIG. 6. Plot of the correlation energy e „(k.,b) vs the total
energy e(k, b) for valence bands (circles) and conduction bands
(squares) ln units of cV. Thc dlffcfcnt polIlts coI'I'cspond to dif-
ferent values of ( k, b).

guish between the two different situations in the gmund
state and exnted state. Since the overall density is the
same in both cases, so is p„,( r ) and therefore the
exchange-corr'elation energy contribution. From the above
me expect that the I.DA is better the more delocalized the
Wannier functions are.

We can analyze the results contained in Fig. 4 in terms
of an energy-dependent correlation potential. For that
purpose we select a number of points in k space and plot,
in Fig. 6 for each point, the correlation energy as a func-
tion of the energy e(k, b). It is of considerable interest to
see that the correlation energy may be fairly well approxi-
mated by a functional of the energy, and that matrix ele-
ment effects' seem to be of minor importance. However,
the e„vs e curve for the conduction bands is flatter than
that for the valence bands, which implies that the
conduction-band width is reduced less. This particular
feature may be considered as a matrix element effect, but
it is small. This suggests the introduction of a local but
energy-dependent correlation potential into the single-
particle Schrodinger equation. There have been attempts
before defining such potentials. 2 From the foregoing,
at least for diamond, a potential of the form V„„(e)
=a+be seems to be well justi. fied vnth a=4 eV and
b=7.5X 10 eV '. As discussed before, this requires the
inclusion of nonlocal exchange effects in the density-
functional scheme.

Next, we want to compare the present approach with
the Green's-function approach, which employs the dielec-
tric response theory. ' ' This approach also uses a
minimal basis set consisting of four valence and conduc-
tion bands, respectively. A comparison of the energy
corrections for the top and bottom of the conduction and
valence bands is shown in Table IV. The corresponding
excitation energies can be read from Table V. An impor-
tant difference in our results is that whereas we beheve to
have proved that a reduction of the direct gap to the ex-
perimental value requires the inclusion of relaxation ef-



S. HORSCH, P. HORSCH, AND P. FULDE

fects, such a reduction is obtained in Refs. 16 and 20 even
within the minimal basis set. The reason for this
discrepancy is probably due to the fact that the calcula-
tions of Refs. 16 and 20 contain a phenomenologically in-
troduced screening of the exchange .This is something
which cannot be described within R minimal basis set and
might have the effect of simulating relaxation effects.

Another assumption of Refs. 16 and 20 is proven valid

by our calculations. This concerns restricting oneself to
bubble and exchange ladder diagrams. We find within our
variational approach that the diagrams 3(a)—3{d) of Fig. 6
in I are by far the most important of those which are
second order in q". From our experience with small mol-
ecules we expect that this is different for intra-atomic
correlations where all diagrams of Fig. 6 should become
equally important. A more detailed comparison between
the two approaches is not possible because the calculations
in Refs. 16 and 20 are done in q space. Therefore we can-
not check how large the important polarizations of the
bonds close to the added electrons come out to be in that
approach. It is the accurate determination of these polari-
zations which we consider to be an advantage of our ap-
proach.

VII. SUMMARY AND CONCLUSIONS

It has been shown by means of a local approach to the
correlation problem that the correlation energy can be cal-
culated for excited states of diamond. The correlation en-

ergy results mainly from a polarization of the neighbor-
hood of the electron in the conduction band and the hole
in the valence band. The present approach allows for an
accurate calculation of that polarization in the nearest-
neighbor and next-nearest-neighbor bonds. Beyond these,
a continuum approximation has been used in order to
reduce the computational effort. In addition to the polari-
zation effects the reduction of the ground-state correla-
tions due to the excitation was found to be important. Re-
laxation effects have only been estimated here, although

they are contained in the general formalism. Once the lo-

cal expectation values (13) were calculated the energy-

band calculations themselves required approximately 1

min of processor time on a HB-DPS 66 machine.
Futural extensions of the present approach will concern

the inclusion of relaxation effects and an extension to oth-
er semiconducting systems. Also, it appears to be of in-

terest to incorporate into the present theory excitonic exci-
tations. We believe that the present approach is able to at-
tach a simple physical picture to the various correlation
energy contributions because it is local in character. It
can bc used to Rch1cvc an accuracy wh1ch. 18 co1Tlparablc to
tllat of tllc collplcd-pRlr RpproxlInatloll (CEPA) 111 quRI1-

tum chemistry for small molecules. The computational
bottleneck seem to be the SCF calculations which are re-

quired as the starting point. Although for diamond there
are SCF calculations available of high quality the estimat-
ed uncertainties 1n thc cncrgy Ilnds alc st111 of thc order
of 1 CV. From that point of view it appears» R challeng-
ing problem for the future to see whether the SCF part of
the calculations can be substantially improved and simpli-
fied.
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APPENDIX: EVALUATION GF THE MATRICES (I4)
IN THE CASE GF INTERATOMIC CORREI ATIONS

In the following, detailed information required for the
evaluation of the matrices (14) is provided in the case
where the Hamiltonian and the correlation operators 0 „
are defined in terms of the mirumal basis sets f;(r) (21)
and g (r) (26), respectively. By using the definition (26)
of the functions g (r) the corresponding operators b
can be expressed in terms of operators w, ~ which generate
electrons in Wannier states as defined by Eq. (25) as

ban = g IZnI Iasss+ g Pns&a . (Al)

The expansion coefficients a„, and p„s R«obtained «om
(26) and by inversion of (25).

Because of the orthogonality relations ( w, ~w, ~ )
=5 5«(I =5, . . . , 8) and zero otherwise, one obtains

(A2)

The core contribution to the density matrix is of no
relevance as long as one is interested in matrices which
contain at least one operator bn~ or m, ~.

Thc Q g~ operators arc related to the Q~~ through Eq.
(21),

a no ~ Cniaio ~ ~ni ~~ nm~mj~ji (A4)

Thereby the overlap matrix (f, ~ fj ) =5;I has been defined
in analogy to the matrix S,J. Similarly, the bm are ex-
pressed 111 terms of thc Ql~~ by nlaklllg usc of Eq. (7):

b = Qy JSJa; {A5)

%ith these relations one obtains

R „=(a" b„)=pc;y„I',„,
l,S

I mn
= ( IIm( bn( )= g Cml yslDsn

l, S

(A6)

and from the orthogonality of the g„(r ), Dmn =5mn Pm„—
Since we are working with the basis set described by the
a; and a; operators, the matrices in (14) are also defined
with respect to the latter, i.e., R; =(a; b ), etc. It is
convenient to relate all these matrices to the density ma-
trix (a; aj ). We can divide the latter into a part result-
ing from the core electrons (a;~J~)«„and a part due to
the occupied valence bands. By making use of Eqs. (7)
and (A2), one can show that

(a; a, )= gy;y„,&„„+(a;~,)...
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where use has been made of the orthogonality of the g, ( r )
from which it follows that g, y;y„tSJ =5 „.

The remaining matrices are written with the help of
(Al) as

g &atama &= »
Cmt = ~ ttmata ) = ' "

0, v=5, . . . , 8. (A8)

Cmt =(bmatota) = '
KQ0%1Ilg those IRtIMcs 8Qd the QJJ RQd Vgjgi 0Ilc «811
evaluate the expectation values (13) according to the rules
glvcB 1A I.
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