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Vibrational modes of oxygen in GaP including second-nearest-neighbor interactions
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The localized and resonant vibrational modes of a substitutional oxygen defect in GaP have been

computed with the use of the Green's-function approach. A 15-parameter version of the
deformable-dipole model was used to describe the lattice dynamics of bulk GaP. A defect, consist-

ing of a mass perturbation at the substitutional site and a perturbation among the nearest- and
second-nearest-neighbor short-range interactions near the oxygen atom, was considered. The local
modes, labeled by symmetry, are presented as a function of the interaction perturbation. Quantita-
tive agreement with experimental results for 0 and 0+ defects is obtained by weakening the 0 (-Ga
and -P) short-range interactions to 38% of the bulk values while weakening the Ga-P back bonds.
With the inclusion of Coulomb effects, this corresponds to an effective 0-lattice force constant of
3.5 eV/A, which is 25% of the bulk, P-lattice value.

I. INTRODUCTIGN

The properties of the point defect GaP:Op in which ox-
ygen substituting for phosphorous in GaP forms a deep
donor, have been actively studied, often generating consid-
erable controversy. ' In particular, numerous optical
spectra have been reported. These highly structured spec-
tra contain features due to transitions assisted by local
phonons. By calculating the local vibrational modes of
the Q defect, we can, through comparison with the ob-
served spectra, directly identify mode symmetries and
characterize the atomic motion near the defect. We can
also determine how the short-range interactions between
atoms near the defect site are modified when the defect is
introduced. In addition, assumptions of defect-site
geometry (Td symmetry and small local lattice relaxation,
in particular) implicit in the local-mode calculation pro-
vide consistency checks on the interpretation of experi-
mental results.

In this paper, we use the Green's-function approach to
calculate the local phonon modes for oxygen isotopes on a
phosphorous site in GaP. This work represents an exten-
sion of an earlier Careen's-function calculation in which
bulk interactions were limited to nearest-neighbor (NN)
interactions. Here, we use the deformable-bond approxi-
mation (DBA) of Kunc et al. as the phenomenological
description of bulk GaP. This 15-parameter model in-
cludes short-range interactions out to second-nearest
neighbors (ZNN) and long-range Coulomb effects arising
from the electrostatic interaction between induced di-

poles. Our defect consists of a mass perturbation at the
substitutional site and a perturbation in the short-range in-
teractions among the 17-atom cluster consisting of the Q,
the four neighboring Ga, and the 12 2NN P atoms. We
do not explicitly consider perturbations in the Coulomb
interactions since their long range would render the
Green's-function approach intractable. As we shall see,

however, the Coulomb portion of the total interaction is
relatively small and can be effectively contained in the
short-range defect perturbation for sufficiently localized
modes.

The DBA and Green's-function theory are briefly
described in Sec. II. In that section we also discuss the de-
fect perturbation considered in this work, and we derive
an exact expression for the Coulomb contribution to the
restoring force resulting from the displacement of a single
atom in an infinite lattice. We find the Coulomb portion
of the restoring force for a P-site single-atom displace-
ment to be —17.7% of the bulk short-range component.
Next, in Sec. III, we present our computed dispersion
curves, density of states (DOS), and selected Green's func-
tions for bulk GaP. In Sec. III we also present the results
of our local-mode calculations for GaP:Op. (Here, we
shall use "local mode" to refer to both strictly localized
and resonant modes, as in Ref. 7.) The interaction pertur-
bation considered consists of varying certain Q-Ga, Q-P,
and Ga-P (back-bond) force constants by the respective
fractions, g, g, and 0.12', of the corresponding bulk
short-range values. Energies for local modes of a given
symmetry are then presented as a function of the parame-
ter g. The local DOS (LDOS) and "eigenvectors" are
presented for selected local modes, and a discussion of the
major features and the choice of defect parameters is
given.

An extensive comparison to available photolumines-
cence data is made in Sec. IV. There, we see that the
electron-capture luminescence data for the 0 defect is
well described by our calculations for the value

q = —0.62. In particular, we identify the phonon replicas
at 24.7 and 28.4 meV with the peaks in our T2 LDQS at
25.0 and 28.2 meV, respectively. Both peaks in the LDOS
shift under isotopic substitution of ' Q for ' Q as expect-
ed. Our computed 2

~
modes at 20.4 and 48.2 meV are ob-

served for the charge states 0+ and 0 . ' In all cases we

1984 The American Physical Society



VIBRATIQNAI. MODES OF OXYGEN IN GaP. . .

find substantial improvement in the agreement, both qual-
itative and quantitative, between calculated and observed
values over that predicted by our earlier model. Finally,
the conclusions that can be drawn from this work are
summarized in Sec. V.

II. COMPUTATIONAI. METHOD

A. Bulk phonons

To describe the lattice dynamics of bulk GaP we have
used the DBA. This model is a 15-parameter version of
the deformable-dipole model of Kunc et al. , and has been
shown to provide a good description of several III-V com-
pounds. The quantities of interest for our calculations
are the force-constant matrix 4 and the dynamical matrix
D, which is related to 4 by the equation,
D=M ' ~4M ' . In this expression M is a diagonal
matrix whose elements are equal to the masses in the
problem. In the DBA, the force-constant matrix has the
oHIl

4(l,~;E,tc) = —g' a (l,sc;l', ~'),
1',sc'~l, sc

4' ' for the entire lattice is determined. The description
of the bulk short-range interaction in terms of these 10 pa-
rameters (A —Fz) is the most general description allowed
by symmetry, and it physically corresponds to both cen-
tral and noncentral pair interactions.

In addition to purely short-range forces, the DBA
force-constant matrix contains a contribution from classi-
cal electrostatic interactions. Associated with each lattice
site is an effective charge Z. Displacement of a charge
from its equilibrium site effectively results in an electric
dipole moment at the site. Dipoles may also be induced,
either by the motion of neighboring atoms (mechanical
polarizability Ã) or by the electric fields produced by oth-
cl dlpolcs (clcc't1'0111c polar1zabihty a). Tlic dlpolcs, 110w-
ever generated, produce electric fields. These fields exert
forces on the charges and mechanically induced dipoles,
giving rise to the Coulomb term cp("' of Eq. (1). Five pa-
rameters are used to determine 4("', giving a total of 15
for the DBA.s These 15 parameters have been determined
for GaP by Kunc et al.

388
'(Ga;P)=4( '(P;Ga)= 8 A 8

883

e(sR~(Ga; Ga) = D, C, E, (2b)

T

C2 &2 —E2
c(sR~(p;p)= D, c, —E, (2c)

for interactions between NN's [Eq. (2a)] and 2NN's [Eqs.
(2b) and (2c)], respectively. These Cartesian blocks must
obey the transformation law9

N p(L,K;L',K')= QS~pSp„@p (l, l',ic),ic

where S is the point-group operation associated with the
space-group transformation which takes the site (l,a) into
the site (1',(c'). In this expression, l, l', L, and L' label the
X unit cells in the lattice, Ic, (c', K, and K' specify the basis
atom, and the remairnng indices refer to Cartesian coordi-
nates. Hence, from Eqs. (2), (3), and the translation-
invariance condition,

—e("~=(Z+Xt)(I—a a)-'a(Z+X)
where 4'sR and 4'"' correspond, respectively, to the
short-range and electrostat1c terms. The short-range
force-constant matrix 4( ' contains the non-Coulombic
interactions which in the DBA extend out to 2NN's. As a
consequence of the T~ symmetry of GaP, the off-diagonal
Cartesian blocks can be shown to have the forms

B. Green's functions and group-theoretic considerations

The bulk Green's functions are numerically obtained
from the eigenvalues and cigenvectors of the Fourier-
transformed dynamical matrix in precisely the manner
described in Ref. 7. From the bulk Green's functions the
standard formalism' is used to obtain the local modes as
before. The major difference in the present work lies in
the spatial extent of the defect considered. Here, the de-
fect affects 17 atoms and, hence, 51 Cartesian coordinates.
Thus, we are required to evaluate a 51&&51 block of the
bulk Green's-function matrix. '

We shall consider substitutional defects which retain
the full point-group syminetry (Tz) of the lattice. Ac-
cordingly, it is natural and convenient to express the
Green's-function matrix in a basis of "collective coordi-
nates" which transform according to the irreducible repre-
sentations of Td. It can be readily shown that the 51-
dimensional reducible representation I of Td given in
terms of Cartesian coordinates can be reduced to

I =32 &eA2@4E@5T&@8T2.
The collective coordinates Q transforming according to
the irreducible representations (A

&

—T2), are related to the
original Cartesian coordinates by an orthogonal transfor-
mation. The collective coordinates have already been
determined for the five-atom cluster. The additional col-
lective coordinates needed for the 12-atom, 2NN shell are
given 1n the Appendix.

The advantage of the collective-coordinate transforma-
tion is that matrices reflecting the T~ symmetry are
block-diagonalized in the form '

O(s)(r) &(s)
Glsucrp ~(sj(r)~isvGap (6)

where (s) and (r) label the irreducible representation. The
block diagonahzation allows us to consider each irreduci-
ble representation separately, providing a classification
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scheme for the defect vibrational motion according to
symmetry. For a given irreducible representation, p and v
label the dimension, and o. and p label the occurrences
(e.g., p =1,2, 3 and o = 1, . . . , 8 for T2). The form of the
block diagonalization also restricts the number of indepen-
dent matrix elements on the basis of symmetry. With the
use of Eq. (6), the number of independent Green's-
function matrix elements is reduced to 68.

5E =5E'=5E"=0,
5A' —58'=0,
5A —58 = —2[(5C' —5D') +5F'],
5F = —2(5C"—5D"),
25F"= —(5C —5D) .

(7a)

(7b)

The linear combinations of the form 5A —58 represent
NN bond-bending spring constants. " Similarly, 5C —5D,
5I', and the corresponding primed expressions may be
viewed as anisotropic bond-bending springs between 2NN
pairs, while the parameters 5E correspond to a more com-
plicated pair interaction. Essentially, Eqs. (7) impose con-
straints on the noncentral pair interactions possible within
an isolated cluster having the geometry of our 17-atom de-
fect. Tllc 1csults lip to tllis poiil't (givcil oui above as-
sumptions) are general, leaving nine free quantities to
specify 54.

Wc RIc now ready to paramctrizc thc 1ntcract1on pertur-
bation. To reduce the number of free parameters, we as-
sume the same fractional variation among independent 0-
Ga, O-P, and Ga-P parameters, giving

5A /2 =58/8 =qo o, ,

5C/C2 5D/D2 5F/F2 ——1)o p——, ——
5A'/A =halo, p .

(8a)

C. Defect perturbation

The defect perturbation considered in this work consists
of the mass substitution m p ~mo at the defect site and a
perturbation of the short-range force constants among the
substituent and its NN's and 2NN's. We wish to consider
a general force-constant perturbation 54 having the block
form of Eq. {2) and consistent with Td symmetry. Let us
label the 0-Ga perturbation parameters 5A and 58, the
0-P parameters 5C, . . . , 5F, the Ga-P NN back-bond pa-
rameters 5A' and 58', the intra-Ga-shell 2NN parameters
5C', . . . , 5F', and the intra-P-shell 2NN parameters
5C", . . . , 5F". Now, not all these force-constant parame-
ters may bc chosen 1ndcpcIldcntly. Applying thc
infinitesimal-rotation-invariance condition, we find that

tomatically according to rotation invariance,
The defect-perturbation matrix is now

D. Restoring force for one-atom displacements

In the discussion to follow, it will be useful to know the
effective spring constant acting on the 0 atom under a
unit displacement from equilibrium. This spring constant
is given by k' '=k' '+k'"', where

k 's"'= —4[(A+53)+2(C +5C)+(F +5F)]
denotes the modified short-range part, and k'"' is the bulk
P-site Coulomb component. We wish to compute k'"'. In
the notation of Maradudin, we have for the unit displace-
ment tt p(1', a') =5ap5a 5„„,

F (l,~)= —g 4 p(l, a;l', a')5 p5tt 5„„

= —4 (l,a;l,~),
where 4 (l, a-, l,a)=k"' for 4=4'"'. Now, using the
1dcnt1ty

5&t
—gexpI ———ik [x{l,a) —x(l', a. )]J

k

(13)

where 5M contains the on-site mass perturbation. (Note
that we have put the explicit mass dependence in 5L rath-
er than Go, as in Ref. 7.) We numerically construct 5L in
Cartesian form, using Eqs. (2)—(4), (7), and (8), and then
apply the transformation to collective coordinates. The
local modes are given by the frequencies to which solve'o

Redet[I —Go(ro )5L(oi )]=0 .

We solve such a determinantal equation for each irreduci-
ble representation. A useful quantity for characterizing
the relative amount of motion of a certain symmetry type
and at a particular frequency is the LDOS. The LDOS of
the perturbed crystal is given by the diagonal elements of
—ImG/m, where the perturbed crystal Green's function is
given by'

6=(I—Go5L ) 'Go .
Strong resonant modes show up ideally as I.orentzian
peaks in the LDOS while strictly localized modes appear
as 5 functions. For representations which have multiple
occurrences in the space of the defect, the LDOS for each
occurrence provides a measure of the fraction of total ki-
netic energy in that particular type of motion, and this
quantity is used in the following sections to describe the
composition of defect modes.

If we make the analogous assumptions,
5C'/Ci ——5D'/D 1 5F'/F 1 and 5C"/C2———5D "/D2, we-
see from Eqs. (7) that the interaction perturbation 54 is
completely specified in terms of the 1)'s. In this way, we
specify directly the NN (1)o G, ), the adjustable part of the
2NN (go p), and the bond-stretching part,
5~ +Z5a =3S~, of the back-bond interactions (qo. ,).
Other interactions within the cluster are then modified au-

in Eq. (12) gives

X expI —i k.[x(l,a.)—x(l', a)] J

(14)
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where the inner sum has been identified as the Fourier-
transformed force-constant matrix. Recognizing that our

@(x,a
~

k) transforms as T2 T2, we can restrict the sum-

mation over k in Eq. (14) to the irreducible wedge W of
the first Brillouin zone as in Ref. 7, obtaining finally

3k'"'= —g h „gRe[@pp'(ic, a
l
k)] .

k E:8'
(15)

This sum was evaluated numerically by a method similar
to the numerical computation of ImGO in this and in our
previous work. The result is k'"'= —0.177k' R' for the
bulk P site.

III. RESULTS

A. Bulk phonons

In Fig. 1 we show the bulk dispersion curves and bulk
DOS for GaP as computed from the DBA. The DBA re-
sults constitute a substantial quantitative improvement
over those of the two-parameter model used previously.
The calculated LO~ and TO~ energies, 50.0 and 45.3 meV,
respectively, are split due to Coulomb effects and are in
agreement with measured values. The calculated TA~
energy. is 12.8 meV compared with the actual value, 13.1
meV. " The bulk DOS presented here is highly structured
compared with that of the two-parameter model. As we
shall see, this structure gives rise to local-mode behavior
not seen in the simpler model. In the units shown in the
figure, the computed area under the bulk-DOS curve is
6.0004, compared to the exact theoretical value, 6.

The quantity &"(E) is the partial DOS (Ref. 7) for the
representation (s) and is proportional to the mean-squared
amplitude of modes associated with (s)-type motion in the
17-atom cluster at energy E. In particular, the A2 mode
consists of 2NN motion only. From Fig. 2 we see that the
P-centered, A2 partial DOS has a large amplitude in the
TO and small amplitude in the TA phonon branches,
while the opposite is true for the Ga-centered DOS. This
is because the P atoms undergo larger displacements in
optical modes than do the heavier Ga atoms. For the dis-
cussion to follow, the important symmetries are A& and
T2. 3 i modes consist of some combination of the follow-
ing: "breathing" motion of the NN shell, 2NN breathing,
and a third, more complicated 2NN motion. T2 modes
consist of defect-site motion along with collective motions
within the NN and the 2NN shells. Only T2 modes can
involve defect-site motion. (See the Appendixes here and
in Ref. 7 for a complete listing of the collective coordi-

i I

Bulk Green's
Functions (all)

E =50 meV. There are 68 bulk Green's functions each
for both the P- and Ga-centered clusters —too many to
display individually. Instead, for each irreducible repre-
sentation (s), we sum the diagonal matrix elements and
present &"(E)vs E in Fig. 2, where

&"(E)= ——Tr Im[G "(E)]1

B. Bulk Green's functions

We have computed the bulk Green's-function matrix Go
for both a P-centered and a Ga-centered 17-atom cluster.
The method of computation is described in Ref. 7. The
Green's functions were calculated as functions of (fico) at
intervals of 2.5 meV and then converted to functions of
E =fico [see Eq. (9) of Ref. 7]. This corresponds to a reso-
lution in E of about 0.5 meV near E =0 and 0.025 meV at

60
(G ap) BUlk

Pho
50

Bulk OOS

E

I

+0

E
50

20

IO

Ga site "."-
P site

I x U, K I I.5 I.O 0.5 0
wave vector k N (E}

FIG. 1. Bulk-phonon dispersion curves and DOS for GaP
calculated from the DBA. The calculated LOp, TOr, and TA~
energies are 50, 45.3, and 12.8 meV, respectively. The peaks in
the bulk DOS lie at 11.3, 27, 44.8, 48.8, and 52.9 meV. In the
units shown, the DOS integrates to 6.0004, compared with the
exact value, 6.

0 l 0 20 50 40
energy (rneV)

50 60

FIG. 2. Partial DOS of bulk GaP for the representations,
A~ —T2. Green's functions for P- and Ga-centered clusters are
shown. The A2 partial DOS involves 2NN motion only and for
the P-centered {Ga-centered) cluster is larger at optical (acoustic)
frequencies.
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nates of the 17-atom cluster. )

Figure 2 gives the decoxnposition of the bulk DOS into
the various representations of Tq appropriate for a point
defect. The bulk DOS can be recovered from the various
partial densities by performing the sum

70—

0-site restoring force
0.25

0.0 0.5 l.O l.5
l

Loca) Modes
for GaP: Qp

p. .o
l

T2

d(,)[&p'(E)+No,'(E)]=17M(E),
(g)=A )

(17)
60—

where d~, ~
is the dimensionality of the representation (s).

The renormalization factor of 17 on the right-hand side of
Eq. (17) occurs because, in summing over both P- and
Ga-centered clusters, the two-atom basis of GaP is includ-
ed 17 times.

C. Local modes

Let us examine the local phonon modes of GaP:Op as a
function of the interaction perturbation. In Sec. IIC we
have parametrized the interaction perturbation for
GRP:Op ill terms of Y/o o~, Y/o p, Rnd 'gG~ p. Now, wc fccl
physically motivated to require a further constraint be-
tween go 6, and go p. It is natural to expect the 0-P in-
teraction to vanish when the 0-Ga interaction vanisbes,
and the 0-P interaction to have the bulk (P-P) value when
the 0-Ga interaction has the bulk (P-Ga) value. In this
way we are led to consider defects for which
qo G,=q~, =q. In contIast, we expect. the relation be-
tween the back bonds (r/o, p) and our newly defined r/ to
depend on details of the defect chemistry wdl beyond the
scope of this paper. In practice, we have found that the
effect of the parameter r/o, p is to "turn on" certain
2NN-shell local modes whHC not appreciably affecting
those low-shell modes which have a strong dependence on

Therefore, for the purpose of presentation, we choose
(see Sec. IV) r/o, p

——0.12' and present our results as a
function of the single parameter, g.

The local modes of GaP:Op as a function of the per-
turbing force-constant parameter r/ are shown in Fig. 3.
Only A i and Tz modes satisfying Eq. (9) are shown here.
Modes of Az, E, and Ti symmetry also occur, but are om-
itted for clarity. r/ ranges from —1, corresponding to re-
moval of the short range 0-Ga and -0-P interactions,
through 0, where all interactions have their bulk values, to
+ 1. The effective 0-site restoring force, k'tt'
=(1+r/ —0.177)/(1 —0.177), normalized to the bulk P-
site value, is indicated along the top of the figure while
the bulk DOS adjoins on the left. Note that the shaded re-
gion belo~ the value k""=O is unphysical.

The important features of Fig. 3 are the steep Tz
branch in the energy range near 12—40 meV, the lowest-
lying Tz branches (around 10 meV), the low-encrgy A,
branch (20—35 meV), and the high-energy Ai branch
(45—55 mcV). Tllc stccp Tp blailch was scen lil oui' car-
llci' Inodcl Rild consists mainly of O-atom Hlotloll. Also
seen in our earlier work was the low-energy A i branch. In
the present work, this Ai branch, consisting of over 95%
NN breathing, has been pulled up to higher energies
(r/~0) in better agreement with experiment, as we shall
see below. Two significant features appear in the present
work not obtained previously. One is the high-energy A

&

PQ I—

mode symmetry i

A)

0 I

0.5-0.5 0
-0,62
perturbing force constant, q

I.O

FIG. 3. A ~ and T2 local-mode energies for GaP:Op as a func-
tion of the short-range force-constant perturbation q discussed
in the text. For g= —0.62 the A~-mode energies are 20.4 and
48.2 meV and the T2-mode energies are 7.3, 28.2, and 43.1 meV.
The shaded region is unphysical. The DOS for bulk GaP ad-
joins on the left.

branch, which appears only upon perturbation of the
Ga-P back-bond force constants and involves mostly
2NN-breathing motion. The other is tbe low-energy Tz
branch. This T2 branch is primarily composed of Ga-
shell, bond-stretching motion (E)6 meV) and seems to
appear for r/ ~0 only when the bulk model includes 2NN
interactions.

In Sec. IV we shall see that the 0 defect is well
described by the perturbation g =—O. 62. This corre-
sponds to a k' ' of 25% of the bulk value. The local-
mode energies at g = —0.62 are indicated in the caption of
Fig. 3. Next, in Fi. 4, we compare the A& bulk and de-
fect partial DOS for r/= —0.62. These are decomposed
into their Ga- and P-shell parts, showing the relative ener-

gy of motion associated with each shell at a given mode
"energy, " E =Ace. From the top curve in Fig. 4 we see
resonant modes at 20.4 and 48.2 meV. The 20.4-meV
mode is a rather broad resonance of width -5 meV and
involves mainly NN Ga motion (96%) as mentioned
above. The resonant mode at 48.2 meV is sharper (-0.5
meV) and consists of motion (97%) of the less massive P
atoms. It is evident from the figure that both resonant
modes occur at frequencies appreciably different from the
bulk peaks, and hence are characteristic of the defect. In
contrast, local modes confined near singular features in
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I 1 I

P,
~

LDOS for Gap:0,
48.2meV ~.-

I I I I

Tz LDOS for Op IsotoPes
in Gap

ZB ZmeV
45.lmeV

2Q. 4 meV:,
I

(P shell)

(P shell)

(Ga shell) Qonp:
buIk P site:." "'

(0 site)

Q IO QQ 3Q 4Q

energy (rneV)
5Q 6Q

la0:4 ~ ~ 4 ~ ~ i

FIG. 4. A
&

LDOS for GaP:Op decomposed into Ga- and P-
shell components. The corresponding bulk partial DOS's are in-
cluded for comparison. The 20.4-meV resonance involves most-
ly Ga-shell motion, while the resonance at 48.2 meV consists
mainly of P-shell motion. All curves have the same scale.

the bulk partial DOS may also, in general, occur. Such
modes evidently couple strongly to bulk modes and are
thereby more "bulklike, " i.e., more spatially delocalized in
character,

We show the Tz LDOS for GaP:Op at ri= —0.62 in
Fig. 5, once again decomposed into contributions from 0,
Ga, and P shells. The mode energies which solve Eq. (9}
are indicated on the top curve. Twin resonance peaks at
25.0 and 28.2 meV are seen in the O-site LDOS, occurring
just above and just below the 27-meV LA peak in the bulk
DOS. The 28.2-meV mode consists of 86% 0-, 8% Ga-,
and 6% P-shell motion, and the 25.0-meV mode consists
of 70% 0-, 20% Ga-, and 10% P-shell motion, within the
17-atom cluster. We note that at g= —0.62 only the
mode at 28.2 meV is a solution of Eq. (9}. The twin-peak
structure appears to be the result of coupling between
isolated-defect and nearby bulk LA-phonon modes. The
27-meV I,A peak in the bulk DOS involves very little P-
sublattice motion. Thus, a mode involving large O motion
cannot exist at 27 meV, and when g~ —0.62 the O mode
splits into two modes. Both 0-site peaks occur at energies
different from bulk peaks and are well localized near the
0 atom, and upon the substitution of ' 0 for ' 0, both
peak posltloIls uIldclgo a shift 1n cIlclgy. Thc 25.0- and
28.2-meV resonances are, therefore, local rather than bulk-
like in character. In contrast, the weak mode at 43.1 meV
is pinned to a van Hove singularity in the bulk DOS (see

0 I 0 ZG 50 40 50 60
energy (mev)

FIG. 5. T2 LDOS of Ga:Op for isotopes ' O and ' O decom-
posed into O-atom, NN-shell, and 2NN-shell parts. The twin
resonances centered near 25 meV primarily involve O-atom
motion and undergo isotope shifts. Other resonant modes occur
at 7.3 meV (Ga shell) and 43.1 meV (bulklike P shell). All
curves have thc same scale.

Fig. 3) and is evidently somewhat more bulklike. Finally,
the sharp resonance at 7.3 meV primarily involves Ga-
shell motion (94%) along with small P (5%) and 0 (1%)
contributions.

IV. DISCUSSION

A. Intensity of phonoI1 replicas

The intensity of phonon-assisted optical transitions at
defects have been thoroughly discussed by Rebane. '

Selection rules for determining which transitions are al-
lowed are similar to those used for molecules, as discussed
by Herzberg. ' Allowed transitions are those for which
the dipole matrix element

(,4 (r, R)C& J(R) i
D, (r)

~
%~(r,R)@g(R))

is nonzero. Here, 4' is the electronic wave function, 4 is
the vibrational wave function, l and m label electronic
states, i and j label vibrational states, r is the set of all
electron coordinates, R is the set of all nuclear coordi-
nates, and D,(r)= —e g,. r; is the electronic dipole mo-
ment operator. In place of the nuclear coordinates R, we
introduce new coordinates Ql which are the normal coor-

S
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dinates of the vibrational problem. These normal coordi-
nates may be chosen to form bases for irreducible repre-
sentations I (QI ) of the symmetry group of the imperfect

crystal, where I (x) refers to the representation according
to wlllch x transforms. Wc RssuIIlc tllRt the sa111c sct of
normal coordinates may be used for both the initial and fi-
nal electronic states (though the equilibrium values of
these coordinates will depend on the electronic state). The
total vibrational wave function can now be written as

C'(;1= II&,«) ~

where i, labels the occupation of the sth normal coordi-
nate. The harmonic-oscillator functions P are even with
respect to their arguments for even occupation, and odd
for odd occupation. By inspection, in the vibrational
ground state (i, =0 for all s) the wave function 41(; )

is to-

tally symmetnc. For multiple one-phonon occupation, 4
transforms as lI t;, )

I (Q, ), where the product runs over

all s such that i, =1.
As an example of the above discussion, consider a de-

fect wltll Td symmetry, 111 wlllcll case tllc dlpolc 1Ilolllcllt
transforms as TI. An A, ~HI electmnic transition is for-
b1ddcn, but lf Ollc TI pllolloll ls Involved, tllc dlpolc 111R-

trix element transforms as

A ) (3A ) Tz A ) Tz ——A ) E T) Tz,

which is allowed. Similarly, an A 1
—+Tz electronic transi-

tion is allow'ed, and participation of a single A
~ phonon or

a single Tz phonon is also allowed since

A, (3)A&Tzg Tz(3)A, and A&gAITzg Tzg Tz

both contain AI. The intensity of phonon replicas is
governed by the Franck-Condon principle. ' *' Essential-

ly, this principle states that the phonon replicas which will
be observed in a transition are those which describe the
change in equilibrium position of the atoms between the
initial and final states. In other words, if the atoms move
along some coordinate Q between their initial and final
states, normal modes of the type Q will be strongly excited
in the transition.

%e can use this principle to demonstrate that "antisym-
metric, " i.e., not totally symmetric, phonons cannot be
stroIlgly cxcltcd. If soIIlc Rntlsy111IIlctrlc v1bratlonal Illodc
is strongly excited, this necessarily leads to a change in the
symmetry of the system, and in the new symmetry group
the vibrational mode is totally symmetric. However, for
weak excitation of the antisymmetric vibrations, this
change in symmetry can be neglected. Thus, in electroni-
cally allowed transitions, totally symmetric vibrations will
predominate, and in electronically forbidden transitions,
the occupation of the dominant antisymmetric modes
changes by one.

B. Comparison of theory and experiment

In Table I we compare our theoretical results with the
phonon energies observed in the optical spectra of the 0+
and 0 defects. The apparent agreement between theory
and experiment is achieved partly by matching unknown
theoretical parameters with experiment, and partly by the
predictive powers of the theory itself. If we view the bulk
phonon dispersion curves as input to the theory, then the
only unknown is the interaction perturbation within the
I7-atom cluster. %e have parametrized the interaction
perturbation [Eqs. (8)] in Sec. IIC and have invoked the
further restriction, I)o 0,——I)o p ——ri in Sec. III C, so that
the total number of unknown parameters is two. %'e

determine values for these parameters by matching the en-

TABLE I. Energies (meV) of the phonons associated with the 0 and 0+ defect in GaP ' 0~'s0
isotope shifts (meV) are given in parentheses following the energies. Tentative identifications are indi-

cated by "?."
Identification

6.0'

19.5' 19
24.7(—1,6)
28.4—0.5)

43.0'
44.8"

Zn-0
TA

a )(Ga)
loc
loc
A

TO
e(p) ~ 0 0

tl(P) ~ ~ ~

a2(p) ~ ~ ~

8 46.1," 46.4,', 46.5'
a~(p) 47.5," 47, 48

C 48.7,' 48.8'
I Qr 49.8'

' Reference 17.
Reference 2, capture-luminescence spectrum.' Reference 2, luminescence-excitation spectrum.
Reference 3.

' Reference 14.
Reference 1.

7.3
11.5
20.4

25.0( —0.6)
28.2( —0.7)

43.1
44.8
45.3
45.4
45.8
48.8
48.2
48.8
50.0

defect (T2, Ga shell)
bulk (TA)
defect (Aj, Ga shell)
defect (T2, 0 atom)
defect (Tq, 0 atom)
defect (T~, P shell)?
bulk (T0)
defect (E, P shell)
defect (TI, P shell)
defect (A2, P shell)
defect (T2, P shell)?
defect (AI, P shell)

bulk (LO)
bulk (LQI-)
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ergies of theoretical modes with those observed. The
theory then predicts a number of other vibrational modes
not involved in the matching process with which we iden-
tify observed phonons. In this way we determine the sym-
metry and character of almost all of the phonon modes as-
sociated with the 0+ and 0 defects. Strictly speaking,
all of the phonons observed in the optical spectra involve
some component of defect motion (i.e., O-atom, nearest
Ga-shell, or nearest P-shell motion). However, certain
phonons involve much more defect motion than others,
and it is useful to separate the modes into those which are
associated largely with the defect and those which are
bulklike. In Table I we have classified the modes as such.
The theoretical defect-mode energies are taken from peaks
in the LDOS, and the theoretical bulk phonon energies are
taken from peaks in the bulk DOS or critical points in the
dispersion curves.

A set of very interesting phonon sidebands associated
with the neutral oxygen defect 0 occur in the capture
luminescence of Dean and Henry. Here, intense phonon
resonances near 25 meV are observed to involve signifi-
cant 0 motion since they shift under the isotopic substitu-
tion, ' 0~ ' 0 and must therefore be T2 modes. Since
the 0 mass is less than that of P, these low-energy reso-
nances imply reduced 0-neighbor force constants relative
to the bulk force constants. This force-constant reduction
was first estimated by Feenstra and McGill' to be 30%,
and later estimated by Baraff, Kane, and Schliiter' to be
20%; both estimates were based on simple molecular-type
vibrational models. Subsequent NN Green's-function re-
sults yield an estimate of 15%. In the present model, if
we assume the same fractional reduction for 0-Ga and
0-P force constants, the best value for the purely short-
range force-constant reduction is q= —0.62. After in-
cluding Coulomb effects between the 0 atom and the rest
of the lattice, this corresponds to a total effective force
constant (k' ') of 3.5 eV/A, which is 25% of the bulk,
P-site value. We emphasize, though, that k' ' includes
long-range Coulomb effects from the entire lattice and
must not be viewed simply as an equivalent short-range
force constant. Our LDOS for T2 modes, summed over
the 0 atom, Ga shell, and P shell, is shown in Fig. 5. The
theoretical peak energies and isotope shifts listed in Table
I compare reasonably well with experiment.

Having determined the 0-neighbor force constants, the
theory predicts an A i mode at 20.4 meV. We identify this
mode with the observed 19-meV phonon listed in Table I.
As discussed by Morgan and also in Sec. IVA, the ob-
served intensities of this 19-meV mode and the prominent
47-meV mode indicate that these modes have A

&
symme-

try. To produce a defect mode of Ai symmetry near 47
meV, it is necessary to reduce the back-bond Ga-P force
constants from their bulk values. We arbitrarily choose to
reduce the Ga-P force constants by 12% of the 0-
neighbor reduction, resulting in gz, p ———0.0744 for the
Ga-P interactions and yielding an 3 I mode at 48.2 meV.
Further reductions in the Ga-P force constants reduce the
energy of this mode, bringing it closer to the observed
value. However, considering the uncertainties associated
with our calculated optical phonons, we feel that an accu-
rate determination of these back-bond Ga-P interactions is

outside the range of our theory. Suffice it to say that our
computations do yield an AI mode in the optical branch
and that the back-bond Ga-P interactions are reduced
from their bulk values.

A number of phonon replicas in the optical branch are
seen in the optical spectra of Dean and Henry. We iden-
tify the symmetry and nature of these phonons as indicat-
ed in Table I. Some of these optical-phonon replicas are
weak, and considering the uncertainty of our optical-
phonon computations, those identifications we feel should
be regarded as tentative are marked by "?." The ai(P)
phonon has been discussed above. The phonon labeled B
we take to be a defect mode since its energy falls well
away from peaks in the bulk DOS. This phonon is ob-
served in capture-luminescence and luminescence-
excitation spectra, and is also seen in the near-neighbor
(m =4 and 5) Zn-0 pair spectrum' (labeled 0 in that
spectrum). Considering the proximity of the donor-
acceptor impurities in the latter case, it seems that this
46.5-meV mode corresponds to atomic motion which is
directed along the donor-acceptor axis, i.e., a T2 mode
with respect to the Td symmetry of an isolated 0 impuri-
ty. The 46.1-meV B phonon in the capture-luminescence
spectrum most likely has T2 symmetry, although the
46.4-meV mode seen in luminescence-excitation spectra
could transform as either Ai or T2, as discussed in Sec.
IV A. For now, we group all three of these modes togeth-
er with the label B in Table I, and we tentatively identify
them with a computed r2 resonance at 48.8 meV which is
strongly tied to a LO peak in the bulk DOS (see Figs. 3
and 5).

Another Tz defect mode occurs in the theory at 43.1

meV, and this mode we tentatively associate with the ob-
served 43.0-meV phonon labeled A. The 49.8-meV pho-
non identified by Dean and Henry as LO& is in agreement
with our computed 50.0-meV LO~-phonon energy. The
mode labeled C we associate with the prominent peak in
the bulk DOS occurring at 48.8 meV, while we associate
the observed 44.8-meV mode with the very prominent TO
peak in the bulk DOS occurring at 44.8 meV. In both of
these cases, the peaks in the bulk DOS do not correspond
to phonons at or near critical points in the Brillouin zone,
but rather are associated with phonons in the interior of
the zone. Finally, with regard to defect modes in the opti-
cal branch, we note that the present theory neglects
defect-induced electrostatic interactions, and such effects
are known to cause vibrational modes split off from the
LO branch. '

We now come to the entry in Table I labeled Zn-O.
This 6.0-meV mode is just barely resolved in the NN Zn-
0 pair spectrum of Henry, Dean, and Cuthbert' (a related
mode' is seen at 9.2 meV for 2NN Zn-0 pairs). Al-
though the computational results presented here apply to
the isolated 0 defect, simply replacing a NN Ga with a
Zn atom changes the phonon energies by less than 0.1

meV since Ga and Zn have almost the same mass. Fur-
ther force-constant variations of the Zn-O, Zn-P, or Zn-
Ga interactions could affect the mode energies, but we as-
sume that these variations are not significant. The pres-
ence of the Zn atom will, however, drastically affect the
selection rules for observing phonons. In particular, all



1866 R. J. HAUENSTEIN, T. C. McGILL, AND R. M. FEENSTRA 29

modes which are T2 for isolated 0 are now split to A i eE,
and strong phonon replicas of the allowed electronic tran-
sition transform as Ai. Thus, the low-energy Tz mode in
Fig. 5 should appear in the Zn-0 spectrum, and we identi-
fy it with the observed 6.0-meV mode. The theoretical
"eigenvector" for this mode is shown in Fig. 6. We plot
the displacement eigenvector, u =I '~i(, satisfying the
eigenvalue equation

[I—Go(co )5L(co )g'=A, (co )g'

at the resonant frequency, fico =7.3 meV, for which
ReA, =O. ' Now, the actual defect normal mode, given by
(I—Go5L)/=0, requires a complex value of co for its
solution. However, since Iml, is proportional to the reso-
nance width, we expect, for the very sharp 7.3-meV inode,
that co is near the real axis so that Eq. (19) gives a reason-
able representation of the atomic motion in this case. It
has been argued that this particular resonant mode plays
an essential role in the dissociation of Zn-0 pairs. ' In
particular, the atomic motions which occur during the
early stages of the dissociation may be as shown in Fig. 6.
It is seen that the amplitude of Zn-atom motion is roughly
3 times that of oxygen. Thus, we conclude that in the pair
dissociation it is the Zn atom which jumps to an intersti-
tial site and diffuses away.

The vibrational modes of NN Cd-0 pairs have been ob-
served in optical spectra, ' ' ' and can be qualitatively
understood on the basis of our calculations. The Cd-0
modes will be similar to the Zn-0 modes, except that
those vibrations involving significant Cd motion will be
shifted down in energy. Replicas of the electronically al-
lowed 3 line should have 3& symmetry for the point
group C3„, i.e., the A i modes and the A i component of the
T2 modes for isolated oxygen. ' In emission, Henry,
Dean, Thomas, and Hopfield observe local modes at 7.0,
47.3, and 49.7 meV. The 7.0-meV mode is similar to the
6.0-meV Zn-0 mode discussed above. Thus, this mode in-
volves mainly Cd motion in agreement with the observed

FIG. 6. "Eigenvector" for the 7.3-meV T2 mode. The atomic
displacements are indicated for the 0 and its four Ga neighbors.
The Ga(4) and O displacements (in the ratio 3.4:1) both lie along
the bond direction. The eigenvector has C3„symmetry relative
to the 0—Ga(4) bond. With Zn in place of the Ga(4) atom, this is
the predominant motion involved in the dissociation of Zn-O
pairs (see text).

isotope shift. ' The optical resonances at 47.3 and 49.7
meV are probably associated with the defect 8 and a i(P)
modes, thus involving mainly P-shell motion. From the
intensities of the observed phonon replicas we conclude
that in the optical transition the major atomic motion is
that of the Cd atom moving relative to the almost station-
ary 0 atom. A number of I 3 phonons are reported
which produce replicas of the forbidden 8 line. Theoreti-
cally, we expect these to arise from the E modes and the E
components of the T& and T2 modes for isolated oxygen.
As shown in Table I we do compute various E and T&

modes. All these modes are very sharp (width of -O. 1

meV) and are tied to singularities in the bulk DOS. These
modes could account for some of the observed I i modes,
and the E components of the Ti mode at 43.1 meV may
also contribute. Our optical-phonon energies really are
not accurate enough to make a definitive identification of
these observed I 3 phonons.

Let us consider what our calculations tell us about the
nature of the oxygen defect. In particular, two opposing
models ' presently exist for this defect, and it is desir-
able to try to choose between them based on our results.
First, the defect we are considering in our calculations is
only a model, without the same detailed properties of the
actual oxygen defect although their general properties
should be similar. The most important result from our
calculations is the 0-lattice effective force constant, 3.5
eV/A . This number is accurate to within, perhaps, 10%,
and so provides a test of the opposing models. Unfor-
tunately, it is very difficult to accurately obtain the defect
force constant from the existing theoretical models. To
date, Baraff et aI. ' have attempted such a calculation for
the classical model ' and have obtained an 0-Ga stretch-
ing constant of 4.4 eV/A, corresponding to an effective
force constant of 4(4.4)/3=5.9 eV/A, a result which is
somewhat too large. Nobody has yet attempted a similar
computation for the weak-bonding model, ' although the
computed bond strength should be significantly different
for the two models as they contain different numbers of
bonding and antibonding electrons. Morgan has recently
argued that the observed structure near 25 meV in the 0
phonon sidebands is due to a dynamic Jahn-Teller distor-
tion of the 0 defect. Although such a distortion could
occur, our calculations demonstrate that it is not necessary
to invoke this mechanism in order to account for the ob-
served structure. With one free parameter (i1), we have
obtained quantitative agreement between experiment and
theory for those phonon energies, isotope shifts, and inten-
sities.

One basis for the weak-bonding model ' is the l9-meV
ai(oa) phonon, present in donor-acceptor —pair (DAP)
spectra, ' but apparently absent in photoluminescence-
excitation (PLE) spectra. According to our calculations,
this mode is rather broad as seen in the Ga-shell Ai
LDOS for 0 on a P site, shown in Fig. 4. Clearly, this
resonance is distributed throughout the acoustic branch,
so let us take its "width" to be 5 meV. This width has no
consequence in the DAP spectrum due to the greater-
than-10-meV broadening caused by a distribution of pair
separations. But in the PLE spectrum, the no-phonon line
is relatively sharp, so that the ratio of peak heights be-
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tween an a~(Ga)-phonon —assisted line and a no-phonon
line is significantly reduced from the DAP spectrum. Ad-
ditional broadening for the phonon-assisted line is also
possible; the 20.4-meV Ga-shell peak in the A

&
LDOS for

0 on a P site shown in Fig. 4 represents mainly NN Ga
motion. Motion of further-lying Ga shells will be concen-
trated at energies closer to 27 meV, and the actual phonon
sideband probably involves some combination of these
motions. We feel that a calculation of these broadening
effects would be useful in order to quantify the apparent
"anomaly. " '

V. CONCLUSION

The major results of this paper are concerned with the
existence of defect vibrational modes, including both
strictly localized and resonant modes. It is impossible to
determine the number of such modes by group theory
alone since the existence of a mode is determined by a
quantitative parameter: the degree of localization around
the defect. Thus, it is necessary to undertake a computa-
tion of the vibrational modes of a defect. The theory we
use for this purpose is a phenomenological one in which
the force constants of the perfect lattice and those of the
defect are all chosen to match experiment. Bulk phonons
are described by a 15-parameter model which includes NN
and 2NN plus electrostatic interactions. A defect is then
introduced by perturbing the mass of an atom and per-
turbing its NN and 2NN force constants. A Green's-
function technique is used to evaluate the LDOS near the
defect, and thereby determine the presence of defect
modes.

Our theoretical results are compared with experiment
for the GaP:01 defect. We use a two-parameter descrip-
tion of the short-range interaction perturbation near the 0
site. By a suitable choice of these two defect force con-
stants we have obtained quantitative agreement with ob-
served phonon modes involving 0+ and 0 defects. For
0-neighbor (i.e., 0-Ga and 0-P) and Ga-P (back-bond)
short-range defect force constants at 38% and 93% of
their respective bulk values, our calculations predict two
A~ modes and two T2 modes which are reasonably local-
ized at or near the defect, and also, other modes which are
more bulklike in nature. We summarize the character of
the four most localized modes as follows.

(1) 0-atom T2 mode. This mode involves mainly 0-
atom motion, and this motion is localized near the defect
for practically any value of the defect force constants. To
match the observed phonon energies near 25 meV, our
choice of defect force constants correspond to an 0-lattice
effective force constant (taking all long-range and short-
range interactions into account) of 3.5 eV/A, which is
25% of the bulk, P-lattice value. This force constant may
be compared with that obtained by assuming that the ob-
served phonon is completely localized on the oxygen im-
purity, (25 meV/A) mo ——2.4 eV/A . Our calculations
demonstrate that the observed two-peak structure in this
resonant mode is due to coupling with LA bulk phonons.

(2) Ga-shell T2 mode. This mode involves mainly vec-
torlike motion of the shell of Ga atoms surrounding the O
impurity. The mode originates from the TA peak in
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APPENDIX

We have determined the collective coordinates Q for the
12-atom, 2NN shell seen by a substitutional defect in a
zinc-blende lattice. The collective coordinates form bases
for the irreducible representations of the symmetry group
of the 2NN shell, namely 0~. The equilibrium positions
of the 12 atoms in the 2NN shell are given (in units of
ap/2) by

r~= —r7=(0, 1,1), r2= —rs=(1,0, 1),
13— 19—(1 1 0) 14= —1 ~p=( —1 1 0) (Al)

rs ———r» ——(0, —1,1), r6 ———r&z
——(1,0, —1),

where a0 is the edge length of the conventional unit cell.
The 36 collective coordinates Q are related by an orthogo-
nal transformation to the 36 Cartesian displacements,
(x;,y;,z; ), of atom i from equilibrium, where
i = 1, . . . , 12. The explicit form of this orthogonal
transformation is given in Table II. In this work, the

bulk-phonon DOS, and is significantly localized around
the defect for values of the 0-neighbor force constants
which are about 80% or less of the bulk values. Experi-
mentally, this mode is not seen in spectra involving isolat-
ed O impurities, but is seen when a Zn or Cd atom is lo-
cated near the 0 atom, thereby lowering the symmetry of
the system.

(3) Ga shell-3& mode. This mode is a breathing motion
of the Ga shell. The mode originates at the peak in the
LA bulk-phonon DOS and is localized for values of the
0-neighbor force constants which are about 80% or less
of the bulk values. This resonant mode is relatively broad
with a width of about 5 meV (in agreement with experi-
ment).

(4) P-shell A1 mode. This mode mainly involves breath-
ing motion of the P shell (2NN's) surrounding the 0
atom. The mode originates at the LO peak in the bulk
DOS, and appears when the Ga-P back-bond interactions
are reduced to 95% or less of the bulk values.

For all of the four defect modes discussed above, we
feel that our theoretical description is fairly close to exper-
iment in terms of energies and eigenvectors. We have
demonstrated that the 0+ and Op defects are weakly
bound in GaP, as expected, and that the Ga—P back
bonds appear to be weakened. Our predicted two-peak,
0-atom T2 mode shows that the experimental results for
the 0 defect are consistent with a T~-symmetric
geometry. Finally, our calculations identify the predom-
inant atomic motion involved in the dissociation of Zn-0
pairs in GaP.
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TABLE II. 36 collective coordinates Q for the 12-atom, 2NN shell. The (unnormahzcd) components associated with the atoms
i = 1, . . . , 6 al'c gIvc11 cxplIcltly. Tile COIllpollcllts assocla'tcd wltll tllc rcmaInlng atoIIls (I =7, . . . , 12) al'c obtained by 111ultlplyIng
the entire roar of coefficients by the sign indicated. The ix'x'educible representation of the Tq group ac«rdinj. to which the collective
cool dinates tl ansform ale also indicated.

QI
QI
Qs
Q~

Qs
Q6
Q7

Qs

Q9
QIo
Q«
QI2
QIs
QI4
QIs
QI6
QI7
QIS
QI9
QIo
QZI

QII
Qzs

Qz~

Qzs

QI6
Q27

Q2s

Q29

Qso

QII
Qsz

Qss
Qs~

Qss
QI6

Aj
AI
A2

T$

T$
T'j

TI
Tj
T]
T$

T$

T$

Tf
T$

T$

T2
T2
T2
T2
T2
T2
T2
T2
T2
T2
T2
T2
T2
T2
T2

1

0
1

1

1

1

1

0
0
0
0
0
0
1

0
1

0
1

1

0
1

1

0
1

0
0
0
1

0
1

0
0
0
0
1

0

Z3

1

0
1

2
0
0
2
0
0
0
0
0
0
0
1

1

1

0
1

1

0
1

1

0
0
0
0
1

0
0
0
0
0
0
1

1

0
1

1

1

1

1

0
0
0
0
0
I
0
0
0
1

1

0
1

1

0
1

1

0
0
0
0
1

1

0
0
0
1

0
0

Z5 X6 Z6 Z6 ( + OX'

1 0 1

0 1 0
1 0 1

1 0 1

0 1

1 0 1

1 0 1

0 1 0
0 1 0
0 1 0
0 0 0
0 1 0
0 0 0
1 0 1

0 0 0
1 0 1

0 0 0
1 0 1

1 0 I
0 0 0
1 0 1

1 0 1

0 0 0
1 0 1

0 0 0
0 1 0
0 0 0
1 0 1

0 0 0
1 0 1

0 1 0
0 0 0
0 1 0
0 0 0
1 0 1

0 0 0

symmetry of the defect is Tg. Accordingly, the collective
coordinates presented here form bases for the irreducible
representations of the Td as well as the Oj, point groups.
The Tq representations associated with various Q s are in-
dicated in Table Il. The corresponding 0~ representations

may be obtained from Table II with the substitutions,
A) —+A )g, A ) ~A2g, A2 —+A2g, E ~Et, E+—+E„,
TI ~TIg, TI ~T2u, TI ~T2g» a11d T2 —+TIu, wllCrC

the plus or minus sign superscript refers to the rightmost
coluxnn entry in the table.
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