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We have calculated the ratio of the energy gap Ao to the critical temperature T, for a large num-

ber of known electron-phonon spectral densities with the use of the imaginary-axis formulation of
Eliashberg theory with an analytic-continuation technique to the real axis. Agreement with experi-
ment is within a few percent. It is found that the general trend obtained for 2AO/kqT, against

T, /coh, where co&„ is the popular Allen-Dynes expression for the average phonon energy, can be

reproduced by a two-parameter functional form of the general type first given by Geilikman and
Kresin. The details, however, can only be understood with complete calculations.

I. INTRODUCTION

To interpret carefully experimental data on the thermo-
dynamics of superconductors it is necessary to consider
and to account, in detail, for strong-coupling effects.
These effects lead to modifications of BCS laws' and
have their origin in the retardation of the electmn-phonon
interaction. In order to treat retardation it is necessary to
introduce the Eliashberg gap equations which need to be
solved numerically because of their complexity. The
imaginary-frequency-axis formulation" of these equa-
tions, which deals with discrete sums over Matsubara fre-
quencies, is well suited for thermodynamic calculations. '

Good agreement with experiment can be obtained using
the microscopic parameters derived from tunneling spec-
troscopy, namely the electron-phonon spectral density
a (Q)F(Q), as a function of phonon energy Q, and the
Coulomb pseudopotential p*.

An index of strong-coupling effects is the deviation
from the BCS value of 3.53 for the ratio 2hp/k~ T„where
Ap is the zero-temperature gap edge and T, is the critical
temperature. To obtain Ao it is necessary to make an ana-
lytic continuation of the imaginary-axis solutions of the
Eliashberg equations at zero temperature to the real fre-
quency axis. This can be done by the method of Pade ap-
proximants. In Sec. II of this paper we present such cal-
culations of b,p for many superconductors for which
a2(Q)F(Q) is known and compare the ratio 2kp/kttT&
with experimental results. %e find agreement with exper-
iment to within a few percent.

There exist in the literature several approximate analyt-
ic formulas, accurate at the 10% level, which relate the
size of the critical temperature to the microscopic parame-
ters a (Q)F(Q) and p*. The first such formula to be de-
rived, and by far the most extensively used so far, is due

to McMillan and its extension by Allen and Dynes. ' An
equally accurate but rarely used formula is that due to
Leavens and Carbotte"' who also consider, in the same
approximation scheme, the gap edge hp, and find a ratio
2b, plkts T, unchanged from the BCS value 3.53.

Using rather sweeping approximations as compared to
those used in the previously mentioned works, Geilikman
and Kresin' have derived an expression for 2hplk~T, of
the form

]+5.3 ln
CO C

in which m is some phonon energy which is not sharply
specified in the theory and remains uncertain.

In See. III we present a new derivation for 26plktsT,
which is tailored to yield a formula, of the same general
form as found by Geilikman and Kresin, " but which
makes clear the approximations that are introduced along
the way. We note that in our work the underlying formu-
la for T, is that of Leavens and Carbotte which is accu-
rate at the 10% level without intmducing any fitting pa-
rameters. It is in the derivation of Ap that the somewhat
uncertain frequency co is introduced together with two
constants. Once the definition of 6 is specified, the two
constants can be determined by a fit to the exact results
obtained in Sec. II. This is done in Sec. IV where we
present a final formula for 26p/kplk~ T, which is
phenomenological in nature. While it cannot reproduce in
detail the values of 2hp/k&T, obtained from the full nu-
merical solutions of the Eliashberg equations, it does give
the general overall trend found over the entire set of sys-
tems considered.
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II. SOLUTION OF THE IMAGINARY-AXIS ELIASHBERG EQUATIONS

The Eliashberg equations, at temperature T, written on the imaginary frequency axis are ' '

+ 00 b(ice )
5(leon)zs(i'„)=7rkllT y [A( n —m) —p (cog)e(mg

~
~~

~
)] 2 2 1/2[co +b (ice~ )]'

and

+ 00 m
co„Zs(i co„)=lo„+n.

klan T g k(n m)—
[co +b, (iso )]'~ (2)

where 6 is the gap and Zs the renormalization factor at
the nth Matsubara frequency:

iso„=in kll T(2n —1), n =0, +1,+2, . . .

with kll the Boltzmann constant. In Eqs. (1) and (2) lo, is
the cutoff frequency, p*(co, ) is the Coulomb pseudopoten-
tial corresponding to the phonon cutoff lo„and A,(n —m)
is related to the electron-phonon spectral density
a (Q)F(Q) by

Qa (Q)F(Q)
Q +(co„—co )

There is an image of a (Q)F(Q) and p'(co, ) in the
current (I) voltage ( V) characteristics of a tunnel junction.
I-V data can be inverted to get these microscopic parame-
ters. The McMillan-Rowell inversion procedure, ' gen-
erally used for this task, makes use of the real-axis formu-
lation of the Eliashberg equations. These can be obtained
«om Eqs. (1) and (2) by formal analytic continuation.
The resulting equations are more complicated to write
than the imaginary-axis version but would be fully
equivalent if an infinite cutoff is used. In practice, finite
cutoffs are introduced both in the real- and imaginary-axis
versions, which in turn are reflected in the value of p*. It
is important to realize that a sharp cutoff in the real axis
does not analytically continue to a sharp cutoff on the im-

aginary axis and vice versa. ' In our calculations we use
the spectral density a (Q)F(Q) obtained from tunneling
data in many superconductors and tabulated by Rowell,
McMillan, and Dynes. ' Because of the above-mentioned
cutoff difficulties, we do not use the tunneling value of
p", but fit p*(co, ) in Eq. (1) to get the measured values of
T, when Eqs. (1) and (2) are solved at the critical tempera-
ture. In this case the equation mn be linearized since
b, (icon ) tends to zero. We obtain the real gap at zero tem-
perature analytically continuing h(i lo„) from (1) and (2) to
the real axis using Pade approximants. The X-point Pade
approximant to a complex function u (z) of the complex
variable z, whose X values u; (i = 1, . . . , X) are given at X
complex points z; (i = 1, . . . , X), is defined ' as a contin-
ued fraction:

Q)

ap(z —z1)

a3(z —z1)

a„(z —z„,)

I

such that

n =1,2, . . . , X —1,

Ap ——0, Ai ——a], Bp ——Bi ——1 . (10)

Vidberg and Serene have tested this method on several
general cases and applied it to the problem of obtaining
the real-axis solutions b, (co) and Zs(lo) «om the ima-

ginary solutions b, (iso„) and Zs(ice„) at the Matsubara
frequencies. The main conclusions of their analysis are as
follows:

(a) In order to get a good approximation to a function
structured in the interval [O, lo] on the real axis one should
use a sufficient number of inputs points from the interval
[O,iso'] on the imaginary axis where iso' belongs to the
range of imaginary axis where the function attains its
asymptotic form (usually i co' is several times i co).

(b) The number of digits in the known values of the
function u; (i =1, . . . , X) is crucial for obtaining a good
analytic continuation.

(c) Overall agreement between the b, (co) and Zs(lo) ob-
tained by means of the X-point Pade, approximant and
those tabulated by Rowell, McMillan and Dynes' is good,
being excellent in the low-frequency range (from zero up
to several meV).

C„(z,)=u;, i =I, . . . , X.
The coefficients a; are then given by the recursion

a;=g;(z;), g1(z;)=u;, i =I, . . . , X

gp —1(zp —1) gp —1(z)
gp(z) =

(z —zp, )gp 1(z)

It mn be shown that

A~(z)
. C~(z)=

8~(z) '

where Az and 8& are polynomials given by the recursion

A„+,(z) =A„(z)+(z —z„)a„+,A„,(z),

n =1,2, . . . , X—1,
(9)

&n+1(Z) =&n (Z)+ (Z Zn )an+ l~n —1(Z)



For fixed frequency co, we have fitted the p*(co, ) to the
experimental transition temperature T, and then used the
same cutoff and Coulomb-repulsion parameter to solve
the Eliashberg equations (1) and (2) at some low tempera-
ture. Then me have applied the Pade scheme and deter-
mined Ao from the condition Red, (co=ho) =ho. Since the
Pade scheme is supposed to work mell in the low-
frequency range [see (c)] one can hope that this method
will give a good value for the ho. Furthermore, in view of
(a), it is not necessary to take too large a cutoff co, for the
purposes of determining the gap edge at zero temperature.
In most cases me have taken co, to be three times the max-
imum phonon frequency cuM of the given material (see
Table I). The temperature T at which the Eliashberg
equations were solved was usually 0.4 K. The variation of
ho(T), the gap edge at temperature T with T, is negligible
at very low temperature.

We give the results of our calculations in Table I. As

previously mentioned, most of the electron-phonon spec-
tral densities a (Q)E(Q) used come from the tabulation of
Rowell, McMillan, and Dynes' from which roM, p,*„„„,
and 60"P' is available and reproduced here; the third
column giving co~„ is mainly taken from the tabulation in
Allen and Dynes. ' The exact definition of this average
phonon energy mill come in Sec. III where it becomes
needed. For convenience, we also quote A, , the mass-
renormalization parameter, and the measured T, which is
also the calculated one. The electron-phonon spectral den-
sity not found in the Rowell-McMillan-Dynes tabulation
are now described. The one for Al is from the theoretical
calculation of Leung et a/. ' The first Nb entry is from
an early tunneling experiment by Robinson and Rowell. '

The second is a theoretical calculation by Butler et al.
based on a calculation of phonon widths. The last is from
the recent work of Arnold et al. ' which accounts for the
possibility of proximity in the tunnel junction. The vana-

TABLE I. Comparison of calculated and experimental gap edge. The theoretical ratio 26o/kz T,.

e ~M PtUnn

+cxpt +cRlc

(K) (meV) (meV) (6o"'—6o""')/3 o""' (2~0~kB Te )cslc

Al
Sn
Nb3Sn
Nb (Robinson)
Nb (Butler)
Nb (Arnold)
V
Nbo. 7szro. 2s

41.4
18.4
28.7
29.0
28.88
28.29
33.0
26.0

296 0.432
99 0.716

125 1.68
124 0.97
166 1.12
147 1.01
172 0.81
109 1.31

0.11
0.15
0.11

0.16
0.15
0.10+
0.02

0.1472
0.1143
0.1575
0.1158
0.2735
0.1854
0.19

1.18
3.75

18.0
9.2
9.2
9.22
5.36

10.8

0.606
3.1

1.46

1.51
0.8
1.9

0.18
0.599
3.53
1.57
1.53
1.54
0.85
1.93

—1.1
+ 13.9
+7.5

3.54
3.71
4.55
3.96
3.86
3.88
3.67
4.15

Ta
In
Ino 9Tlo )

lno. 7sT4.27

lno. 67Tio. ss
Ino s7Tlo 4s

lno. socio. so

Pbo sTlo 2

&no.z7~lo. 7s

Ino. i7Tlo. ss
Ino ovTlo.9s
Tl
Pbo 4Tlo 6

Pbo 6Tlo 4

Pb
Pbo. 9B&o.Io

Pbo.s»o. 2

Pbo 78io 3

Pbo. 6s»o. ss

Pbo. 6o~io. zo»o. 2o

T4.9o»o. io
Hglo

Amorphous Bi
Amorphous
Pbo. soBio.so

Amorphous
Pbo. vsB&o.2s

Amorphous Ga

20.9
15.8
16.2
14.6
15.2
14.4
14.8
10.9
13.6
13.2
11.8
10.9
11.0
10.9
11.0
9.9

10.9
10.4
10.1
10.2
10.5
14.3
14.0

13.1

132 0.69
68 0.805
63 0.85
55 0.934
57 0.90
53 0 85
53 0 83
50 1.53
42 1.09
45 0 98
49 0.89
52 0.795
48 1.15
50 1.38
56 1 55
50 1.66
46 1.88
47 2.0
45 2.13
48 1.82
48 0.78
29 1.62

2.46

35 2 25

0.11
0.125
0.12
0.13
0.13
0.14
0.13
0.122
0.11
0.12
0.13
0.135
0.113
0.126
0.131
0.095
0.111
0.11
0.111
0.137
0.119
0.11
0.105

0.1169
0.1130
0.1271
0.1358
0.1314
0.1387
0.1377
0.1239
0.1164
0.1188
0.1311
0.1281
0.1149
0.1262
0.1446
0.1120
0.1127
0.1154
0.0996
0.1538
0.1114
0.1197
0.0917

4.48
3.40
3.28
3.36
3.26
2.6
2.52
6.80
3.64
3.19
2.77
2.36
4.60
5.90
7.19
7.65
7.95
8.45
8.95
7.26
2.3
4.19
6.11

0.72
0.541
0.530
0.57
0.54
0.42
0.41
1.28
0.64
0.535
0.45
0.366
0.805
1.08
1.40
1.54
1.61
1.77
1.84
1.50
0.354
0.83
1.21

0.14 0.1338 6.99 1.51

0.14 0.1340 6.91 1.48

0.17 0.1632 8.56 1.68

0.71
0.556
0.540
0.564
0.543
0.426
0.41
1.33
0.64
0.545
0.46
0.382
0.822
1.11
1.40
1.55
1.67
1.82
1.98
1.49
0.374
0.83
1.30

1.53

—1.4
+2.8
+1.9
—1.0
+0.6
+ 1.4

0.0
3.9
0.0

+ 1.9
+2 2
+4.0
+2.1

+2.8
0.0

+0.6
+3.7
+28
+7.6
—0.7
+5.6

0.0
+7.4

3.68
3.80
3.82
3.90
3.87
3.80
3.78
4.54
4.08
3.96
3.85
3.76
4.15
4.37
4.52
4.70
4.88
5.00
5.13
4.76
3.77
4.60
4.94

5.14
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dium was also similarly obtained and is found in the work
of Zasadzinski et al. Finally, the Nba IIZno 25 alloy Is
from a paper by Wolf and Noer. 3 The amorphous metals
are from the work of Chen et al. and of Chen. '

We return now to the table and note that in the case of
Pb and Hg the agreement between the calculated and ex-
perimental values of b,o is perfect. Also, in the case of Al
the calculated ratio is very close to the BCS result 3.53.
Aluminum Is R very wcRk coupling nlRtcriRl for wliicli tlic
retardation and damping effects are not important and
which can be well described within the BCS theory. We
SCC thRt OUI' PIOCCdUI'C g1VCS thC COITCCt WCRk-COUP11Dg

limit of the Eliashberg theory.
Since the experimental results for the gap edge are accu-

rate to at best 1% we can conclude that, except in a few
cases, the agreement between the calculated value of the

gap edge 60 RIld 'tlic corresponding cxpcriiiicIltR1 VRluc is
qU1tC g00d.

Two cases deserve special attention. The worst agree-
ment is in the case of Nb3Sn. For this material we have
used the electron-phonon spectral function a (Q)F(Q) ob-
tained by Shen from tunneling experiments. Recently,
Moore, Zubeck, Rowell, and Beasley have performed
new tunneling experiments in a series of 215 materials.
They have used an improved technique for forming tun-
neling junctions with these difficult materials. In their ex-
periments on Nb&Sn the measured values of the zero-
tCIPCI'RtUrC gRP CdgC Ao RI'C l3CtWCCQ 3.2 RIld 3,4 ICV,
which is larger than Shen's value of 3.1 meV and close to
our calculated value of 3.53 meV.

The second example of poor agreement is the case of
Nb when we used the a (Q)F(Q) obtained by Robinson
et al. ' lt has since been recognized, however, that Nb
junctions can suffer from a proximity layer between Nb
and oxide which needs to be accounted for. ' This is now
well understood ' ' and our calculation with the spec-
trum of Arnold et al. ' agrees well with the experiment.

At PI'CSCQt WC dO I10t hRVC RIl UIlRmb1gUOUS CXPlRIlRtlOIl

for the large discrepancies between calculated and mea-
sured values of the gap edge 50 for the alloy Pbo 658io»
and amorphous Bi. The most probable answer for the
first is that the measured values of the gap edge b,o at zero
temperature and/or transition temperature T, are not ac-
curate for this material.

For the second one, however, there may be another ex-
planation. In general the values of a (Q)F(Q) obtained
from the inversion of tunneling data are not well known at
low Q's. In the amorphous materials there is a lot of
weight under a F at these energies and since the function-
al derivative 5(25O/king T, )/5[a {Q)F(Q)] indicates that
the most important phonons for 2b,o/kIIT, are around
ho/3, the uncertainties in the inverted a (Q)F(Q)'s for
amorphous materials at low frequencies may be the cause
of R lai'gc discrepancy between calculated RIld cxpcriIIlcII-
tal values for 26o/ks T, in amorphous Bi.

We can conclude this section by saying that the method
of X-point Padc approximants for obtaining the zero-
tcmpcrature gap edge from imaginary-axis solutions is
quite reliable. Second, in most of the cases investigated
here, standard Eliashberg theory predicts well the ob-
served values of the ratio 2b,o/kII T, .

In this section we turn to the problem of deriving a sim-
ple expression for 2b,o/kII T, . We follow closely the pro-
cedure of Leavens and Carbotte, " the only difference be-
ing that the zero-temperature value of the renormalization
function in the superconducting state Zs is not identified
with the corresponding quantity Z„ in the normal state.
The approximation Zs ——Z„, which is excellent for the
weak-coupling superconductors, produces no change in
the value of 2b 0/kII T, from the BCS result 3.53, Ref. 11.

At T =0 thC EllRShl3Cf'g CqURtlOQS YVr1ttCI1 OQ t4C I'CRI

fi'cqiicIlcy axis Ri c

b, (co)Zs(co) = dao'Re
2 2,/2 [&+(~,~') —p'(~, )],5(co')

i 2 g2( it)] I/2

[1 Zs(co) ]co=I— dQ) Rc
2 2 I/2 K (co,co ),

0 [
i 2 g2{ I )]I/2

(12)

&+(co,co')= f dQa (Q)F(Q)
I + 1

u'+0+ v+& 0+ a'+ Q —v —
&
0+

Wc c»»de«h«eal pa«f Eq {11)at the gap edge ~ =&o, tak«hc c«off ~, «be equal to the maximum phonon fre-
quency, and approximate h(co) by ho. Leavens and Carbotte" have shown in detail that this will reduce Eq. (11) to

2N~
&OZS(&0) = —X+(A,—p*)ln

6o



A=, 2I a (Q)F(Q)

k—:2 a QF Aln 1+

In obtaining (14) it has been assumed that the important frequencies in a {Q)F{Q)are ~&bo. Equation (12) for Zs in

the limit u~O reduces to
I

Z~(~)=-(+ f d() 2n'(())F(()) f dro
0 ((o' —bo)'i (a)'+ Q)

r

=-1+ dQ- I+ ln
+"

Q
2a (Q)F(Q) ' ~o ~o

A 0 ' 20

where it has been assumed that b,o/Q &~1 for the impor-
tant 0's.

To proceed further we approximate the last integral in
(1S) by

~oP
Q ln0'

where a and P are constants to be determined later
through a phenomenological fit to the exact results of Sec.
II (or experiment) and Q is some suitably defined average
phonon frequency. The value Zz(ho) in Eq. (14) can be
replaced by Zs(0). By substituting (15) and (16) into (14)
%'e get

ko =267~ exp

~o x ~oP=3.53 jI —o; ~
ln

Q d(, —P" Q

assummg Qo(&Q. In Eq. (20) A, —(u can be approximat-
ed by g so as to get the very approximate, but simple for-
mula

260 =3.53 1+6K
8 c

'2
~0 n

ln
Q ~oP

2 +~ leo
kp)n ——exp a (co)F(co)inca

CO

Now, many different choices of Q are possible. One po-
pular choice is co)„defined by'

kg T~ = l. 134k)~exp
1+A(T, )+X

A, —p
(18)

Bf(a)) I+" a (Q)F(Q)
dA

8M A +co

Hy USIng a sIImlar approach Leavens and Carbotte have
obtained for the critical temperature T,

Values of ~~„are found in Table I. Most have been tak-
en from the work of Allen and Dynes' with the
remainder taken from the previously referred to literature.

In Fig. 1 we plot the exact results for 26o/k&T, against

T, /m)„. It is clear from the figure that there is enough
scatter that no smooth curve mill fit all the points. Qn the
other hand, a general increase of 26olk+T, with increas-

ing T, /~, „ is clearly seen. It is this general trend that ir-
terests us and it is certainly, at best, only this general
trend that a crude formula like Eq. (21) can describe. We
have adjusted (x and P after making a change from 5 to
T, (the more easily measured quantity) to get as good a fit
as is possible to the data in Fig. 1 and found the dashed
curve which corresponds to the formula

By setting A,(T, ) =A, Eqs. (17) and (18) give

260
k T

=3'3 I+'25
c

(

T~ 6)j~
1n

2 Tg
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/

e/
/

/
0

/'Hg
g,
' ~Nbgn

Pb

~pbo "/BIO 3

This is our final formula. The fit to the data is excellent
if one simply wants to know the general trend. For details
it is necessary to go back to the full numerical solution of
the Eliashberg equations as was done in Sec. II. It is seen
from Fig. 1 that amorphous Pbo sBio5 falls farthest off
the dashed curve. Also, we have not included amorphous
Bi and Ga which would fit even worse. It is likely that
(23) simply does not apply to such extreme spectrum with
a large amount of weight in the region where the function-
al derivative of 2ho!kttT, peaks. Also, as previously
remarked, the low-energy part of the spectral density is
not we11 determined by tunneling so that the ut„values
may not be very reliable for amorphous spectra where
a (co)I' (co) is linear at low io.

We have obtained numerous solutions of the Eliashberg
equations for the ratio 2b,oik~ T, in systems for which the
electron-phonon spectral density a (Q)F(Q) is known
from tunneling results. The agreement with experiment is
in all cases at the few-percent level which is the expected
accuracy of the Ehashberg equations themselves. We
have found that the formula

I l l l l l l l l 1 l

Oag goe O~y O~6 OP 0.24

2 o

kit T,
T.
'

=3.53 1+12.5 ln

FIG. 1. The ratio 260/k~T, vs T, /~[„. The dots are the
theoretical results from the full numerical solutions of the
Eliashberg equations given by Table I. In increasing order of
250/k~T, they correspond to the following systems: Al, V, Ta,
Sn~ Tl, Tlo 9810 I, In~ Ino9Tlo Is Inoo7Tlo 93' Nb (Butler)~ Nb (AI-
nold), Ino 73Tlo 27, Nb (Robinson), Ino q7Tlo 73, Pbo 4Tlo 6,

PbosTlo4, Pb~ Pbo. srlo. z~ Nb&Sn~ Hg, Pbo98io i~ Pbo. sTio. 2»o. 2~

Pbo. sBI0.2~ Pbo. pBIO 3, Pbp 65BIo 35, amorphous Pbo 58IO 5. The
dashed curve corresponds to 2d 0/k& T, =3.53
X [ I + 12.5 T, /co~„) ln(to~„/2T, )j and it is discussed in Sec. III.

reproduces well the general trend obtained for this ratio
but does not give the details. In this formula to~„ is the
well-known phonon average introduced by Allen and
Dynes.
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