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Electron-electron interaction effects on Peierls dimerization in a half-filled band
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A novel real-space approach to dimerization in a half-filled band is developed to investigate ef-
fects of electron-electron interactions on the Peierls instability. Dimerization is shown to be a result
of imperfect resonance between pairs of electron configurations related to each other by a mirror-

plane symmetry passing through the longest diagonal of the infinite ring, and the kinetic- and
potential-energy contributions to the barrier to resonance are identified separately. The effects of
including the on-site, nearest-neighbor, and next-nearest-neighbor interactions are investigated, and
in each case it is shown that the enhancement or reduction in dimerization can be predicted from
elementary physical arguments. These predictions are then substantiated by exact numerical calcu-
lations on a ten-site ring, and finite-size effects are shown to be small. The principal results that are
obtained are the following: (i) The on-site correlation U strongly enhances the dimerization, the
enhancement being strongest for U-4to, where 4to is the bandwidth of the uniform chain; (ii) the
nearest-neighbor interaction Vl further enhances the dimerization until V& & —, U, while Vl ~ 2 U

favors a uniform chain with a different broken-symmetry ground state, an on-site charge-density

wave; (iii) for V& & 2 U, the second-neighbor interaction V2 reduces the dimerization slightly, al-

though the dimerization is still stronger than that with an effective nearest-neighbor interaction

V~ —V2, (iv) for V& g —, U, V2 destroys the on-site charge-density wave and the ground state is

strongly dimerized again. The complete Parisier-Parr-Pople (PPP} Hamiltonian is discussed, and it
is pointed out that the above results, together with the excited-state orderings in the PPP Hamiltoni-

an, strongly indicate that the ground state of the PPP Hamiltonian is the dimerized state. The
excited-state orderings in finite polyenes, spin-density distributions in polyacetylene, and our
theoretical results all indicate then that explicit inclusion of Coulomb interactions may be necessary
for an accurate description of the ground and excited states in polyacetylene.

I. INTRODUCTION

The phenomenon of Peierls instability' in partially
filled one-dimensional bands has now been known for
nearly 30 years. The original approach by Peierls involved
a strictly one-electron model wherein phonons with wave
vector 2kF couple with the band electrons to give rise to a
gap at the Fermi surface of a partially filled band, where

kF is the Fermi wave vector. The energy of the occupied-
band levels is lowered while that of the unoccupied levels
is raised, so that there is a new gain in energy. For small
distortions x, the electronic energy has a x lnx term while
the elastic energy is quadratic in x, so that the system be-
comes unstable for an arbitrarily small electron-phonon
coupling constant. Fermion-fermion interaction effects on
such instabilities have been of considerable recent in-
terest, ' spurred on originally by the instabilities in
quasi-one-dimensional charge-transfer solids and more re-
cently by the various novel theories' of solitonlike and
polaronlike excitations in polyacetylene.

Current theories of polyacetylene' usually start
from the Hiickel limit of zero electron correlation with an
electron-phonon coupling constant modulating the
nearest-neighbor transfer or resonance integral. The infin-

ite polyene with a half-filled band of ~ electrons is as-
sumed to have a Peierls-dimerized ground state with an
optical gap due entirely to the dimerization. Existence of
such a dimerization gap in the infinite polyene was first
suggested by Kuhn as an explanation for the finite value
of the optical gap that is obtained by extrapolation of op-
tical data for long finite polyenes. %hile Coulson had
earlier predicted a uniform ground state for the infinite
polyene, later theoretical work by Labhart25 Ooshjka,
and Longuet-Higgins and Salem indicated a dimerized
ground state. Departing from the band-theory limit in the
above studies, Coulson and Dixon described dimeriza-
tion within a valence-bond (VB) approach that is reminis-
cent of the spin-Peierls distortion. Bond-alternation
domain walls were first suggested by Pople and Walms-
ley, but recent excitement in this area has been generated
mainly by the work of Rice' and Su, Schrieffer, and
Heeger' (SSH). With few exceptions, single-particle con-
cepts have been universally employed for polyacetylene,
and direct Coulomb interactions are not fully accounted
for even in the ab initio Hartree-Fock calculations. Soli-
ton excitations in polyacetylene have also been investigat-
ed within the dimerized antiferromagnetic Heisenberg
spin Hamiltonian, ' but Coulomb interactions in poly-
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enes are not large enough to justify the spin model, as has
bccIl poiIltcd out by Fukutomc and Sasa1.

A completely different origin for the optical gap in the
hypothct1cal infinite polycnc was, however, proposed by
Ovchinnikov and co-workers. Electron-electron repul-
sion was postulated to be the principal source of the opti-
cal gap, and the ground state was pIedicted to have a uni-
form structure. Recent x-ray [Ref. 33(a)] and NMR [Ref.
33(b)] investigations on polyacetylene have definitively
demonstrated the existence of a bond alternation of
0.03+0.01 A, thus proving the conjectures of equal bond
lengths to be incorrect. There is, on the other hand, con-
siderable evidence of the importance of electron correla-
tions both in the finite polyenes and in polyacetylene it-
self. In contradiction to the predictions of band theory,
for instance, the lowest excited state in long polyenes has
been determined to be a Ag state as opposed to the optical
'B„state. ' The experimental verification of this has
been described in considerable detail in an excellent review
by Hudson, Kohler, and Schulten. Theoretically,
polyenes of up to six and ten carbon atoms have been in-
vestigated by Ohmine et al. Rnd Soos et al. within a
second-quantized version of the Parisier-Parr-Pople (PPP)
Hamiltonian for the m electrons, and a moderate to strong
on-site electron correlation (Hubbard U) was found to be
essential for obtaining the correct excited-state ordering.
The importance of electron correlation in
polyenes has also been emphasized by Paldus, Cizek, and
co-workcI's, ' Matscn, Rnd Honig et al. , among oth-
ers. In the case of polyacetylene itself negative spin densi-
ties on alternate carbon atoms have recently been found.
This had previously been demonstrated for short polyene
radicals, 3 and theoretical work had demonstrated the
necessity of including electron correlation.

Thus the nature of the ground and excited states and
the origin of the optical gap in polyacetylene remains un-
clear, and it is of considerable importance that Coulomb
III'tclact1011 cffccts oil tllc Pclcrls InstabIllty Rlc colTcctly
determined. Besides the potential application to polyace-
tylene the problem is also of fundamental interest in
solid-state physics. Recent investigations in most cases
have included only the on-site coIrelation, but even for
this simplest case of the Peierls (SSH)—Hubbard model re-
sults are highly controversial. In general though, mean-
field or Hartree-Fock —type approximations
predict a decrease in dimerization with an increase in
Hubbard U. The ground state in the Hartree-Pock Hamil-
tonian is found to be a uniform spin-density-wave (SDW)
state for U& 2to, where to is the transfer integral for the
uniform system, as opposed to the dimerized bond-order-
wave (BOW) state that occurs for smaller U. '" Approxi-
Inations wh1ch go beyond thc Hartrcc-Fock appi oxlma-
tion, ' however, find a dimerized ground state at larger U,
and at least in one case actually find strong enhancement
in the dimerization with U. Thus Ukrainskii has
developed a variational approach that goes beyond the
generalized Hartree-Fock approach of the author and his
co-workers, and within the new approach finds a slight
enhancement of the dimerization at small U followed by a
smooth reduction until the limit U = ao is reached, only at
w41ch point a un1form gI'ound state 1s obtained. SccoIKI-

order perturbation theory" with the Hartree-Fock Hamil-
tonian as the zeroth-order Hamiltonian similarly finds an
enhancement at small U, but still predicts disappearance
of dimerization for U~2to. Using a different perturba-
tion technique, Horsch, ' however, finds a strong enhance-
ment of the dimerization for nonzero U. A similar
enhancement was earlier found for the Peierls instability
in a one-dimensional electron gas by Chui et a/. ' Nu-
merical calculations by Jonkman, Huizinga, and Kom-
mandeur predict a decrease in dimerization, but as we
show in the present paper, this is due to the author's limit-
ing their calculations to a four-site, four-electron case, a
Jahn-Teller distortion for which occurs at U =().

In contrast to the on-site correlation, few investigations
of the effect of intersite interactions exist, ' obviously
because of the difficulty in treating short- and long-range
inteI'actions equally correctly. Even here existing results
are highly contradictory. For the PPP Hamiltonian,
Horsch found the uniform ground state, and the dimer-
ized structure could be stabilized only by assumption of a
static dielectric constant strongly screening the long-range
part of the interaction. The conclusion of Fukutome and
Sasai was exactly the opposite. Using an unrestricted
Hartree-Pock approach, Fukutome and Sasai predicted
that the on-site correlation favored the uniform structure,
but long-range interactions, particularly when the less rap-
idly decaying parameters (Ohno parametrization) for the
PPP HRIIllltolllRII RI'c used, st1011gly fRV01' tllc dlmcrlzcd
state. Whangbo has investigated the extended Hubbard
Hamiltonian with the assumption that the nearest-
neighbor interaction is strongly modulated by an
electron-phonon coupling constant comparable to the one
modulating the transfer integral. It was postulated that
dimerization is essentially the result of such a strongly
varying nearest-neighbor interaction.

No general consensus thus still exists about the effect of
electron-electron interactions on the PeicI'ls dimerization.
We believe, however, that. the existing perturbation re-
sults ' "already indicate that more correct treatments of
electron correlation would find further enhancement in di-
Inerization with U. That simple single-particle concepts
will predict a decrease in diInerization with correlations
can be easily seen in Fig. 1, where we show the effect of
electron correlations on a one-dimensional band with a

FIG. 1. Electron correlation effects on Peierls dimerization
within single-particle concepts (see text).
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Peierls gap. Correlations excite electrons across the
Peierls gap into the hitherto unoccupied levels. Within
this simplistic picture then, the energy gained on dimeri-
zation is less than that for the SSH limit. Such logic,
however, is at best, incomplete, as within this picture it
has been assumed from the outset that the gain in energy
on dimerization is essentially kinetic. The possibility that
the dimerization could be driven by the potential energy is
totally neglected, and it is therefore not surprising at all
that mean-field Hartree-Fock —type calculations predict a
strong reduction of the dimerization. For the proper
description of the correlated band, considerable departure
from Peierls's one-electron picture' is required, as the
band description is not valid for nonzero correlation.

The only such simple description of dimerization that is
valid at all values of the correlation parameters is the
double-well —potential description, as shown in Fig. 2 for
the infinite polyene. Here the two degenerate dimerized
phases are at the minima and the uniform structure is at
the maximum. The tendency to dimerization is deter-
mined by the barrier height in the double-well potential.
The effect of electron correlation can be properly deter-
mined only if the potential-energy contribution to this
tunneling barrier is known. Since the double-
well —potential description is essentially a real-space
description, it might be anticipated that determination of
the potential-energy contribution to the barrier would be-
come simpler once a real-space view of the dimerization
itself is developed.

It is the purpose of the present paper to develop such a
real-space picture. A brief description of this approach
has been presented previously, ' where from physical ar-
guments alone we predicted a strong enhancement of the
dimerization by the on-site correlation, the enhancement

being strongest for U-4to. This was confirmed by exact
numerical calculations on a Hubbard ring of six and ten
sites. Finite-size effects were found to be small, as even in
the worst possible case of zero dimerization and correla-
tion, electronic energy per site of the ten-site ring was
found to have converged to within 1.66%%uo of the correct

value. Concurrently, and independently, enhanced dimeri-
zation has also been found by Hirsch, ' who used a quan-
tum Monte Carlo technique to numerically simulate a
larger system. Here we take our previous real-space view
of dimerization and extend our physical arguments to in-
clude the effect of both intrasite and intersite correlations.
We show that a broken-symmetry wave function is neces-
sarily the result of domination of the ground-state wave
function by real-space basis functions or components
which are themselves of a reduced symmetry. The varia-
tion in the tunneling barrier between the two minima in
the double-well potential is analyzed separately as each
new Coulomb term is added to the Hamiltonian, and in
each case we show how the effect of the interactions can
actually be predicted, and then substantiate our con-
clusions by exact numerical calculations.

There are several reasons for taking such an approach.
Firstly, an exact solution of the dimerized Hubbard model
using the Bethe ansatz is not possible as it is for the uni-
form chain, and we have already indicated why the ap-
proximate solutions are at best incomplete. Indeed. , the re-
cent work by Hirsch' and ourselves' show that most of
the conclusions based on the above approximate ap-
proaches are erroneous. Qn the other hand, numerical cal-
culations, even with the Monte Carlo technique, ' are lim-
ited to relatively small systems, so that a physiml under-
standing of the dimerization process is very important.
Secondly, even the most efficient numerical calculation on
the largest possible system can take into account only in-
tersite interactions Vz for which j~X/2, where X is the
number of sites in the periodic ring. Since the PPP Ham-
iltonian contains relatively slowly decaying Coulomb
terms, numerical calculations by themselves cannot be suf-
ficient for the infinite system described by the PPP Ham-
iltonian. Finally, as we shall show in subsequent publim-
tions, the present approach can be easily extended to
other broken-symmetry-related problems, viz. , dimeriza-
tion in the ( —A =8—) polymers or broken-symmetry
solutions in less than half-filled bands. The proof of the
correctness of the reasonings lies in their ability to predict
the details of the effects of every individual interaction.
We investigate, in detail, the effects of the on-site,
nearest-neighbor, and next-nearest-neighbor interactions
here, and show that these three interactions can give rise
to six possible regimes ( U & 4to, U & 4to, V~ & —, U,

V~ & —, U, Vq &0 for V~ ~ —, U, and V2 &0 for V& & —, U).
In each case numerical results follow our predictions com-
pletely.

Before proceeding further we now describe the model
Hamiltonian we investigate. We consider only the m. elec-
trons in polyacetylene and make the adiabatic approxima-
tion for the electron-phonon interactions. The model
Hamiltonian 0 is then written in units of to as

(la)

FIG. 2. Double-mell —potential description of dimerization.
Determination of Coulomb effects on the dimerization requires
separate identifications of the potential- and kinetic-energy con-
tributions to the tunneling barrier between the minima.

H, = g(1+2ax)(a; ~;+~ +a;+~ a; ),

H, j
——2NKx

(1b)

(lc)
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1
H, ,=—Ug n;~n;p+ g Vjn;n; ~J

0 g l,J

Here H, is the usual hopping or one-electron transfer
term, with a; (a;~) the creation (annihilation) operators
for electrons with spin o., +x the atomic distortions, and
at the electron-phonon coupling constant; H, &

is the elas-
tic energy, for a periodic ring of X sites with spring con-
stant Eto, and H, , contains the Coulomb interaction
terms. The last term is neglected in the SSH Hamiltoni-
an. Notice that the intersite interactions are written
slightly differently from the way the PPP Hamiltonian is
usually written. It is easily ascertained that this makes no
difference, as the nature of the ground state is the same
whether we include repulsion between electrons on singly
occupied neutral carbon atoms or the attraction between
C+ and C ions.

We now proceed to determine the effects of H, , on the
dimerization. In Sec. II we first explain the diagrammatic
VB notation, and point out the relationship between the
tunneling barrier in the double-well potential and the bar-
ric1 to thc quantum-chemical coIlccpt of I'csoIlancc. Wc
then proceed to determine the effect of the on-site correla-
tion U on the dimerization in Sec. III. In Sec. IV we treat
the intersite interactions within the same approach. We
note that the present method cannot prove the existence or
nonexistence of dimerization on an absolute level —in each
case we can only determine whether the dimerization is
enhanced or reduced as compared to the SSH Hamiltoni-
an. ' This presents no problem, as dimerization in the
latter has been proved analytically.

Our principal results can be summed up as follows. (i)
Hubbax'd U enhances the dimerization strongly, ' the
enhancement being largest for U-4to, beyond which
point the dimerization decreases smoothly but remains
enhanced for a large range of U. (ii) The nearest-neighbor
interaction Vj enhances the dimerization still further, but
only as long as VI (U/2. (iii) V, ~ U/2 stmngly reduces
tllc fcIldcllcy to dlmcrlzatlon alld prcfcls tllc oil-sltc
charge-density-wave (CDW) state in which alternate sites
tend to be doubly occupied. (iv) For Vl & U/2, VI has a
very small effect and reduces the dimerization slightly,
but the dimerization is still stronger than it is with an ef-
fective nearest-neighbor interaction VI —Vz. (v) For
V, ~ U/2, VI stabilizes the dimerized structure, again
very stIongly. In principle, ouI' phys1cal arguments can be
extended to InoI'c d1stant 1ntcI'Rctlons bUt 1Il plRctlcc thc
situation becomes extremely complicated from VI on-
wards. SiInilarly, the ground-state energy per site is not
expected to converge at the ten-site ring when very-long-
range interactions are included. We therefore do not in-
vestigate the full PPP Hamiltonian but point out that the
above results are already a strong indication that the PPP
ground state is dimerized for both the Mataga-Nishimoto
and the Ohno parameters.

residing at either of the two minima in the double-well po-
tential is dirnerized, while the system lying at the max-
imum is undimerized. Any mixing between the two
dlmcr1zcd states duc to tunnc11Ilg w111 Icducc thc d1mcflza-
tion. Thus the energy barrier to tunneling is a direct mea-
sure of the extent of dimerization; the larger the barrier,
the less the mixing between the two dimerized states. This
barrier to tunneling is intimately related to the probability
of resonance between the VB diagrams that favor the
BOW most strongly. Dimerization implies a lower sym-
metry than that of the uniform chain. The particular
symmetry element that is lost upon dimerization is the
mirror-plane symmetry (hereafter o, ) along the longest di-
agonal of the X-site ring. Application of o, on any dia-
gram can generate the same diagram again or a different
VB diagram in which the electrons are paired in a manner
different from the initial diagram. Diagrams of the latter
class then dominate the ground-state wave function when
the system lies in either of the two minima in Fig. 2, while
the wave function at the maximum is dominated by dia-
grams which maintain the full symmetry of the uniform
chain. The uniform structure requires perfect resonance,
i.e., exactly equal contributions to the ground state by
each pair of diagrams related by o„. A sufficiently large
barrier to resonance implies dimerization.

The strength of the present real-space approach lies in
its ability to identify diagrams which favor the BOW
strongly and others that favor the BOW only weakly. By
analyzing the barrier to resonance between the two VB di-
agrams that favor the BOW most strongly, all the effects
of correlation on dirnerization can be predicted quite gen-
erally for arbitrarily large systems. Whether the relative
contributions of all other pairs of VB diagrams related to
each other by o., are equal or unequal depends only on the
relative contributions of the above two extreme diagrams,
since all diagrams can be generated from the extreme ones
by repeated application of H, in Eq. (1). Furthermore, the
diagonal nature of H, , in the VB representation allows us
to Identify tllc klllctlc- alld potclltlal-cllclgy contrlbutlons
to the barrier separately, and the effects on dimerization
can then be predicted for arbitrary H, , The influence of
the on-site electron correlation on dimerization is dis-
cussed in the next section, while that of the intersite corre-
lations is analyzed in Sec. V.

Before proceeding further we introduce the VB con-
cepts and notations for the correlated band. The ground
state in one dimension is always a singlet (total spin
S =0), so that we shall restrict ourselves to the case where
the number of up- and down-spin electrons are equal. We
shall denote each doubly occupied site by a cross (» ), an
unoccupied site by a dot ( ) and a pair of singlet-coupled
singly occupied sites by a line or "bond" joining them.
%'e demonstrate this for the simplest case of two electrons
on two sites, the basis functions for which are as follows:

lP &=2 ' '(, , —, , ) l0&—=
l
—&, (2)

In this section we develop R real-space approach to di-
merization based on a diagrammatic many-body VB for-
Inalism. As shown schematically in Fig. 2, the system

I
41~&=2 '"(~t,at, p+ul, w2, p) I

o&

=2 '"t
l

» &+
I

Spatial symmetry allows us to further classify the S =0
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subspace into an A subspace (plus linear combination of
diagrams) and a 8 subspace (minus linear combination).
The ground s~a~e is in thea subspace and consists of

l P, &

and
l
$2+) while the 8 subspace consists only of

l Pz ).
Optical absorption from the ground state can only occur
to the 8 subspace, as can be seen from the nature of the
velocity operator

lpga

or+i, oot, c } ~

l, O'

(4)

Rnd apply H, bctwccn thc nonbondcd sltcs 2 Rnd 3. This
generates the functions

tt2, ~z,P(ttI. tt4, P ttI, Pa—~,.) Io&
—1/2

(6a)

o3, o3p(oi,.o4,p
—oi,pa4,.) l0&

—1/2 f t 4 f t

(6b)

Back «ans««ow leads to the same function
l g4) in

both cases, given by

(oi, o4, p
—oi,po4, )(o2, oi, p

—o~.po3, )10&
—1

A11 possible diagrams can be generated in this manner
for arbitrary large systems by joining the singly occupied
sites in every possible manner, but with one restriction:
only nested (i.e., noncrossing) bonds are allowed. Dia-
grams in which two or more bonds cross can be shown to
be linearly dependent on other diagrams. There are thus
only two diagrams in the X =4 chain which do not pos-
sess doubly occupied sites, as can be seen from Eqs. (5)
and (7). Both these diagrams occur in the A subspace, so
that the optical B„state consists of diagrams that possess
at least one doubly occupied site. Thus for nonzero U the
optical gap ls U whllc thc lowest excited state ln thc A

subspace still has contributions from diagrams which in-

volve singly occupied sites only and in the limit of U—+ (x)

occurs at -4to jU. For all chain lengths N )4 the A sub-

space always contains an excess of such "covalent" dia-

grams, and the occurrence of the 'Ag excited state below
the 'B„state in long polyenes thus necessarily implies a
moderate to large U ( U )2to}. Note that this observation
follows naturally from the symmetry of the VB basis
functions, whereas the molecular-orbital or band approach
requires an actual tedious configuration interaction calcu-
lation. We shall show below that the dimerization prob-
lem can also be analyzed very simply using this real-space

Thc situation with 1Rrgcr systems ls slightly more com-
plicated. Bonds are not restricted to nearest neighbors and
long non-nearest-neighbor bonds are created. %'e illus-
trate this with %=4. The simplest basis functions here
are products of functions of the type in Eqs. (2) and (3).
We choose the function

(o i,~o2, p ui, p—o2,a)(o3,a+4, p u3, pa 4,~) I
o&

-1

RppI'oach.
For the dimerization problem we have to consider thc

lnfiIlltc chain, I'cpI'cscntatlvc dlaglams foI' which Rrc
shown in Fig. 3. Diagrams will be called covalent if the
number of crosses N„=O, while diagrams with E„&0will
be referred to as ionic. The two covalent diagrams

l
I)

and
l
II) with only nearest-neighbor bonds will be termed

as Kekule structures, while covalent diagrams with at
least one non-nearest-neighbor bond will be called Dewar
structures. The total number of VB diagrams XT for a
X-site half-filled system is given by

X X„— (N —2Ã. )I

& —». (Xy2 —X„)!(Xy2—X„+1)!'

so that even after use of spatial and electron-hole symme-
try the dimension of the Hamiltonian matrix grows very
rapidly (XT——2760615 for X =14) and actual numerical
calculations quickly became impossible. On the other
hand, Hartree-Pock —type calculations based on singlc-
particle concepts are bound to yield erroneous results as U
increases. What is therefore required is a physical under-
standing of the dimerization process itself so that
Coulomb effects can actually be predicted, exactly as the
occurrence of the 'As state below the '8„can be predicted.

A dimerized or BOW state implies periodic modulation
of the ground-state bond orders, where the bond order
I';;+ i between sites i and i + 1 is defined as

~i i+1 2 ~ ai cT i+1 g+~i+1 i ~ ~

From Eq. (9}, a difference in the bond orders P;;+i and
P; i; requires a difference in the probabilities of charge
transfers between sites i and i +1 and between sites i and
i —1. If site i is singly occupied, the largest difference in
bond orders occurs when only one of the two sites i+1 is
occupied by a single electron with the same spin as the one
in site i If the o. ther site is empty a single charge transfer
from i can occur, while if it is doubly occupied, charge
transfer to i is allowed. Only if the other site is occupied
by a single electron that has a spin opposite to that at i,
can both charge transfers to and from i occur. Thus the
difference between P;;+ i and I';; i is largest when one of

X

FIG. 3. Finite segments of representative VB diagrams (see
text) for a half-filled band. Site indices have been included at
the top and the bottom.
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two sites i+1 is occupied by a single electron whose spin
is parallel to the electron occupying i while the other is oc-
cupied by a single electron with opposite spin. If we now
consider the case where site i is doubly occupied, similar
arguments can be made to show that in this case the
difference between P;;+I and P~ I; is largest when one of
the sites i +1 is also doubly occupied but the other is emp-
ty. We need not consider the possibility that site i can be
empty, as this is related by electron-hole symmetry to the
case where i is doubly occupied. The infinite-chain wave
function is a linear combination of many configurations,
each of which may have the above local arrangements.
Configurations in which these arrangements can occur
have a lower symmetry than the infinite periodic ring, and
dimerization occurs when any two configurations related
by cT„ lllakc uncquRl contributions 'to tllc gl ound-state
wave function, i.e., resonance is imperfect. For the dimer-
ization problem then, we are interested in determining
which pair of configurations favor the BOW most strong-
ly, as well as the barrier to resonance between these con-
figurations.

Having determined which local arrangements of elec-
trons favors the largest difference in P;;+, and P; I;, we
note that the N-site configurations that favor the BOW
most strongly must have these arrangements repeated
throughout the length of the infinite ring. We first focus
on the repeat unit in which the central atom is singly oc-
cupied and differences in bond orders occur due to spin
dependence of H, . Each VB diagram in Fig. 3 is a linear
combination of many configurations. Bonded sites neces-
sarily have opposite spins while nearest-neighbor non-
bonded sites have parallel and opposite spina with equal
probability, so that a given diagram favors greater charge
transfer between singly occupied bonded sites than be-
tween singly occupied nonbonded sites. In Fig. 3, for in-
stance, the matrix element of H, between

I
I) and

I
III) is

1 in units of to near a~0 while (I I H, I
IV) has a factor

of —,'.
I
I) therefore favors greater charge transfer be-

tween sites 3 and 4 than between sites 2 and 3. The Kekule
diagram

I
II), on the other hand, favors larger transfer

between sites 2 and 3. It can also be seen that both
Kekule diagrams have a lower symmetry than the periodic
ring, and each is related to the other by o.„. To determine
which diagrams favor the BOW most strongly we classify
bonds between sites i and i + 1 as even if i is even and odd
otherwise, and define 5 to be the difference between the
total numbers of even and odd bonds within any diagram.
From what we have already said, VB diagrams with a
large

I
5

I
favor the BOW most strongly, as these main-

tain the phase of the BOW throughout the infinite ring.
Long non-nearest-neighbor bonds, as in the Dewar struc-
tures, reduce

I
5

I
considerably as these destroy two neigh-

boring even (odd) bonds and create an odd (even) bond at
their expense. We have, in effect, assigned "left'* and
'*right" characters to the basis functions. Since the re-
placement of two nearest-neighbor short bonds with a
long bond and an enclosed short bond reverses the charac-
ter of the latter,

I
5

I
decreases in general with the lengths

and numbers of non-nearest-neighbor bonds. For the co-
valent structures then,

I
5

I
is largest for the two Kekulc

structures
I
I) and

I
II) (

I
5

I
=N/2).

Classifying diagrams in terms of X„,we see that an in-
crease in N„rapidly decreases I5

I

due to two reasons.
Firstly, of course, the overall probability of having bonded
sites itself decreases as more and more bonds are replaced
by a cross and a dot. More importantly, creation of emp-
ty sites increases the probability of having non-nearest-
neighbor bonds, thus reducing I5I more drastically.
Thus irrespective of system size, the Kekulc structures al-
ways have the largest

I
5 I, even when ionic diagrams are

taken 1nto conslderatlon.
All llllportaIlt colldltloll for dlmcrlzatlon that clllcl'gcs

from the above is that if the ground state is dominated by
diagrams with large

I
5 I, dime«z«ion wil»«ur wliil«

ground state dominated by diagrams with 5~0 may favor
a uniform bond order.

We digress here to point out that these considerations
are sufficient to explain the difference between finite and
illflIlltc (4n +2)-clcctl'on rings 011 thc ollc balld Rlld OIlc of
the differences between finite 4n and-(4n+2)-electron
rings on the other hand, Previous explanations have been
based on the U =0 band picture only. " For firute systems
covalent diagrams make a large contribution to the
ground-state wave function even for U=O. For the
(4n +2)-electron rings, there are 2n +1 bonds in the co-
valent diagrams, so that it is always possible to have at
least one long non-nearest-neighbor bond and an equal
number of even and odd bonds. The number of such
Dewar diagrams with 5=0 can be found very easily.
Once the long bond is drawn, there are then n ways of
having 5=0, the number of pairs of odd and even bonds
going from 1 to n Applica. tion of (2n +1)-fold rotational
symmetry will generate all possible such diagrams and the
total number of covalent diagrams with 5=0 is then
(2n+1)n The f.raction f of covalent diagrams that have
5=0 is therefore given by

(3)
(5l = D

FIG. 4. Covalent diagrams with the corresponding values of
I
5

I
for (a) %=6, and (b) %=8 site rings. Numbers in

parentheses represent the total number of diagrams of each kind
that can be generated by rotation,
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(2n + I }!(2n+2)!
(10)

In Fig. 4(a) we present the two kinds of covalent dia-
grams for % =6 along with the corresponding values of

~

5 ~. The numbers in parentheses denote the total num-
ber of diagram. s that can be generated by rotations. For
small (4n+2)-electron rings then, a very large fraction

f4„+2 of the covalent diagrams favor the uniform bond
order .However, f4„+z decreases rapidly with n (f=—',
fol' II = 1, 42

fo1' lI =2, gag fol II =3, ctc.) RpploRcllIIlg 0
for n —+op, thus implying that the uniform structure be-
comes less and less stable as the size increases.

With the 4n-electron rings on the other hand, the situa-
tion is entirely different. There are now 2n bonds possible
in the covalent diagrams, so that there is no way to con-
struct a long non-nearest-neighbor bond and still have

equal numbers of even and odd bonds. Construction of an
even number of long bonds changes the character of the
short bonds an even number of times, so that such dia-

grams cannot have 5=0 either. The fraction f« is then
zero, as all covalent diagrams favor a BOW. This is
shown in Fig. 4(b) for N =8, %=4 being trivial in the
sense that only Kekule structures with

~

5
~

=2 are possi-
ble. Notice that although the last set of diagrams in Fig.
4(b) resembles the Dewar diagram for N =6, here both the
nearest-neighbor bonds are either even or odd. The srnall-

est 4n-electron systems are then dimerized for arbitrarily
small a. The size dependence of the tendency to dimeri-

zation is also opposite for 4n and (4n-+2}-electron sys-

tems, as can be seen by comparison of
~

5
~

/X for N =4
and 8 for instance. In the 4n-electron rings, diagrams
with smaller and smaller

~

5
~

/X occur as N increases and
the tendency to dimerization decreases here with size, un-

like the (4n +2)-electron rings.
Until now we have considered only the spin dependence

of H, and the difference in bond orders that arises from
this spin dependence. We now consider the repeat unit
consisting of doubly occupied sites. From our classifica-
tions of bonds as cvcn of odd, h.lghly 1on1c dlagfaIns that
favor a BOW must have an even number of crosses dis-

tributed over consecutive even number of sites. If on both
sides of such a segment we have unoccupied sites, the
bonds that can be formed by charge transfer are either
both even or odd. On the other hand, if we consider a seg-
ment coIlslstIIlg of Rn odd number of CI'osscs, oIlc of thc
two bonds that can be formed on either side is odd while
the other is even. The two configurations that favor the
BGW most strongly, as far as the occupancy dependence
of 0, is considered, are, therefore, the ones that have the
occupancy schemes . . 00220022 . and 22002200,
where the numbers 2 and 0 denote doubly occupied and

empty sites respectively. We now have to decide which
particular pair of VB diagrams, the Kekule structures or
the above pair of ionic diagrams with +„=X/2, favor the
BOW more strongly.

In any (4n +2)-electron ring the maximum number of
doubly occupied sites is 2n + I, so that there is always at
least one segment consisting of an odd number of doubly
occupied sites in diagrams with N„=N/2. Around this
segment equal bond orders are preferred, so that with the

(4n+2)-electron systems the Kekulc structures are the
ones that favor the BOW most strongly. This difference
between the Kekulc structures and the highly ionic dia-
grams is real and independent of the actual size of the sys-
tem since each diagram close to the Kekulc structures
favors the BOW more strongly than a diagram equally
close to tllc lllgllly 10Illc diagrams. For tllc (4n +2)-
electron systems then we need to consider the barrier to
resonance between the Kekule structures only to deter-
ID1ne cor1clatlon cffccts.

For the 4n-electron systems the maxirnurn number of
doubly occupied sites is 2n, so that it is always possible to
have diagrams with X„=X/2 that contain isolated seg-
ments consisting of even numbers of doubly occupied sites
only. This second difference between 4n- and (4n+2)-
clcctr'on systcIns 1s show'n 1n F1g. 5. Fol X =6, only thc
last two kinds of diagrams favors a BOW, but relative to
the Kekulc structures, they favor it only weakly as the sin-
gle isolated cross favors equal bond orders on both sides.
For X =4 the second set of diagrams favor the BOW as
strongly as the Kekule structures. In the 4n-electron sys-
terns then dimerization is favored equally by the Kckulc
structures and the pair of highly ionic configurations

. 00220022 . . and . . . 22002200 . . . The effect of
the on-site correlation on the dimerization in 4n-electron
systems is immediately obvious. For U&0 the relative
weights of the above two ionic diagrams decrease continu-
ously while those of the Dewar structures increase, so that
the tendency to dimerization decreases with U. Within
the band-theoretical approach, the degeneracy at the Fer-
Ini level gives a Jahn-Teller distortion, but a U ~0 de-
creases the probability of this zeroth-order configuration.
This explains then why Jonkman et al. ' find a decrease
in dimerization with U in a ring of four electrons. We
have thus shown how the differences in behavior between
4n and (4n-+2)-electron systems arise from real-space
topological considerations, and depend only on whether
the number of ways electrons may be paired as bonds or
crosses is even or odd. Finite 4n-electron rings which ex-
hibit a Jahn-Teller distortion are not suitable systems for
investigating correlation effects and throughout the rest of
ouI' dlscusslon wc slIR11 coIlsldcl tllc (4II +2)-electron rtngs
OIlly.

(12)

(4)

FIG. 5. Ionic diagrams with N/2 doubly occupied sites for
X =6 and 4. Numbers in parentheses have the same meaning as
1n F1g. 4. Second set of 1on1c diagrams fol X =4 favors the
BOW as strongly as the Kekule diagrams for this case.
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III. EFFECTS OF THE ON-SITE CORREI.ATION
ON DIMERIZATION

HRvlllg established tllRt 111 flic (4II +2)-clcctl oI1 I'lngs
the Kekulc diagrams favor the BOW most strongly, we
now proceed to determine the kinetic- and potential-
energy contributions to the barrier to resonance between
these in the presence of nonzero Hubbard U. The proba-
bility of resonance between any two diagrams related by
o, depends essentially on the ease with which each dia-
gram may be converted to the other. Wc start from dia-
gram

~
I) in Fig. 3 and apply H, repeatedly until we reach

~

II). At each step after the initial creation of a cross and
a dot there are two possibilities, a cross or a dot can move
to the left or right or a new pair of cross and dot may be
created. Such bifurcations lead to many possible paths be-
tween the Kekule dIagrams, rnvolvlng all posssble dha-

grams. For illustration, a few representative paths for
X =6 are shown in Fig. 6. Each path may be character-
ized by the largest X~ involved. It should be obvious that
slmllar pRtlls nlay bc collstlllctcd fol Rl'bltlaly X, thc
minimum number of steps in each path being X. A uni-
form ground state with equal bond orders requires equal
contributions from the two Kekule diagrams and all pairs
of diagrams symmetrically related to these. The barrier to
resonance increases with the lengths of the paths (system
slzc ) Rnd dccrcRscs wltll 'tllc number of posslblc patlls, Rll

paths being equally probable at U =0. Since only H, con-
nects two consecutive VB diagrams along any path, the
length of the paths is a direct measure of the kinetic-
energy contribution to the barrier to resonance. Paths are
sufficiently long for the infinite system so that the
kinetic-energy contribution alone can give rise to dimeri-
zation at U =0. For U ~ 0 there is an additional

potential-energy contribution to the barrier, as seen in Fig.
6. Paths involving X„doubly occupied sites now cost an
extra energy X U. Paths involving large X„become high-
ly unfavorable for U ~ 0, so that the overall barrier to res-
onance rIses cons1derably. A posltlve U 1S ther efore ex-
pected to enhance the dimerization.

Since all P;;+& go to zero, however, at U~oo, we ex-
pect a reversal in the enhancement effect at some U„„.
The reversal effect is associated with the virtual transfers
in which an electron hops from site i to i +1, creates a
double occupancy at site i +1, and then one of the two
electrons at i + 1 hops back to site i If t.he electron at site
i is now the one which originally occupied i +1, bonding
schemes are severely altered. Such virtual transfers can
thus destroy two neighboring even (odd) bonds and create
an odd (even) bond and a non-nearest-neighbor bond at
their expense, strongly reducing ~5 ~. In Fig. 3, for in-
stance, virtual transfers between sites 2 and 3 in

~
I) lead

to
~
V),

~
5~ for which is smaller than that of

~

III),
which is reached by real transfer from

~

I). Thus paths
involving virtual transfers and covalent diagrams only can
also be constructed between

~
I) and

~

II), exactly in the
manner of Fig. 6. Each step in paths involving virtual
transfers involves shifting a bond instead of an electron,
so that there are only N/2 1 steps—in these paths, as op-
posed to X steps in Fig. 6. For X =6, for example, paths
rnvolvtng virtual transfers have only one Interrnedcate dia-
gram, one of the three Dewar structures in Fig. 4(a). The
dimerization is therefore reduced when these paths are
favored over the ones in Fig. 6. The necessary condition
for the above is that the net contribution of the covalent
diagrams to the ground-state wave function, starting from
the asymptotic value of zero at U =0, is larger than the
total contributions by the ionic diagrams. The magnitude

FIG. 6. Representative paths in confj.guration space connecting the two Kekule diagrams. Pairs of consecutive diagrams are relat-
ed by the hopping term H, in Eq. (1).
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of U at which this occurs can be obtained from the exact
expression for the optical gap in the undimerized Hubbard
Hamiltonian. In the laige-U limit, the optical gap, the
minimum energy for a real transfer is U 4to-
+(Sto/U)ln2, and for very large U the ground state is
composed of covalent diagrams only. The minimum
value of U at which the covalent diagrams dominate the
wave function and the Heisenberg spin Hamiltonian be
gins to be valid approximation is the smallest U for which
the above large-U expression for the optical gap is valid,
viz. , U-4t0. Thus for 0& U&4to we expect a strong
enhancement of the dimerization, while from U-4to on-
wards the dirnerization should decrease smoothly, al-

though relative to U=0 dimerization may be enhanced
for a large range of U, since paths involving real transfers
are still not totally forbidden.

We have performed exact numerical calculations for the
finite rings X=6 and 10 to verify the above conclusions.
These involved all possible VB diagrams in both cases,
175 for N =6 and 19404 for N =10. We use the rotation-
al symmetry element C~2, the mirror-plane symmetry o.'&

that lies between the atoms and the electron-hole symme-
try, and computer-generate all linear combinations of
the VB diagrams that form the complete set of basis func-
tions for the Hamiltonian. The use of the above symme-
try elements reduces the dimensions of the Hamiltonian
matrix to 27 for N =6 and 1114 for N =10. Each basis
function is diagonal in H, , and operation on each of
them with H, generates a finite number of other func-
tions. Overlaps between the various basis functions are
calculated exactly and these are then used to numerically
calculate the exact ground-state energies and wave func-
tions from the Hamiltonian matrix as a function of the
correlation parameter and o.x. The %=14 system with
2760715 diagrams is currently beyond our reach. Unlike
the infinite system, finite rings exhibit dimerization only
for a greater than certain X-dependent threshold values.
However, the effect of U is local and the behavior of finite
systems near the threshold u should mimic the behavior
of the infinite system with an infinitesimally small
electron-phonon coupling constant. As wc point out
later, ground-state electronic energies per site have essen-
tially converged at N = 10 for all U and ax. To make the
difference between U =0 and U ~ 0 most conspicuous we
choose in each case a /K just below the threshold value
such that the system is undimerized for U=O. For a
much larger than this the smaller transfer integral be-
comes too small and spin exchange (virtual transfer) be-
comes important too soon, so that the actual effect of U is
lost. For each U then, we calculate the exact total energy,
electronic plus elasticE(U, ,ax), and the stabilization en-

ergy gained pei electron on dimerizatlon,

AE 1 [E(U,ax) E(U, O) j . —
Nt0 XtO

We have been able to reproduce the N =6 results for
thc thltc values of U/to studtcd carllcr. Howcvcl', thc
bE calculated here is defined differently to make the com-
parison between various U's more straightforward. In
Figs. 7(a) and 7(b) we present our results for the two cases.
In each case we plot bE /¹o against ax for several values

0.5—

-0.5—

k
~ = 277

0.0 O. l

FIG. 7. Energy gained per electron on dimerization for the
six- and ten-membered rings. Numbers on each curve are the
different values of U/V 2to.

of U/to The stron. g enhancement of the dimerization for
U/v 2to (3 and the smooth decrease of the enhancement
factor beyond this point are obvious in both cases. The
exact reversal points where the enhancement factors begin
to decrease are U/~2to 3 5+1 for—N .=6 and 3.1+0.1
for N = 10.

The nearly identical results for N =6 and 10 indicate
that the present arguments are correct and finite-chain ef-
fects are small. Unlike the excitation energies, the
ground-state electronic energy per site can be expected to
converge rather fast with increase in system size. Conver-
gence here may be checked most easily by comparing the
energy densities of the N =6 and 10 rings with that of the
infinite system for the two cases, (i) U =O,ax+,0 and (ii)
U&0, ax =0. Thus the difference in energy densities be-
tween the %=10 ring and the infinite chain at U =0 and
ax =0 and 0.1 are 1.66% and 0.5%, ~e~p~ctively, « the
true values. Indeed such comparisons of the U=O, ax&0
energies in Fig. 8 indicate that even for U =0, where con-
vergence is slowest, the energy densities of the N = 10 ring
are much closer to those of the infimte system than to
those of X =6. The energy densities of the undimerized
Hubbard systems are also plotted in Fig. 8, and the
negligible finite-chain effects are again obvious. Once
again the N =10 ring is found to be closer to the infinite
system than to %=6, indicating the very rapid conver-
gence. Convergence is even faster when both U and ax
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10

—'t.5—
0.0 0.) 0.2

oX

FIG. 8. Ground-state electronic energies per site for
U=O, ax gO and U &O,ax=0 for %=6, IO, and the infinite
chain (Ref. 46).

are nonzero, so that the %=10 results are always within
1—1.5% of the true values and reproduce the behavior of
the infinite chain far better than any of the previous ap-
proximate approaches, especially for U & 2to, where local-
ization due to correlations is very in1portant. The only
difference between finite and infinite systems is then that
dimerization is conditional in the finite systems due to the
short lengths of the paths between the Kekule structures.
This is of no concern here, as we are interested only in the
relative differences between various U and the existence of
the dimerized state for U =0 has already been proved,

To demonstrate the intimate relationship between the
change in the nature of the undimerized wave function
and the actual magnitude of U„„we have also calculated
the exact wave functions. We classify VB diagrams ac-
cording to N„and determine the total normalized contri-
butions of each class to the ground-state wave function.
At U =0 and for a (4n +2)-electron ring the contributions
are largest for the two classes of diagrams characterized
by N„=n and n + 1. The contributions of all other classes
are symmetric around these two and are infinitesimally
small for N„=O and 2n + 1. In Fig. 9 we present the con-
tributions of the six classes of diagrams for % =10 as a
function of Ulv 2to. The lines are drawn between the
points only to guldc thc cyc» but s1IQ11Rr contlIluous culvcs
would bc obtained 1n thc limit X~ ay. Thc pcRks ln thc
curves shift towards smaller and smaller E„ithwincrease
in U, and only for U/V 2to&3 is the contribution of the
covalent diagrams larger than that of any other class. To-
gether with the results of Fig. 7, this then completes the
verification of our prediction that U„,-4to. This shift-
ing of the peak towards smaller N„ is intimately related to
enhancement in the dimerization, as it signifies a larger
barrier to resonance in Fig. 6. Qn the other hand, the

0.8—

(f)

C)

C3
Lal

oI—
Q

02—
CD

C3 )
0.0

0 1 2 4 5
NG. GF DOUBLY OCCUPIED SITES

FIG. 9. Total normalized contributions to the undimerized
ground-state 'wave fuIlctlon b$ the various classes of dlagraIIls
with fixed nuIQl3cr of doubly occupied sltcs. Curves arc drawn
to guide the eye and the numbers against these are the values of
U/V 2to.

pure SDW phase represents a 5 function at N„=O, and
once the peak is at N„=O further increase in U only de-
creases the dimerization.

We now discuss an additional feature of the correlated
wave function as seen in Fig. 9. It has been claimed from
Hartree-Pock calculations" that the PC1erls-Hubbard
Hamiltonian can be approximated by an effective SSH
Hamiltonian with a dressed electron-phonon coupling
constant a,~f. The electron-phonon coupling constant dis-
tinguishes between diagrams related by o„(the two
Kekule diagrams for instance) but makes no distinction
between diagrams with different X„. For the SSH Hamil-
tonian, the U =0 relative weights in Fig. 9 remai, n nearly
unaltered for arbitrary a. Thus while the expectation
value (n; n;tt) changes continuously with U, it remains
essentially fixed at 0.25 for the SSH Hamiltonian. This
then implies that correlation effects can never actually be
Rppl'oxllllatcd by Rll Ix tt, cvcll Rt siliall VRlllcs of U whcic
Hartree-Pock calculations might yield nearly correct ener-
glCS.

To summarize the present section then, a nonzero U is a
barrier to resonance and as such is the driving force
behind the dimerization. ' This remains true until U is so
large that the ground-state wave function is dominated by
Dewar structures with long bonds, as in the Heisenberg
antiferromagnetic chain. The path formulation of reso-
nance introduced in this context is very similar to that of
CoulsoIl and 01xon, who, however, consldcI'cd thc co-
valent diagrams only Rnd wcI'c 1ntcrcstcd ln whRt ls com-
monly known as spin-Peierls transition. Similar concepts
have also been used in the context of three-dimensional
antiferromagnetism by Anderson, ' and. indeed, are
characteristics of all broken-symmetry-related problems.
As we demonstrate in the next section, this single concept
is sufficient to predict and understand the effects of
nonzero intersite interactions, and, in principle, could be
extended to cases wllclc thc rallgc of llltclactloIls ls R11N-

trarily long.
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IV. EFFECTS OF INTERSITE INTERACTIONS

As already discussed in Sec. I, relatively little interest
has been paid to the role of intersite Coulomb interactions.
The PPP Hamiltonian consists of large intersite interac-
tions and their effects on the dimerization could also be
very strong. Furthermore, within the Peierls
(SSH)—Hubbard model the only competition is between
the uniform SDW state and the dimerized 80% state.
Nonzero intersite interactions can make a third kind of
state important, viz. , the on-site COW state, which, while
favoring equal spin densities on sites, will strongly oppose
dimerization. This will be particularly important in this
commensurate case of the half-filled band where the
phases of the two different kinds of charge-ordered states
are distinct. An earlier discussion of these two different
kinds of states may be found in the work by Paldus and
Cizek."

Even with the few existing studies, results are mutually
contradictory, as pointed out in Sec. I. The conclusions of
Fukutome and Sasai' and Horsch are exactly opposite
and the probable reason for this is as follows. Fukutome
and Sasai investigate the PPP Hamiltonian within an
unrestricted Hartree-Fock approach, which, as we have al-
ready shown, may lead to erroneous results. Horsch, on
the other hand, treats the intersite interactions within a
mean-field —type approximation in which the nearest-
neighbor interactions are incorporated within an effective
hopping integral, the implication of which then would be
that the PPP Harniltonian can be approximated by an ef-
fective Hubbard Hamiltonian with a modified spring con-
stant. We shall show in the present section that the above
is also incorrect. Whangbo and Hirsch' have investigat-
ed the effect of the nearest-neighbor interaction within an
extended Hubbard Hamiltonian. In Whangbo's model the
dimerization arises principally from an electron-phonon
coupling constant modulating the nearest-neighbor in-
teraction, while Hirsch finds a strong enhancement of the
dimerization with the nearest-neighbor interaction that is
independent of the distance between neighboring atoms.
We shall show that Hirsch's results are not only correct,
but can indeed be predicted for the extended Hubbard
model provided the nearest-neighbor interaction is smaller
than an upper limit. Dimerization is progressively
enhanced only for a nearest-neighbor interaction
V& (U/2, and is strongest for V~ ——U/2.

In the present section we deal with each Coulomb term
individually, and consider the enhancement or reduction
of dimerization in each case within the same framework
of Sec. II. In each case the effect on the dimerization can
be predicted from the increase or decrease in the barrier to
resonance. Furthermore we show that while in most cases
electron correlations strongly enhance the dimerization,
the nature of the ground state also depends strongly on the
relative magnitude of the correlation parameters, so that
in certain cases correlations can destroy the dimerized
state and favor uniform bond order. We discuss the
several possible cases below and consider only repulsive
interactions as in Eq. (la). The reason for this has already
been given in Sec. I.

A. V» &0, V,.=0 for j ~1

Within the simple Hubbard Hamiltonian the potential-
energy contribution to the barrier to resonance originates
in the energy required to create doubly occupied sites, as
seen in Fig. 6. Once a doubly occupied site is created,
both the cross or the dot can move freely and there is now

only a kinetic-energy barrier to their motion. With a
nonzero nearest-neighbor interaction the initial energy for
creating a cross and a dot is —U —V&, but there is now an
additional potential-energy barrier that tends to localize
the double occupancy and the hole. Referring back to
Fig. 6, we see that the nearest-neighbor interaction im-

poses an additional barrier V~ at the second step in the
path involving E = 1, at the third step in the path involv-

ing X =2, etc. Indeed, this concept is closely related to
the observation that an extended Hubbard Hamiltonian
has two optical absorptions, a strong intense peak at
—U —V& and a weaker secondary peak at —U. Thus a
nonzero nearest-neighbor interaction is expected to strong-

ly enhance the dimerization, and it should also be obvious
that the dimerization here is far stronger than it is with an
effective on-site correlation U,fr. Numerically, this has al-

ready been demonstrated by Hirsch' for U =4to, V& ——2to.
Thus without even allowing for the modulation of V& the
ground state is strongly dimerized for V» 0.

There is, however, an additional effect of the nearest-
neighbor interaction on the ground-state wave function.
The matrix element of H, , for the covalent diagrams is
XV~ for a X-site periodic ring while that for the complete-
ly ionic configuration

~

VI) in Fig. 3 is EU/2. Thus for
V& ~ —,

'
U the ground state is dominated by the on-site

CDW configurations in which alternate sites are doubly
occupied. Since each doubly occupied site has a hole on
both sides, these configurations strongly favor equal bond
orders. The ground state has a different kind of charge
ordering now and we expect a smooth reversal from a
highly dimerized to a uniform system as V& becomes
larger than —, U. This explains then why Hirsch finds
such a large enhancement in dimerization for
U=4to, V~ ——2to, while a still larger V~ would have re-
duced the dimerization.

As in Sec. II, we again confirm the above predictions by
numerical calculations. The %=6 and 10 results are

again identical, so we present only the latter ones. The en-

ergies per site now converge slower than for the simple
Hubbard Hamiltonian, but convergence is still much fas-
ter than in the SSH Hamiltonian, for which we have al-

ready shown that the energies per site have essentially
converged at X =10. Moreover, the enhancements in di-

merization here are so large that finite-size effects are of
no concern whatsoever, as shown below. We again calcu-
late in each case the energy gained per site upon dimeriza-

tion, defined exactly as in Eq. (11),but with a nonzero V~.
We have chosen a /IC the same as in Fig. 7(b), so that
comparisons between simple and extended Hubbard Ham-
iltonians may be made readily. In Figs. 10(a)—10(c) we

present our results for U/v 2to 3, 5, and 7, and —f—or
several values of V~ in each case, both V~ & —,

' U and

V& ~ —, U. The numerical results match our predictions

completely, and the strong enhancement in dimerization
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for VI ~ —' U and the destruction of the dimerized state foi'

V» —,
'

U is obvious in each case. This very strong effect
of Vi is most clear in Fig. 10(c), where even with a very
large U the system is strongly dimerized for Vi /v Zto =3.
Comparison of Figs. 7(b) and 10 also indicates that dimer-
1zat1on w1th1Q an cxtcndcd Hubbard HRITliltonian cannot
be described by an effective on-site repulsion
U,ff=U —V, . This is seen most clearly in Fig. 10(a),
where the dimerization with U/~2to 3, V——I/t/Zto= 1 is
stronger than with U jI/2to ——3, Vi ——0, while the dimeri-
zation for U/~2to 1, VI ————0 is weaker than that ob-
tained with Ujv 2to=3, Vi ——0. On the other hand, the
system is undimerized for U/~2to ——3, VI/~2IO 2, bu——t
is dtmertzed for U/~2to=1, V, =0. Similarly, for fixed
values of U —Vi, U/V Zto ——5, Vi /V Zto 2, ——and

U/~2to 7——, VI/~2to 4——, for instance, the behavior of
the system is seen to be completely different. This partic-
ular feature of the extended Hubbard Hamiltonian is com-
mon to all values of U and Vi, and the reason has already
bccn glvcn. %c emphasize, howcvcI, that th1s ls 8 chaIRC-
teristic of the ground-state dimerization only, and the
lowest excitations for the case of Vi & —,

' U can still be
described by U,fI-U —Vi. This is particularly true of
spii1 cxcitRtioi1s, Riltl also for tlic optical Rbsorptlons, III
which the main peak occurs at —U —V~.

Comparing thc Rctu81 clcctI'on1c cnc1g1cs 1t 1s s11Tlplc 1n
this case to ascertain that finite-size effects here are insig-
nificant. We define EE,I(U, VI,X,ax) as the difference in
electronic energies per site between dimerized and unifonll
ring of X sites for fixed dimcrtzatlon Ax, I.c.,

~E.I(U, VI,&,ttx) = -[E,I( U, V„IIt,ux)
I

%to

0 —E,i(U, VI,X,O)], (12)

—2.0
0.5

'~ —0.5

Ll -&.0
&I

/

/'

»d observe that
~
+Ed

~

increases with X for arbitrary U
FQI' tlic SSH Hamlltonian, we compute QE I for

%=102, where ground-state electronic energies per site
have converged at all ax. For ax =0.1, the region near
where the curves in Pig. 10 exhibit minima,

~
AE,i(%=102)

~

=0.064100 for the SSH Hamiltonian.
For the extended Hamiltonian,

i
KE,I(U=3V2to, Vi ——VZto, %=10, ux =0.1)

i

=0.073047,

i
EE,I(U=5v Zto, Vi ——Zv Zto, N =10, ax =0.1)

i

=0.073 338,

) 0-

L&
—2.5 —

1

0.0 0.1
aX

FIG. IO. Energy gained per electron on dimerization for
X= I0 and U&0, VI&0, Vq ——0. Numbers on each curve are the
different values of V, jt/2IO. Magnitude of I /aI is the same as
in Fig. 7(b).

so that cvcn thc 1()-site cxtcndcd Hubbard ring 1s morc
strongly dimerized than the infinite SSH ring. Thus for
the extended Hubbard Hamiltonian, the dimerizations are
so strong that finite-size effects are absolutely unimpor-
tant.

With a periodic variation in Vi, as suggested by Whang-
bo, Vi ——Vi(1+2Am), where 1, is a second electron-phonon
coupling constant, dimcrization CRQ only bc cxpcctcd to bc
further enhanced. Considering any sequence of three sing-
ly occupied sites, charge transfer along the shorter bond
now costs —U —VI(1+ZAx) while the energy required
for charge transfer along the longer bond is
—U —Vi(1 —ZM). Thus bond-order. differences become
larger Rnd thc cnhancclTlcnt 1Q dlmcr1zatlon should 1Q-
crease with A,. We demonstrate this in Fig. 11(a), for
Vi ~ —,

'
U, and in Fig. 11(b), for Vi & —,

' U for several values
of A, /a. For a very large A, the on-site CDW in Fig. 11(b)
can be destroyed and dimerization can be restored again.
We note, however, that as seen from our previous results,
8 18Igc nonzcro A. 1s Qot, R ncccssaI'y coIldltlon foI' d1mcr1"
zation.
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ox
FIG. 11. Same as in Fig. 10 except VI ——VI(1+2Ax) here.

NUmbers on each CUIve are the magmtUdes of k/A.

We now discuss the effect of the second-neighbor in-
teIaction. We discuss the two regions VI ~ —,

' U and

Vl ) I U scparatcly, Rs tllc cffcct of Vp ls dl"Rstlcally dif-
ferent in the two cases. We go back to Fig. 6 and consider
the barrier to resonance for Vz ~0. Within the path in-

volving N„=l, the barrier to the first step is still
U —VI, but thc barr1er to the sccoQd step 1s VI —V2.

The third step, which did not. have any potential-energy
barrier before now costs an additional energy Vq, and ex-
actly in analogy with the effect of V& we might therefore
be led to believe that VI further enhances the dimeriza-
tion. This is not true, ho@eever, even though V2 tends to
localize the single pair of cross and dot. The reason can
be seen by analyzing paths involving slightly larger X„.
Now the barrier is Vl —Vl in the third step for N„=2, in

the fourth step for N„=3, etc , i.e., in the N. „+1step for
thc path 1nvolv1Ilg Xz doubly occuplcd sltcs. DiIIlcrlza-
tloll wollld lnclcRsc wltll Vz )0 lf 111 tllc llllnMdlatc Ilcxt
step the barrier is Vl, since otherwise, starting from any
onc Kckulc structure, 1t bcco1Tlcs cas1c1 to Icach IDorc ncaf
the centers of the paths. The barrier in the (1V„+ )t2h
step, as may be seen by careful analysis of the indirect in-
teraction between any pair of doubly occupied sites, is Vz
only when the distance between the nearest pair of crosses
is greater than nine atomic sites. Thus in all paths involv-
ing X„)0.1N, the (X„+l)th step, which previously had a

barrier Vl, now has a barrier Vl —VI but the (N„+2)th
step has a barrier 0. Qnly at a much later step is the diag-
onal energy of Vq regained, so that the contribution of di-
agrams which favor a BOW increases only weakly with
V2. In a lafgc system then, thc bafficf to 1csonancc 1Q-

crcascs for patlls lllvolvlIlg N (0.1X, but dcclcascs for
paths involving X„&0.1N. We haue confirmed this by
draIIMng paths betloeen th8 EekQl8 strQctQres stml'lar to
those in Fig 6f.or ring as large as %=18and 22. A posi-
tive U, oppos1ng double occupancy, causes pRths 1nvolvlQg

0.1X to bccoIDc less RQd less probable. On thc other
hand, these paths arc clcRIly much larger 1Q QUIDbcl' as the
maximum value of N„ is X/2 and the number of dia-
grams within any class peaks at X„-E/4. Furthermore,
R posltlvc Vl Increases tllc pI'obRbillty of dollblc occllpaI1-
cy and ln certain cases, even Increases the tendency to-
wRlds R CDW state. Consldcrlllg tlMsc coInpctlllg cffccts
of Vq then, we come to the following conclusions. Firstly,
any effect of Vq on the dimerization, compared to the
large enhancement reached with V~, is small. Secondly,
since paths involving X & 0.1% are overwhelmingly
larger in number, V2 ~ 0 wi11 slightly decrease the dimeri-
zatlon. However, slncc the bR1f1cr V2 occuls fof some d1s-
tant step even in the latter class of paths, dimerization
here should be slightly stronger than that with an effective
nearest-neighbor interaction VI —V2.

The numerical results for V2 ~ 0, V~ ~ —,U are shown in
Figs. 12(a)—12(c) for several values of U, Vl, and Vz.
The energy gained upon dimerization, b,E, is defined as in
Eq. (11) with a nonzero Vl and Vz, while the same value
of a~/IC is chosen as before. The effect of Vz is indeed
found to be small, and a slight reduction in dimerization
is seen to occur. Comparison of the results in Figs. 10 and
12 indicate, however, that the dimerization is stI'onger
here than it is for an extended Hubbard Hamiltonian with
an effective nearest-neighbor interaction Vl —VI. Thus
from Figs. 10(b) and 12(b), dimerization is stronger for
U/v 2to 5, V)lv 2t——o ——2, VI/v2to ——1 than for /U~2t o
=5, V&/v 2to ——1. Similarly the system is more strongly
dimerized for Ulv 2to 7, Vl /v 2to ————3, Vq/~2to 1——
than it is for U/V 2to 7, Vl /2to ——2. ——

C. VI, Vg~0, U&2VI, Vj —0 for j &2.

Unljke the prevjous case we expect herc a I'RthcI' drastic
effect, of nonzel'0 VI, alld tllls ls also R far simpler case.
Recall that for V1 ~ —U, V2 ——0, the system has a strong

tendency to have uniform bond order as the on-site CDW
configuration»rc stabilized by these parameters. If we
liow lllcludc a Vl @0, the matrix elements of I for thc
covalent dlRgl'allis Increase by QV& whjle those for the
two confljglll'Rtlolls tllat favol' the CDW very strongly jn-
creases by 2XV2. A nonzero Vz then strongly destabilizes
the configurations favoring a CDW, thereby increasing
the contribution of diagrams that favor a BOW. Once
this is reached, however, further increase in Vz only de-
creases thc barr1er to I'csonancc between thc Kekulc d1a-

grams, as in the previous case. Thus the initial effect of
V2 1s to st1ongly cnhaIlcc thc diIQcrizat1on, followed by a
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FIG. 12. Energy gained per electron on dimerization for
%=10 and Vl ~ 2 U, V2&0 for several values of U and VI.
Numbers on each curve are the magmtudes of V2/V 2to. Mag-
nltUde of E/A is sMfle as before.

smooth reduction in the dimerization, and for reasonable
values of U, Vi and V2 dimerization remains enhanced
compared to the SSH Hamiltonian.

The numer1cal results for thIS case are presented 1n
Figs. 13(a)—13(c). The values of U chosen here are the
same as those in Fig. 12, but in each case we have chosen
V& ~ —,

' U. While V2 ——0 gives a strongly Undimerized
state~ 8 very sITla11 nonzcro V2 glvcs 8 lather 1RI'gc dlmcr1-
zation here, while further increase in V2 decreases the di-
merization. Again, relative to the SSH Hamiltoman, di-
merization remains enhanced for a wide range of parame-
ters. Comparison to Fig. 10 indicates that b,E,i here is
again much too large for finite-size effects to be of any
iIl1portancc, so that thc cnhanccIQcnt In dimcrization com-
pared to the SSH Hamiltonian is real and would persist
foI' arbitrary X.

To dcIIlonstlatc the large and sUddcn change 1Q the na-
ture of the wave function in this case we present the total

—3.0
0.0 0.1

aX

FIG. 13. Same as in Fig. 12 for VI ~ 2 U.

normalized contributions of the various classes of dia-
grams to the undimerized ground-state wave functions for
U/~2tq 5, Vi/~——2tu ——3 and several values of V2 in Fig.
14, wh1ch 1s to bc compared with F1g. 9. Fol V2 ——0, the
ground-state contribution is largest for the class of dia-
grams with X„=X/2, as indeed would be expected for a
CDW ground state. For V2~0, the nature of the wave
function changes drastically and diagrams with small X~
now dominate the ground state. As in Fig. 9, this shift in
t4c pcRks of thc cUI'vcs towards smaller X~ Is 8 SIgIlatUlc
of the enhanced dimerization for these correlation param-
eters in the presence of nonzero a. The shift towards
smaller X iIIlplics gIcatcr contributloll by diagrams with
large

~
5

~

and a positive potential-energy contribution to
the barrieI' to resonance. We have presented the above
chaIlgc 111 thc gl oUnd-state wave fUQctloIl foI' only oQc
representative case, but the results are similar for all
U, Vi, V2. We shall indicate below how this information
can be used to predict the nature of the ground state of the
PPP Hamiltonian.
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FIG. 14. Same as in Fig. 9 for U/'(/2t =o5, V~/~2t 0 3——
Numbers on each curve are the different values of VI/V 2to.

sense, the CD% state is a "negative-Udf state. HoweveI',
this kind of 8 ground-state wave function cannot have the
res state as the lowest excited state or negative spin densi-

ties. Since the PPP Hamiltonian reproduces the above
pmperties for long polyenes, the ground state of the PPP
Hamiltonian must have a larger contribution from dia-
grams with N„~N/4 than the ground state of the SSH
Hamiltonian. The peak in the contribution curve for the
PPP Hamiltonian is then to the left of the SSH curve in
Fig. 9, and the ground state is a "positive-Udf" state. %e
conclude therefore that our results strongly indicate that
the ground state is dimerized for the PPP Hamiltonian, as
neither the SD% nor the CD% state is possible, and the
infinite ring will always have some kind of broken sym-
metry due to the infinitely long paths between appropriate
pairs of configurations.

D. PPP Hamiltonian

IQ principle, OUI' physical afgun1cnts CRQ bc cxtcndcd to
lncludc afbltfaflly long-I'ange 1ntcfactlons, bUt ln pfactlcc
it soon becomes extremely complicated. Even for the
paths 1Qvolvlng X~ = l wc hRvc 'to consldcl thc Jth step
from the initial Kekule: diagram for a nonzero VJ. Thus
the requirement for j, for both a correct prediction from
the physical arguments and for numerical results free of
finite-size effects, is that j~E/2. For any larger j,
finite-size effects become important. To consider long-
fange lntcractlons then, we should dcRl with 181gcl RIld

larger systems. We point out here that this is in fact not
necessary, and a sequence of logical reasonings based on
our results and some additional experimental and theoreti-
cal information leads to the conclusion that the ground
state in the PPP Hamiltonian is dimerized for both the
Mataga-Nishimoto and Qhno parameters. These reason-
ings are as follows.

We have seen that for a correlated band there are three
different kinds of broken symmetry: the pure SDW with
uniform bond order, the dimerized BOW state, and the
on-site CD% state. DiInerization begins to decrease only
after the covalent diagrams begin to dominate the
ground-state wave function. Within the PPP Hamiltoni-
an, U-4to, the region where dimcrization is the largest.
Finite intersite interactions can only reduce the magnitude
of the effective spin-exchange integral, so that the pure
SDW state is not possible for the PPP Hamiltonian. On
the other hand, the CD% state requiI'es larger contribu-
tion from diagrams with N„pX/4 than from diagrams
with N„~X/4, i.e., the peak in the contribution curve has
to be on the nght of the SSH curve in Fig. 9. In this

We have investigated the effects of electron-electron in-
teractions on dimerization in a half-filled band within a
novel I'c8l-space approach. 011Tlcflzatlon 1n 8 cofrclatcd
band is shown to be a result of imperfect resonance rather
than of opening a gap in the single-particle density of
states. The one-electmn picture of Peierls is a special case
valid only fof thc SSH 11IIllt. Contfafy to p1cvlous predic-
tions, the Hubbard on-site interaction is found to strongly
enhance the dimerization. Inclusion of intersite interac-
tions further enhances the dimerization, except in the case
of Vi ~ —, U, V2 ——0. The gain in electronic energy on di-
merization when intersite interactions are included can be
so large that bE,I(N =10) in these cases are larger than
bE I(X~ ao) for the SSH limit. For the PPP Hamiltoni-
Rn wc conclude that thc above I'csUlts stI'ongly 1Qdlcatc
that the ground is dimerized. Existence of dimerization in
polyacetylene thus does not prove that electron-electron
interactions are weak in this material. The magnitudes of
the correlation parameters can only be determined from
ot11cl' IIlcasul'cIIlcI1'ts, Rild Rccu1"Rtc estimates of thc various
parameters are required for a more precise description of
the ground and excited states in polyacetylene. The effect
of electron correlations on the solitonlike and polaronlike
states in this material is of interest, and research is in pm-
gI'CSS.
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