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Binding energies of the ground state and of a few low-lying excited states of a hydrogenic donor
in a quantum-well structure consisting of a single layer of GaAs sandwiched between two-semi-

infinite layers of Ga~, Al„As are calculated, including the effect of nonparabolicity of the conduc-

tion band and following a variational approach. The effect of nonparabolicity of the conduction

band is included by using an expression for the energy-dependent effective mass based on the k. p
approximation. The variations of the binding energies of these states as a function of the size of the
GaAs quantum well for different values of the potential barrier (or equivalently for different values

of Al concentration x) are calculated. These results are compared with those obtained with the use

of a parabolic conduction band.

INTRODUCTION

T11e behavior of a 11ycli'ogeillc impurity ceiiter located 111

a quantum-well structure consisting of a single layer of
GaAs sandwiched between two semi-infinite (greater than
200 A ) layers of Ga~ „Al„As has been a topic of consid-
erable interest in the past couple of years. Bastard,
for instance, has calculated the binding energy of the
ground state of a hydmgenic donor associated with the
lowest electron subband level, as a function of GaAs
quantum-well size (L) and the position of the impurity
ion, assuming infinite potential at the interfaces, with the
use of a variational approach. Mailhiot et al. and Greene
et al. i have independently calculated the binding energies
of the ground state and of several low-lying excited states
of a hydrogenic donor as a function of I. for finite values
of the potential barriers. Both of these groups use varia-
tional techniques and find essentially the same results.
For example, for an impurity ion located at the center of
the well, they find that the value of the binding energy of
the ground state, E~, increases as I. is reduced until it
reaches a maxiInurn value and then decreases to its bulk
value in Gai „Al„As at I.=0. For infinite barriers, how-

ever, Ett increases monotonically from its bulk value as
the well size is reduced and approaches the well-known
two-dimensional value (i.e., 4 times the value in bulk) at
L =0. All these calculations use effective-mass approxi-
I11ation assuming a silIlplc parabolic condUction band.
For small values of I. ( & 100 A ) and for large values of
the potential barrier, the energy of the first electron sub-
band can be quite significant. As was pointed out by
Glccnc et QI. this should I'cqUiI'c includiIlg thc contribu-
tions due to nonparabolicity of the conduction band. The
larger the energy of the first subband, the more important
this contribution becomes.

In this paper we report a first calculation of the binding
energies of the ground state and of the first four excited

states of a hydrogenic donor associated with the first sub-
band in a GaAs-Ga& „Al„As quantum well as a function
of the potential barrier (or equivalently the x value) and
the size of the quantum well, taking into account the ef-
fect of nonparabolicity of the conduction band. We fol-
low a variational approach and include this effect by using
a recently proposed expression for the energy-dependent
conduction-electron effective mass based on the k.p ap-
proximation, which has been used to explain emission
spectra in thin quantum-well structures. We assume, for
the sake of illustration, that the positive ion is located at
the center of the well. The results thus obtained are corn-
pared with those calculated with the use of a parabolic
conduction band. We find that inclusion of nonparabolic
effects leads to more binding for all values of L.

THjEQRY

The Hamiltonian of a hydrogenic donor located in a
GaAS quantum well can be written as

where the barrier potential Vs(z) is taken to be square well
of height Vo and width L,

0, iz i
(L/2

z
Vo I' I )I./2. (2)

Here we have assumed, for the sake of illustration, that
the positive ion of the donor impurity is located at the
center of the well. The position of the electron is denoted
by r where r =(p +z )'~, p being the distance in the x-y
plane. The values of the effective mass rn* and the static
dielectric constant eo are assumed to be the same across
the interface between the two semiconductors. This is a
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good approximation as seen by comparing the results of
Mailhiot et al. with those of Greene et al. for parabolic
bands. The former calculation takes into account the dif-
ferent effective masses and dielectric constants for GaAs
and Gal „Al„As regions. The latter calculation, howev-
er, uses the same values for the effective mass and the
dielectric constant for the two semiconductoI's. As men-
tioned earlier, these two calculations yield essentially the
same results for values of x considered in these papers
(x &0.4), thus justifying our use of the same values for
these two parameters.

The effect of nonparabolicity of the conduction band on
the energy levels of our system is taken into account by
assuming that the effective mass m* is a function of ener-

gy (E). Recently Kolbas has proposed the following ex-
pression for m* in GaAs, i.e.,

m*/mo ——(0.0665+0.0436E+0.236E —0. 147E ),
where mo is the free-electron mass and energy E is ex-
pressed in terms of electmn volts. The value of the effec-
tive mass at the I point, I, is taken to be 0.0665mo.
This expression is obtained from the following relation
first derived by Kane using the k p perturbation tech-
n1qUC,

where f(z) is the exact (unnormalized) solution to the
square-well problem,

cos(IIz), iz f
&L/2f"= a.—.

~ ~ (z()1./2 (7)

The parameter lI is determined from the energy of the
first electron subband and 8 and a are obtained from II by
requiring continuity of f and its first derivative at the in-
terface. The wave functions g(p, z, P) where P is the az-
imuthal angle, describe the bound states of the donor.

To calculate the binding energy of the ground state, EII,
of a donor in GaAs quantum well we proceed as follows.
For a given value of Vo and I. we first determine the ener-

gy of the first electron subband (no Coulomb interaction)
by solving the following transcendental equation, 9

' I/2
E mE I.=cos (8)
Vo m 2

using Eq. (3) for the effective mass III, in a self-consistent
manner. Note that m is the conduction-band-edge effec-
tive mass and I* is the energy-dependent effective mass.
The starting value of III' in Eq. (8) is, of course, rn. The
value of m* thus obtained is then used in Eq. (1) to solve
for its eigenvalues. For the Is level, we choose the follow-
ing expression for the trial wave function g:

flttlllg lt to a third-order polyllollllal ill E llslIlg a
least-squares method. Here kz is Boltzmann's constant, T
is the absolute temperature, Ez is the energy gap of GaAs,

ls thc spin-orbit spl1ttlng, and E~ /2 and F3y2 arc the
standard Fermi integrals as defined in Ref. 6. Although
Eq. (3) was deduced from Eq. (4) at T=77' K, it is as-
sumed to be applicable at liquid-helium temperatures as
thc varlat1on of the cffcctlvc mass with temperature 1n

this range is very small. In addition, Eq. (3) is assumed to
be valid for values of E & 300 meV. The value of the po-
tential barlier height Vo is determined from the Al con-
centration in Ga~ „Al As using the following expression
for tllc 'total cllci gy-balld-gRp discolltiillllty:

in eV. It has been shown, on the basis of fairly detailed
optical-absorption measurements, that Vo is about 85% of
the band-gap difference between the two semiconductors.

It is convenient to express the Hamiltonian in dimen-
sionless form. We have chosen to use the effective Bohr
radius QII fi co/me as——our unit of length and the effec-
tive Rydberg R=e /2coIIII as the unit of energy. For
GaAs (III =0.0665m, and c,=12.5) these quantities are
u~ ——99.4 A and 8 =5.8 meV.

An exact analytical solution of the Schrodinger equa-
tion corresponding to the donor Hamiltonian [Eq. (I)] is
clearly not possible. We therefore follow a variational ap-
proach and write the trial wave function in the following
form

It=f(z)g(P, z,g),

f f fq'aypdpdzdy

f f fg'PpdpdzdP
(10)

and minimize this expression as a function of ai. The
value of EII is now obtained by subtracting El, from the
first subband energy E. This procedure results in our
variational bindiIlg cnc1g1cs E~ bc1ng rigo'oou Qppcl
bounds for the true binding energies including the nonpar-
abolicity effect.

We also calculate the binding energies of the first four
excited states following a procedure essentially similar to
the one described for EII. For convenience we label these
states by their bulk hydrogenic limits, namely, 2s, 2@+,
and 2po. The presence of the potential barrier at the inter-
faces lifts the degeneracy of this n =2 state into these
three distinct states. We use the following trial wave
functions to calculate their binding energies:

—a2r
g2& ——X2Pe —' e

—a3r
g2p ——X3Ze

Here a2, n3, and a4 are variational parameters, X2, X3,
and X4 are normalization constants, and 5 is determined

g (p,z,P) =Vie
where al is a variational parameter and XI is the normali-
zation constant. We then evaluate the expectation value
of H, i.e.,
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g1cs of 25, 2++, Rnd 2po states as 8 function of t1lc GRAs
quantum-well size L for Al concentration x=0.3. The
contribution of nonparabolicity to the binding energy of
2+o state 1s 11cgllg1blc Rs 1t bccoIIlcs UnbouQd Rt

L =650 A. . The effect of nonparabolicity on the binding
energies of 2s and 2@+ states, however, is very similar to
that on the ground state. Both 2s and 2@+ states show a
maximum in binding energy (not shown in Fig. 2) for
values of L smaller than the corresponding values for the
pRI abollc band.

It is difficult to know how accurate the present ap-
proach is in taking into account the effect of nonparaboli-
clty on thc cncI'gy lcvcls of 8 Ilydrogcnic donoI' 111

quantum"well stI'UctUI'cs. Wc know that 1Q the RbscIlcc of
the Coulomb term 1Il thc HRIDiltonian, thc conduct1on-
electmn dispersion relation can be described fairly accu-

I'ately by Lane s k ' p cxp1csslon. In thc plcscncc of thc
Coulomb term, however, one needs to take into account
the contributions from other bands. Thus a calculation
using an impurity wave function composed of contribu-
tions from several different bands is expected to give
better results. It is still possibl, however, to use an
energy-dependent effective mass to calculate the effect of
nonparabollclty 011 tllc cIlcIgy lcvcls of R llydlogc111c donor
as long as this effect is rather small. We bcheve our ap-
proach 1s falI'ly reliable to CRlcUlRtc thc change 1Q thc
binding energy of the ground state, EII, for small values of
Al concentration x (approximately less than 0.1), where
for x=0.1, for instance, the maximum change in Ez is

only about 6%. For larger values of x and for smaller
values of L our calculations become less valid. For exam-

ple, for x=0.3, the maximum change in EII can be as

large as 20%. It is clear that for x =0.3 our calculations
will be valid only for large L (greater than 0.5aII) values
where the changes in EII are rather small. For values of L

smaller than 0.5az our results should be viewed as no
Glorc than indicating thc trend. HowcvcI', oUI' IcsUlts
should bc applicable to most practical quantum-well
structures wh1ch often have well s1zcs larger than 0.50~.
It should be pointed out that the contribution of nonpara-
bolicity of the conduction band to the binding energy of
the ground state of a donor in bulk GRAs, as obtained by
Eq. (3) (here m* is calculted for E=R =5.80 meV), is
about 0.022 mcV, which is very close to that obtained by
Stlllman 0't Ql. Us1ng 8 IIlUlt1baIld Rppl oach.

CONCLUDING REMARKS

We have calculated the binding energies of the gmund
state and of 2s-, 2@+-, and 2po-IIke states of a hydrogenIc
doIloI' 1Q 8 GRAs-G81 „Al„As quantum-well structUIc 1Q-

eluding the effects of nonparabolicity of the conduction
band following a variational approach. The effect of non-
parabo11c1ty on thc cncI'gy lcvcls 1s taken 1nto RccoUQt by
using an expression for the energy-dependent effective
mass based on the k p approximation. The variations of
the binding energies of these states as a function of the
GaAs quantum-well size for different values of Al con-
centration are calculated. These results are compared
with those obtained with the use of a parabolic conduction
baIld. . Wc fllld tllat lncluslon of llollpal aholic cffccts lcRds
to more binding for all values of L.
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