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Binding energies of the ground state and of a few low-lying excited states of a hydrogenic donor
in a quantum-well structure consisting of a single layer of GaAs sandwiched between two-semi-
infinite layers of Ga;_,Al,As are calculated, including the effect of nonparabolicity of the conduc-
tion band and following a variational approach. The effect of nonparabolicity of the conduction
band is included by using an expression for the energy-dependent effective mass based on the f-'f)’
approximation. The variations of the binding energies of these states as a function of the size of the
GaAs quantum well for different values of the potential barrier (or equivalently for different values
of Al concentration x) are calculated. These results are compared with those obtained with the use

of a parabolic conduction band.

INTRODUCTION

The behavior of a hydrogenic impurity center located in
a quantum-well structure consisting of a single layer of
GaAs sandwiched between two semi-infinite (greater than
200 A ) layers of Ga,_,Al,As has been a topic of consid-
erable interest in the past couple of years.!”® Bastard,!
for instance, has calculated the binding energy of the
ground state of a hydrogenic donor associated with the
lowest electron subband level, as a function of GaAs
quantum-well size (L) and the position of the impurity
ion, assuming infinite potential at the interfaces, with the
use of a variational approach. Mailhiot et al.? and Greene
et al.® have independently calculated the binding energies
of the ground state and of several low-lying excited states
of a hydrogenic donor as a function of L for finite values
of the potential barriers. Both of these groups use varia-
tional techniques and find essentially the same results.
For example, for an impurity ion located at the center of
the well, they find that the value of the binding energy of
the ground state, Ep, increases as L is reduced until it
reaches a maximum value and then decreases to its bulk
value in Ga;_, Al As at L =0. For infinite barriers, how-
ever, Ep increases monotonically from its bulk value as
the well size is reduced and approaches the well-known
two-dimensional value (i.e., 4 times the value in bulk) at
L=0. All these calculations use effective-mass approxi-
mation assuming a simple parabolic conduction band.
For small values of L (<100 A ) and for large values of
the potential barrier, the energy of the first electron sub-
band can be quite significant. As was pointed out by
Greene et al.’® this should require including the contribu-
tions due to nonparabolicity of the conduction band. The
larger the energy of the first subband, the more important
this contribution becomes.

In this paper we report a first calculation of the binding
energies of the ground state and of the first four excited
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states of a hydrogenic donor associated with the first sub-
band in a GaAs-Ga,_,Al,As quantum well as a function
of the potential barrier (or equivalently the x value) and
the size of the quantum well, taking into account the ef-
fect of nonparabolicity of the conduction band. We fol-
low a variational approach and include this effect by using
a recently proposed* expression for the energy-dependent
conduction-electron effective mass based on the E*ﬁ ap-
proximation, which has been used to explain emission
spectra in thin quantum-well structures. We assume, for
the sake of illustration, that the positive ion is located at
the center of the well. The results thus obtained are com-
pared with those calculated with the use of a parabolic
conduction band. We find that inclusion of nonparabolic
effects leads to more binding for all values of L.

THEORY

The Hamiltonian of a hydrogenic donor located in a
GaAs quantum well can be written as

2 2
H:#—f&-juv,,(z), (1)

where the barrier potential V3(z) is taken to be square well
of height V,, and width L,

V(z)= 0, [z|<L/2

W, |z|>L72 @

Here we have assumed, for the sake of illustration, that
the positive ion of the donor impurity is located at the
center of the well. The position of the electron is denoted
by T where r =(p?+2z2)!/2, p being the distance in the x-y
plane. The values of the effective mass m* and the static
dielectric constant €, are assumed to be the same across
the interface between the two semiconductors. This is a
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good approximation as seen by comparing the results of
Mailhiot et al.? with those of Greene et al.? for parabolic
bands. The former calculation takes into account the dif-
ferent effective masses and dielectric constants for GaAs
and Ga,_,Al, As regions. The latter calculation, howev-
er, uses the same values for the effective mass and the
dielectric constant for the two semiconductors. As men-
tioned earlier, these two calculations yield essentially the
same results for values of x considered in these papers
(x <0.4), thus justifying our use of the same values for
these two parameters.

The effect of nonparabolicity of the conduction band on
the energy levels of our system is taken into account by
assuming that the effective mass m* is a function of ener-
gy (E). Recently Kolbas* has proposed the following ex-
pression for m* in GaAs, i.e.,

m* /my=(0.0665+0.0436E +0.236E2—0.147E%) ,  (3)

where m, is the free-electron mass and energy .E is ex-
pressed in terms of electron volts. The value of the effec-
tive mass at the I' point, m, is taken to be 0.0665m,.
This expression is obtained from the following relation
first derived by Kane’ using the l?‘f)' perturbation tech-
nique,

2
F;/
Fip
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1 21
m* m 3

+ m
E, E;+A

mo

’

(4)

by fitting it to a third-order polynomial in E using a
least-squares method. Here kjp is Boltzmann’s constant, T’
is the absolute temperature, E, is the energy gap of GaAs,
A is the spin-orbit splitting, and F;,, and F;,, are the
standard Fermi integrals as defined in Ref. 6. Although
Eq. (3) was deduced from Eq. (4) at T=77° K, it is as-
sumed to be applicable at liquid-helium temperatures as
the variation of the effective mass with temperature in
this range is very small. In addition, Eq. (3) is assumed to
be valid for values of E <300 meV.* The value of the po-
tential barrier height ¥V, is determined from the Al con-
centration in Ga;_,Al, As using the following expression’
for the total energy-band-gap discontinuity:

AE,=1.155x +0.37x?, (5)

in eV. It has been shown,?® on the basis of fairly detailed
optical-absorption measurements, that ¥, is about 85% of
the band-gap difference between the two semiconductors.

It is convenient to express the Hamiltonian in dimen-
sionless form. We have chosen to use the effective Bohr
radius ap=7%€,/me? as our unit of length and the effec-
tive Rydberg R =e?/2€yap as the unit of energy. For
GaAs (m =0.0665m, and €,=12.5) these quantities are
ag=99.4 A and R =5.8 meV.

An exact analytical solution of the Schrdodinger equa-
tion corresponding to the donor Hamiltonian [Eq. (1)] is
clearly not possible. We therefore follow a variational ap-
proach and write the trial wave function in the following
form:

Yv=f(2)g(p,z,8) , (6)
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where f(z) is the exact (unnormalized) solution’ to the
square-well problem,

|z | <L/2
|z | >L/2.

cos(nz),
f(Z)= Be_"‘zl, (7
The parameter 1 is determined from the energy of the
first electron subband and B and « are obtained from 7 by
requiring continuity of f and its first derivative at the in-
terface. The wave functions g(p,z,¢) where ¢ is the az-
imuthal angle, describe the bound states of the donor.

To calculate the binding energy of the ground state, Eg,
of a donor in GaAs quantum well we proceed as follows.
For a given value of V;, and L we first determine the ener-
gy of the first electron subband (no Coulomb interaction)
by solving the following transcendental equation,’
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m*E L
=cos

AE (8)

Vo

using Eq. (3) for the effective mass m, in a self-consistent
manner. Note that m is the conduction-band-edge effec-
tive mass and m* is the energy-dependent effective mass.
The starting value of m* in Eq. (8) is, of course, m. The
value of m* thus obtained is then used in Eq. (1) to solve
for its eigenvalues. For the 1s level, we choose the follow-
ing expression for the trial wave function g:

gpz,p)=Nie ', )

where «; is a variational parameter and N, is the normali-
zation constant. We then evaluate the expectation value
of H, i.e.,

_ JJ [ vHYpdpdzds

“TUT T et updpdzds 1o

E

and minimize this expression as a function of a;. The
value of Ep is now obtained by subtracting E; from the
first subband energy E. This procedure results in our
variational binding energies Ep being rigorous upper
bounds for the true binding energies including the nonpar-
abolicity effect.

We also calculate the binding energies of the first four
excited states following a procedure essentially similar to
the one described for Ez. For convenience we label these
states by their bulk hydrogenic limits, namely, 2s, 2p4,
and 2p,. The presence of the potential barrier at the inter-
faces lifts the degeneracy of this n =2 state into these
three distinct states. We use the following trial wave
functions to calculate their binding energies:

82, =N2Peii¢e — » (11)

8p,=Nsze 7, (12)
and

g2 =N4(1—=8r)e ™% . (13)

Here a,, a3, and a4 are variational parameters, N,, N3,
and N, are normalization constants, and 8 is determined
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FIG. 1. Variation of the binding energy of the ground state,
Ep, of a donor as a function of the GaAs well size (L) for Al
concentrations x=0.1 and 0.3 using a parabolic conduction
band (solid lines) and a nonparabolic conduction band (dashed
lines). All energies are expressed in terms of an effective Ryd-
berg (R) and all distances are expressed in terms of Bohr radius
(a B ).
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by requiring g, to be orthogonal to the 1s trial wave func-
tion g ;.
RESULTS AND DISCUSSION

In Fig. 1 we display the variation of the binding energy
of the ground state, Ep, of a donor as a function of GaAs
well size L for V3=101 and 322 meV corresponding to Al
concentrations x =0.1 and 0.3, respectively, including the
effects of nonparabolicity of the conduction band (dashed
lines). For comparison, we also plot the variation of Ep as
a function of L, assuming a simple parabolic band (solid
lines). The latter results agree (within a few percent) with
those of Greene et al.,’ who use a much more general trial
wave function. This suggests that the results obtained
with the use of the present, rather simple trial wave func-
tion for the case of a nonparabolic conduction band
should be quite accurate. We find, as expected, that the
effect of nonparabolicity on Ejp is negligible for L >ap.
For values of L smaller than ag, this contribution can,
however, be quite signficant. For x =0.3, for instance, the
maximum value of Ep including nonparabolic effects is
about 20% larger. In addition, the maximum in Ej is
reached at a smaller value of L. Our results, however,
should be less applicable for thin wells (L <25 A ) as we
have assumed the same values for the effective mass and
the dielectric constant in the two semiconductors. For
thin wells, a significant part of the donor wave function
lies in the Ga;_,Al,As layers. This makes the above ap-
proximation less valid.

In Fig. 2 we display the variations of the binding ener-
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FIG. 2. Variation of the binding energies (Ez) of 2p +-, 2s-, and 2p,-like states of a donor as a function of the GaAs well size (L)
for Al concentration x =0.3 using a parabolic conduction band (solid lines) and a nonparabolic conduction band (dashed lines). All
energies are expressed in terms of an effective Rydberg (R) and all distances are expressed in terms of Bohr radius (ap).
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gies of 2s, 2p ., and 2p, states as a function of the GaAs
quantum-well size L for Al concentration x=0.3. The
contribution of nonparabolicity to the binding energy of
2p, state is negligible as it becomes unbound at
L =650 A . The effect of nonparabolicity on the binding
energies of 2s and 2p4 states, however, is very similar to
that on the ground state. Both 2s and 2p . states show a
maximum in binding energy (not shown in Fig. 2) for
values of L smaller than the corresponding values for the
parabolic band.

It is difficult to know how accurate the present ap-
proach is in taking into account the effect of nonparaboli-
city on the energy levels of a hydrogenic donor in
quantum-well structures. We know that in the absence of
the Coulomb term in the Hamiltonian, the conduction-
electron dispersion relation can be described fairly accu-
rately by Kane’s E-f)’ expression. In the presence of the
Coulomb term, however, one needs to take into account
the contributions from other bands. Thus a calculation
using an impurity wave function composed of contribu-
tions from several different bands is expected to give
better results. It is still possible, however, to use an
energy-dependent effective mass to calculate the effect of
nonparabolicity on the energy levels of a hydrogenic donor
as long as this effect is rather small. We believe our ap-
proach is fairly reliable to calculate the change in the
binding energy of the ground state, Ep, for small values of
Al concentration x (approximately less than 0.1), where
for x =0.1, for instance, the maximum change in Ejp is
only about 6%. For larger values of x and for smaller
values of L our calculations become less valid. For exam-
ple, for x=0.3, the maximum change in Ep can be as
large as 20%. It is clear that for x =0.3 our calculations
will be valid only for large L (greater than 0.5ap) values
where the changes in Ep are rather small. For values of L
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smaller than 0.5ap our results should be viewed as no
more than indicating the trend. However, our results
should be applicable to most practical quantum-well
structures which often have well sizes larger than 0.5a3.
It should be pointed out that the contribution of nonpara-
bolicity of the conduction band to the binding energy of
the ground state of a donor in bulk GaAs, as obtained by
Eq. (3) (here m* is calculted for E=R =5.80 meV), is
about 0.022 meV, which is very close to that obtained by
Stillman et al.' using a multiband approach.

CONCLUDING REMARKS

We have calculated the binding energies of the ground
state and of 2s-, 2p. -, and 2py-like states of a hydrogenic
donor in a GaAs-Ga;_,Al, As quantum-well structure in-
cluding the effects of nonparabolicity of the conduction
band following a variational approach. The effect of non-
parabolicity on the energy levels is taken into account by
using an expressiog for the energy-dependent effective
mass based on the kP approximation. The variations of
the binding energies of these states as a function of the
GaAs quantum-well size for different values of Al con-
centration are calculated. These results are compared
with those obtained with the use of a parabolic conduction
band. We find that inclusion of nonparabolic effects leads
to more binding for all values of L.
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