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Optical spin orientation in crystals with diamond structure
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In a new type of photoemission experiment, spin orientation of the photoelectrons is achieved by
the optical excitation process. The spin polarization depends only on the symmetry of the states in-

volved. In this paper the method of optical spin orientation is applied to electronic states belonging

to the important nonsymmorphic space group of the diamond lattice. Tables of Clebsch-Gordan
coefficients at the special symmetry points X and 8' and symmetry line Z of the Brillouin zone are
given. They contain the necessary information to derive the spin polarization. For the other parts
of the Brillouin zone it is shown that the already published tables for the point groups are applic-
able.

I. INTRODUCTION

The introduction of the electron spin polarization in
photoemission has led to new insights into the electronic
band structure of solids. Originally, the method was
developed to investigate the spin-dependent electronic
structure of magnetic solids, the most intensively studied
material being nickel': It was possible to detect the neg-
ative spin polarization at the Fermi level, certainly a ma-
jor experimental breakthrough in the field of magnetism
in the last decade.

At the same time it became clear that the method of
spin-polarized photoemission can be extended to materials
with unpolarized ground states. There the polarization of
the photoelectrons must first be created by the optical ex-
citation process. This is called optical spin orientation.
The measurement of the spin polarization bears distinct
advantages in this case also: The hybridization of energy
bands becomes directly measurable, the resolution of ener-
getically closely spaced transitions is improved, and the
assignment of the observed transitions in a band structure
becomes much simpler than in conventional angular- and
energy-resolved photoemission.

Sign and magnitude of the light-induced polarization
are determined solely by the symmetry of the electron
wave functions involved in the transitions: The
knowledge of the radial part is not needed. Therefore, the
whole subject falls into the domain of group theory: The
relative weight of the up and down spins in the excited
wave function is given by the Clebsch-Gordan coeffi-
cients. ' The purpose of this paper is to apply the
method of optical spin orientation to a particularly impor-
tant class of materials, namely, those with the diamond
structure. The diamond structure belongs to a nonsym-
morphic space group. This implies that the light-induced
spin polarization cannot in general be dealt with using
point-group symmetries, in contrast to the cubic Bravais
lattices. The Clebsch-Gordan coefficients necessary for
deriving the spin polarization in crystals with diamond
structure are still missing. In this paper they are present-
ed for the symmetry points X and W and along the sym-
metry line Z of the Brillouin zone; see Fig. 1. For the oth-

er symmetry locations it is shown that the point-group
tables —e.g., of Ref. 5—can be used.

II. USE OF THE CLEBSCH-GORDAN
COEFFICIENTS FOR THE CALCULATION

OF THE LIGHT-INDUCED POLARIZATION:
AN EXAMPLE

Since the electric field of the radiation interacts only
with the orbital part of an electron wave function, spin
orientation requires the presence of spin-orbit coupling in
the solid. In this case up and down spins no longer have
the same orbital part, and a selective excitation may occur.
In the presence of spin-orbit interaction the symmetry of
an electron wave function itj-( r ) is described by an irredu-

k
cible representation of the double group of the wave vec-

tor k. f (r) consists of orbital and spin functions prop-
k

erly combined to possess the correct double-group symme-
try. The symmetry-adapted wave functions are built up
by means of the Clebsch-Gordan coefficients, given for
the points X and 8' and line Z in Tables I—III.

As an example of the application of these tables, consid-
er transitions from the initial states of symmetry Wi to
the final states of symmetry W4W6 (see Fig. 2). The sub-

script indicates the double-group representation, the su-

perscript the single-group representation from which the
orbital parts of the wave functions are derived. The two
states of Wi symmetry, for instance, are found in Table II
for the reduction of W'SD, &2+»2 being the spin- —,

' rep-

resentation of the elements of the space group. The repre-
sentations W4W6 are taken together because they are de-

generate by time-reversal symmetry.
The perturbation operator inducing direct optical tran-

sitions is ao p, where p=(fili)(B/Bx, andy, ayaz), and ao
is the polarization vector of the light. According to the
so-called dipole-selection rules, some transitions may be
strictly forbidden by symmetry. I.et I f, I', I"' be the ir-
reducible representations according to which the final
state, the radiation operator, and the initial state, respec-
tively, transform. , If I is not contained in the decompo-
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sition of I" 1"', then the transition I '~I f is not allowed.
Table IV gives the dipole-selection rules for transitions
occurring at symmetry points X and 8'and line Z. At the
top are the initial states, and on the left-hand side the ir-
reducible representations of the group of the wave vector
according to which p, p„, and p, transform. The decom-
position of I "8I" is contained in this table.

As shown elsewhere, circularly polarized light is neces-
sary for obtaining nonvanishing spin polarization. For the
transition %7~W4W6 we choose right-hand circularly-
polarized light propagating in the —x direction (see Fig.
l): ao p=p~ ip, —Sin. ce the transition is not forbidden
we can proceed further with the calculation of the spin
polarization. The quantities of interest are now the ma-
trix elements of the operator p —ip, between the various~2'2
states of symmetry W7 and 8'4W6. Consider, for in-

stance, (g4 ~ (p~ ip,—)
~
g2). As in Ref. 5, in the case of

one-dimensional representations the subscript to a wave
function denotes the irreducible representation. For mul-

1 2 1 2,1-i 2, -1+i 2
4 2 1 V2 2 1 -V2 2v2 2 V2 2~ 2 -V2

1 2 ~1 2 . -1+i 2 1-i 2
6 2 1 V2 2 1 -V2 2v2 2 V2222 2 -V2

7 1 1 1 1
1 v2 1 V2 /2 1 -V2

7 1 1 1 1
2 v'2 2 V2 R 2 "V2

FIG. 2. Level scheme for transitions 8'7~$'48'6 by right-
hand circularly-polarized light at the 8' point. Indicated by ar-
rows are the transitions with nonvanishing matrix element. The
notation used is explained in the text.

tidimensional representations, the irreducible representa-
tion is indicated by a superscript and the various basis
functions are denoted by subscripts. pz and p, belong to
W3 see Table IV. Since the spin functions U~ j3 and U

are orthonormal, it follows the equality

TABLE I. Clebsch-Gordan coefficients for the decomposi-
tion of the direct product between the single-group representa-
tions of point X and D1/2. Columns are labeled by the product
functions and the rows by the irreducible linear combinations.
As in Ref. 5, in the case of one-dimensional representations the
subscript to a wave function denotes the irreducible representa-
tion. For multidimensional representations, the subscript
denotes the various basis functions of an irreducible representa-
tion and the superscript denotes (where necessary) the irreduci-
ble representation. y= 2 (1+i).

X1g D1/2
=Xs Q 1U1/2 Q1V Q 2 V 1/2 Q2V

Coordinates
(0,0,0)
(2~/a)(4, 0, 4)
(2'/a)( 2, 2, 2 )

1 1 1

(2e/a )( 4, 4, 1)

(2m/a)( —,0, 1)
(2m/a )(0,0, 1)

FIG. 1. Brillouin zone for the fcc lattice. Symmetry points
and lines are as follows:
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TABI.E II. Clebsch-Gordan coefficients for the decomposi-
tion of the direct product between the single-group representa-
tions of point 8' and D1/2. Columns are labeled by the product
functions and the rows by the irreducible linear combinations.
As in Ref. 5, in the case of one-dimensional representations the
subscript to a wave function denotes the irreducible representa-
tion. For multidimensional representations, the subscript
denotes the various basis functions of an irreducible representa-
tion and the superscript denotes (where necessary) the irreduci-
ble representation.

Z1D1/2
Z2 +Z3 +Z4 +Z5 Q 1U1/2 Q 1U —1/2 Q2V1/2 Q2V —1/2

TABLE III. Clebsch-Gordan coefficients for the decomposi-
tion of thc dlrcct product between thc s1Qglc-group rcprcscnta-
tlon of hne Z and D1/2. Columns are labeled by the product
functions and the rows by the irreducible linear combinations.
As in Ref. 5, in the case of one-dimensional representations the
subscript to a wave function denotes the irreducible representa-
tion. 5=(1 i)—/2v 2

~1D1/2
= W'3+ 8'5+ W7 Q 1U1/2 Q1U Q 2U1/2

—1+i
zv2
1 —L

2v2

Q2 V —1/2

1 —E

zvz
—1+4
Zv2
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i5

—l5
i5
l5

—i5

1

2
1 —i
zv2
—1+i
2v2

1

vz

—1+i
zv2
1 —i
2v 2

1

vz

Wigner-Eckart theorem developed for space groups by
Kostcl. According to this thcorcIIl, such matrix clcIQCIlts
are all equal to the same constant c(Wi, W3, W2), depen-
dent only on the irreducible representations involved, mul-
tiplied by the complex conjugate of a Clebsch-Gordan
coefficient. For instance, the Clebsch-Gordan coefficient
appropriate for (u i Ip„ I

u,') is the factor accompanying
the product function u~3u 2 in the expansion of u, in terms
of the product functions oui, uyu2, u, ui,u, u2. From3 1 3 3 1 3 1

Table VIII we see that this factor is I/v 2. Tables V—XI
give all the Clebsch-Gordan coefficients necessary for the
calculation of matrix elements of direct optical transitions
at symmetry points X and 8' and line Z. For the specific
example studied we obtain, referring to Table VIII for
8'3 8'1,

(t(4I V„—iu. I 4z)

I (ui fpy I
u2)+i(ui

I
( —p, )

I up)] .
2

In order to calculate the resulting matrix elements on the
right-hand side of this equality we make use of the

M, :=(g I(p —'p, )
I P, )= (8'„W",, 8;) .

The remaining matrix elements vanish. Therefore only

TABLE IV. Allowed optical transitions at symmetry points at X and 8' and along line Z. On the left, the representations accord-
ing to which p„,p~,p, transform are indicated. At the top are the initial states. The decomposition of I I is given in the table.

i' r.X4 pg
~r.X5:px~py
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~r,8'2 .P„
r,8'B.Py, —P,
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TABLE V. Clebsch-Gordan coefficients for the decomposition of the direct product between the ra-
diation representation X4 and single- or double-group representations. Notation as in Tables I—III.

X4"(3)X)
=X) uzU~ QzV2

X4'X2
=X2 QzU)

0
—1

Qz V2

X4"X3
=X4 QzU& QzV2

0
—1

X4'(3)X4
=X3 QzU~ uzUp

0
—1

X4'(3)X5
=X5 uzU~

—1

0

u, U2

0
0
0

—1

QzU3

1

0
0
0

u, U4

electrons with wave function gz may be excited. After the
excitation they possess the final-state wave function

~7~6+~7-6A
(

I
~7~ f

'+
I M7-6

I

')'"
1 c(Wi, W3, W2)

I
C(Wg, W3, Wg)

f

P= gfivf I'Pf
f

QIMf If
As a consequence, the explicit functional dependence of
the electron wave functions —determining the Wigner-
Eckart constant —is not needed for the calculation of the
polarization, which therefore becomes a particularly use-
ful experimental quantity directly accessible to rigorous
group-theoretical arguments.

The intensity of the transition to this final state is given
by

I~f I

= IM7~ I
+ IM7-6

I
=21«Wx W3 W2)

I

The polarization of this final state is P= (f I
o

I f )
=(1,0,0), o being the polarization operator, which is iden-
tical to the Pauli matrices for spin- —, particles. As a re-

sult, electrons having made the transition 8'7 —+8'48'4
are 100% polarized along the x axis.

From this example it is evident that the VA'gner-Eckart

constant c( W~, W3, Wz) cancels out in the calculation of P.
This result applies generally, even when degenerate final
states are reached simultaneously. In this last case the
polarization is given by

r

III. METHOD GF CALCULATION
GF CLEBSCH-GORDAN COEFFICIENTS

FOR SPACE GROUPS

(z ~
~+ f ~)cG

(r~,r sr~)({R
I
r+ f I) (3.1)

The procedure for constructing Clebsch-Gordan coeffi-
cients requires an explicit knowledge of the matrix ele-
ments of the irreducible representations of 6-, the groupk'
of the wave vector k. 6 „ is the subgroup of the whole

space group consisting of all operations which leave k un-
changed. The elements of 6 are of the form

k

{8 I
r+ fz I, where the rotation 8 has the property that

Rk =k+K, where K is a reciprocal-lattice vector (which

may be zero), r is a primitive translation, and fs is a
nonprimitive translation associated with R (if any exists).

fs is always zero for symmorphic space groups: As a
consequence, 6- is a point group (apart from the primi-

tive translations). In nonsymmorphic space groups such
as Oi, (Ed3m), the space group of the diamond lattice,
some rotations are associated with nonprimitive transla-
tions, and the similarity with point groups breaks down.
Actually, the diamond lattice contains equivalent atoms in
the unit cell at (0,0,0) and (a/4)(1, 1,1), a being the lattice
constant. It can be thought of as consisting of two fcc lat-
tices displaced with respect to each other by the vector
(a/4)(1, 1,1). Therefore, those elements which are associat-
ed with the inversion operation at (a/8)(l, l, l)—just the
middle point between the two atoms in the unit cell—
contain the fractional translation fz ——(a/4)(1, 1,1).

Let I ~ be contained in the decomposition of the direct
product I r~. The application of the matrix'
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TABLE VI. Clebsch-Gordan coefficients for the decomposition of the direct product between the ra-
diation representation X5'and single- or double-group representations. Notation as in Tables I—III.

1a= 2'

X5"gX1
=X3+X4

3
1

g3
4
1

QxU Qy U1 Qy U2

—a
—a

X5"ISX2
=X3+X4 Qx U1 Qz V2 Qy V1 Qy U2

—a
—a

X5'X3
=X1+X2 Qx V1 Q~ V2 Qy U1 Qy V2

X5"X4
=X1+X2 Qx U1 QrU2 Qy V1 Qy U2

—a
—a

X5 tsjX5

=2X5

y5

Qx V1

vz
0

0

Q~ V2

l

v2
0

v2
0

QxU3

—l

vz

v2

Qx U4

—1

v2
0

Qy U1

—1

v2
0

l

v2

Qy U2

l

v2
0

Qy U3

0

1

vz

—l

v2

Qy V4

—1

v2
0

—l

v2

to a vector contained in the space spanned by I t3II ~

leads to a vector Pk I, which transforms according to the k
column of the irreducible representation I r. By varying
the index k in (3.1), the whole set of basis functions for I'r
is obtained.

In the case that the representation I ~ occurs n ~ l times
in the decomposition of I I ~, the various sets of basis
functions with symmetry I " are obtained by repeating the
above calculation n times, each time for a different l
value. The factors UPg~ in the expansion of gj I in terms
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TABl.E VII. Clebsch-Gordan coefficients fox the decomposition of the direct product between the
radiation representation F2' and singl- or double-group representations. Notation as in Tables I—III.

0
1

TABLE VIII. Clebsch-Gordan coefficients for the decoxnposition of the direct product between the
x'adiation representation S'3 and single- ox' double-group representations. Notation as in Tables I—III.
P= 1/V 2.

0

0
ip

Q zU2

0
ip
0

0

0

0

0p—
l

0

0

8'3 8 3
= 8'7-

V2—1+i
2

8'3g 8'7
=8 3+ 8'g+ S"5+7'

—1+i
2V2
1—l

2V2
1—l

2V2
—1+i
2V2

1+i
2V 2
1+i

—1—l

2V2
—1—l

2V2
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TABLE IX. Clebsch-Gordan coefficients for the decomposi-
tion of the direct product between the.radiation representation
Z~ and single- or double-group representations. Notation as in
Tables I—III.

TABLE XI. Clebsch-Gordan coefficients for the decomposi-
tion of the direct product between the radiation representation
Z4 and single- or double-group representations. Notation as in
Tables I—III.

Z)Z)
—Z]

Zi Zk
(k =2,3,4,5)

Z4Z1
—Zf Qy V2

Z4Zk
(k=2,3,4,5)

of the product functions f;P~ are the Clebsch-Gordan
coefficients: They are chosen so that all wave functions
are normalized:

PL i 2+ijf!Pi Pj& (gl I 4L', I'~ oyy"4k'~ll' ~

Tables I—III are concerned with the direct product be-
tween a single-group representation (I ) and D&~q (I ),
which decomposes into some double-group representations
(I"y). In the case of Tables V—XI, I' is an irreducible
representation of G- according to which the radiation

k

operator transforms, while I ~ and I y are some single- or
double-group representations. Except for D~~2 and the ra-
diation operator representations, all other irreducible rep-
resentations occurring in (3.1) have Bloch functions as

basis functions. This means that I'( IR
~
r+ fR I )

=e' " ''I (IR
~

fR J) and therefore in (3.1) the phase fac-

tors e' " ' ' associated with primitive translations cancel.
For this reason the summation in (3.1) may be limited to
those elements which have the form IR

~
fR ), i.e., the

primitive translations may be neglected for the purpose of
calculating Clebsch-Gordan coefficients and dipole-
selection rules.

As a consequence of the introduction of the spin, the
number of symmetry elements of the space group is dou-
bled: a new element, obtained by multiplication with the
rotation by 2n. , must be added to every element of the
space group, and the so-called double group is forined. A
rotation by 2~ in spin space is not the identity operation
E: While in single-group representation it is represented

by E, in double-group representations it is E. H—owever,
since double-group representations occur always twice in
(3.1), the new elements must not be taken into account for
calculating Clebsch-Gordan coefficients.

For constructing the matrix (3.1) it is useful to treat
separately (i) the points inside the Brillouin zone and (ii)
the points on the surface.

(i) For k inside the Brillouin zone" I ( IR
~

fR I)
i k.Y~=e "I ( tR

~
0I ). Again we have the convenient prop-

ik f~
erty that the factor e cancels, and the matrix repre-
sentations of IR

~
0 ) suffice to construct the matrix (3.1).

In this case the point-group Clebsch-Gordan coefficients
apply to space groups, too.

(ii) For points and lines on the surface of the Brillouin
zone the matrix representations are given by Slater' for
many space groups, including Ok. As apparent from the
comparison between the tables for the symmorphic space
group Ok (Fm 3m, fcc lattices) and Ok, the use of point-
group tables at the symmetry points L, U, and X, and the
lines Q and S is justified. For the remaining symmetry
points X and 8' and line Z the calculation must be made
explicitly. Since the double-group representations are not
supplied by Ref. 11, we must construct them in order to
give the required tables. X5 is constructed from Xi D»2,
with the matrices of Di~2 also taken from Ref. 11. The
one-dimensional representations at line Z and symmetry
point W are easily obtained from the character tables
given by Elliott. The two-dimensional representation 8'7
has been constructed using a standard method of calcula-
tion: From the characters of 8'z, the appropriate basis

g„gz in the space spanned by 8'iDi 2 is derived by
means of a projection-operator technique. 3 A suitable ma-
trix representation for 8'7 is then given by

TABLE X. Clebsch-Gordan coefficients for the decomposi-
tion of the direct product between the radiation representation
Z3 and single- or double-group representations. Notation as in
Tables I—III. ACKNOWLEDGMENTS
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