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Thermal expansion and Griineisen parameters for anisotropic solids
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An improved definition of Griineisen parameters P„ for anisotropic solids leads to a clearer rela-

tionship with the measured thermal expansivities a„. The corresponding definition of mode
Griineisen parameters P „' expresses the contribution of mode i to a„, and these are related to the cu-

bic coefficients in the potential-energy function. A phenomenological two-component model due to
Griineisen is then revived in a simplified form and is shown to yield insight into the temperature
dependence of a„. The data on tellurium are analyzed as an example.

I. INTRODUCTION

Griineisen parameters' have always been useful
phenomenological concepts for understanding thermal ex-
pansion. This paper discusses three issues concerning
their generalization and application ' to anisotropic
solids. (1) We show that a new and more natural defini-
tion of the bulk Griineisen parameters (to be denoted as j&
to distinguish them from the conventional y&) simplifies
the relation with the thermal expansivities u&, the index p
denoting different strain components. The new y„have
attractive thermodynamic interpretations parallel to those
of y&. (2) It is shown that a corresponding new definition
of mode Griineisen parameters j„' expresses the contribu-
tion of each normal mode i to ct&, whereas the convention-
ally defined y„' cannot be interpreted this way. The rela-
tionship with the lattice Hamiltonian is also established.
(3) Elastic anisotropy implies great differences between
various classes of lattice modes, and therefore suggests
that while y„' may be nearly constant for i within a certain
class (e.g. , a phonon branch), the difference between vari-
ous classes of modes cannot be ignored. This simple ob-
servation leads to a phenomenological two-component
model, first discussed by Griineisen himself. However,
that early work, obscured by the conventional definition
of y& and y& and by inappropriate identification of the
polarization of vibration with direction of expansion, has
been largely ignored in recent decades. We clarify this
model, which is seen to provide considerable insight into
the temperature dependence of ct&(T). The data on telluri-
um are analyzed as an example.

1 S
C, t)V

where S is the entropy.
For anisotropic materials, the strains qz (p= 1, . . . , 6)

define corresponding expansivities

(3)

the derivative being at constant stress components t
(v= 1, . . . , 6). Equation (2) suggests the following gen-
eralization of bulk Gruneisen parameters:
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where Cz is the heat capacity at constant strain and g' in-
dicates that other strain components are held fixed. yz
can also be written in terms of the Helmholtz free energy
Fas
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It follows thermodynamically that

(4b)

sa„= g s„„y„= g s„„y.,
V V

where C, (Cz) is the heat capacity at constant stress
(strain) and S&s (S&„) are the adiabatic (isothermal) com-
pliances

II. BULK GRUNEISEN PARAMETERS

A. Conventional definition

sSp„——
7Jp

tv s,

The bulk Griineisen parameter y(T) for isotropic ma-
terials' is related to the volume expansivity P by

Cp
gS~

where Bs is the adiabatic bulk modulus, and Cz(T) is the
heat capacity at constant pressure p. It follows thermo-
dynamically that

T ~PSp„——
BtV

in which other stress components t' are held fixed.
This definition of y&, almost universally used in the

literature, unfortunately mixes different strain com-
ponents through the off-diagonal elements of S„,. As a
consequence, the three principal y&'s do not average to the

y, associated with volume expansion, defined in analogy
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to (1) (Ref. 19):
yp =38 Q Spvyv . (12)

y„:P—V8 /C(

B. New definition

The Griineisen parameters y in the isotropic case could
just as well be written as

1 sBSy=
Ct

(9)

where p is the hydrostatic pressure. Equation (9) suggests
the alternative generalization

83 s ~S
(10a)

Parallel to (4b), yz can also be written as

38 BG
C, dT dt„'

where the Gibbs free energy

G =F—Vg t„gq,
P

(lob)

in which V is the volume of the crystal in the reference
state, is the natural thermodynamic potential when
stresses are taken as independent variables.

The factor of 3 accounts for the three nonzero stress
components t& ——t2 ——t3 ———p in the case of a hydrostatic
pressure p, and the adiabatic bulk modulus 8 may be
thought of as setting a natural scale for the incremental
stresses dt„Note that fo.r anisotropic materials, 8 is
still defined in terms of the volume change induced by a
hydrostatic pressure and is given by

38'= g S„'„
p, ,v=1

Although (2) and (9) are equivalent, (4) and (10) define dif-
ferent quantities, related by

& 3 (yi+y2+y3) .

Moreover, (5) is inconvenient. For example, y„are gen-
erally extracted from experimental values of a„by the in-
verse of (5):

V g V
y = g Cvpap= g Cvpap ~ (8)

C, „C~
where Cs T=(Ss T) ' are the adiabatic and isothermal
stiffness tensors, respectively. Many anisotropic systems
exhibit negative expansivity along one direction and posi-
tive expansivity along another (Refs. 3, 9, 10, 14, 17, and
20—26), so partial cancellations on the right-hand side of
(8) magnify experimental uncertainties. More important-
ly, the positive and negative contributions may be due to
diverse mechanisms, ' which are mixed and therefore
obscured by the use of y„. We now show that these diffi-
culties are automatically avoided by a different generaliza-
tion of Eq. (2).

1

y 3gs~P ' (13)

showing that the new y„are related to the expansivities
without mixing of components, with advantages that have
already been noted. In particular, the y, defined in terms
of volume expansion in (7) is related to y„by

yv= 3(yi+yZ+y3)

8 ~ BS
Cf p ] 8 tp

(14)

We may also note some thermodynamic relationships.
The conventional Gruneisen parameters can be expressed
as

8 lnT

87/p

dt's= —V (15)

where E is the internal energy. It therefore has the well-
known interpretation in terms of the thermal stress in-
duced in a clamped solid upon increase of energy density.
Analogously

38s 8 lnT
dt~

7

a713gsy P
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where H is the enthalpy. It can therefore be interpreted in
terms of the free expansion of a solid upon increase in
enthalpy density —a process operationally related to the
measurement of expansivity.

In fact, the new y„'s (apart from a factor of 3} are
essentially those considered by Brugger and Fritz, " who
in effect took (13) as the definition but did not show how

y„ is naturally related to dS/"dt~ or Brl„/BH. Moreover
they did not investigate (as we shall do in the next section)
the role of the microscopic counterparts y&.

As an example of the use of y&, consider tellurium,
for which a~~ (=a3) is negative, while az (=a~ ——a2) is
positive (Fig. 1). The former has an interesting minimum
around 30 K, which will be discussed in Sec. IV. We have
extracted y& and yz from the date (Fig. 2). In Sec. IV we
shall see that the significant variation of y„with tempera-
ture reflects the contribution of two different classes of
modes, whose relative importance changes with tempera-
ture. This tends to be obscured by the use of y&.

III. MODE GRUNEISEN PARAMETERS

Ultimately, the merit of any particular definition rests
upon its ability to shed light on the microscopic mecha-

Of course, in the isotropic case $'„=y„=y
In discussing thermal expansivity, one treats the strains

as functions of the independent variables, temperature,
and stresses [see Eq. (3)]. Equation (9) conforms to this
spirit while Eq. (2) does not; so (9) and its generalization
(10) are more natural than (2) and its generalization (4}.
This point of view is vindicated since we find from (5) and
(12) that
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FIG. l. (a) —o.
~~

and (b) n~ for tellurj. um up to 200 K. Data
from Refs. 23—25. The line represents the best fit using the
two-component model, with parameters given in Sec. IV.

FIG. 2. P~ and y„ for tellurium. Cz data are after Rc&. 32
for T ~20 K and Ref. 33 for T~20 K. (See also Refs. 34 and
35.) The expansivity data are after Ref. 25 for T&30 K and
Ref. 23 for T~ 30 K. (See also Ref. 24.) The bulk modulus is
extrapolated from Ref. 36 with the use of the method of Ref. 24.

»sms responsible for thermal expansion, and the crucial
question is as follows: How much does each normal mode
i contribute to a@. To this end it is necessary to consider
the mode Gruncisen parameters. '" The connection be-
tween IIlacroscopic and microscopic quantltlcs ls most im-
Blcdlatcly cstabllsllcd by llotlclIlg tllat (1llsofar as tllc
modes are weakly coupled), S (and hence BS/8 lnV) is the
sum of contributions from each mode i:

a boson mode of frequency ro; is given by

C'( T) = C (co; /T) =k (z;/sinhz; )

2kT '

(17) k being Boltzmann's constant. In analogy to (2) one has

so that from (2)

(18)
This is readily evaluated for a boson mode, and turns out
to be

which is independent of temperature. Equation (19) ls
often taken to be the deflnitlon of thc mode Grunelsen pa-
rameters in the isotropic case.

where y' is the Griineisen parameter for mode i The.
linear superposition in (17) and (18) is valid only to lowest
order in anharmonic effects, a limitation inevitable in all
discussions on ITlodc GrUnciscn parameters. To bc coQ-
sistcnt, we shall henceforth neglect differences such as
C» —Cv alld Sp —S~, both being 0 (cx~).

In (18), C'(T) is the heat capacity of mode I, which «r
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8 lncoi
(20)

A. Conventional generalization

The obvious generalization of (19) to anisotropic ma-
terials would seem to be

tions have been undertaken for various specific
models' ' ' ' '; we now present the general result.

Let Q; be the normal phonon coordinates, with conju-
gate momenta I';. For calculating the thermal expansivi-
ties, one needs only keep up to cubic terms in Q;, so the
most general Hamiltonian is

which 1s obv1ously felated to pp by

y„(T)Cv(T)= gy„'C'(T) . (21)

a = g —,
' f,'(~,'+ g,') —g g,,„g,g, g, , {28)

1 fj,k

where co, is the frequency for small oscillations about
Q; =0 and g;Jk is by definition symmetric. From (28), one
has as Hamiltonian equations in the classical case or
Heisenberg equations of motion for operators

Parallel to the discussion of the bulk Griineisen parame-
ters, and neglecting higher-order anharmonic effects, (19)
could be written as

dI'J-

dt
H

BQJ
~JQJ +3 g gJlk Qf Qk

i, k

8 lntoigS
Upon taking a time or ensemble average, denoted by
( ),„,one has

(23)

which suggests the following alternative generalization:

t) lnh)I
y„' =—38

P Tt'

3
&g, &..=,Qg;;, &g,-g, )..

j i, k

To lowest ofdef 1n the anhafmon1clty gJIk,

(30)

Of course, in analogy to (18) and (21),

y„(T)CI(T)= g y„'C'(T) . where U'(T) is the energy in mode i at temperature T.
Hence

Moreover, the new and conventional Gruneisen parame-
ters are related by (fIRI; )(fuu~ )

P„'=38 QSq, y'„.

It follows immediately from the foregoing that

(25)

{26)

Once (QJ ),„ is known, the mean displacement of each
atom is uniquely determined; then the strains I)& are fixed
by a purely kinetic relation wjtth the atomic displacements.
In general, the relation between Ii„and ( QJ ),„is linear:

~„=gu(g, ),„. (33)

The interpretation of this equation sheds light on the im-
portance of y& and y&. y'& is a measure of how much a
unit amount of excitation in mode i contributes to the
strain component Ii&, while C'( T) describes how the actual
amount of excitation varies with temperature, so their
product is directly related to a„=BI)„/BT. An analogous
but more complicated expression can be written in terms
of y&, but the above interpretation would be lost.

Equation (26) can also be written more explicitly as

So we have

(fiai; )(fiCO )
(34)

whe«C'(T)=dU'/dT. Note that de„/dT in (34) is at
zero stress, since the Hamiltonian (28) includes no external
forces. Comparing (34) with (26) allows us to identify

I) lncoi
a„(T)=——g C'(T),V,. dt„

(27)
9~@~~ i/J gj

P
J {f,')(I J') P

whereas y„' takes the more complicated form
which emphasizes that u„ is related to the stress depen-
dence of mode frequencies, the latter being experimentally
measurable. Moreover, expansivity along one principal
axis (a&) is related only to response to stress on the same
axis (tp).

C. Relation to Hamiltonian

(fico, )(ficoJ )
(36)

Equation (35) has a ready interpretation. ' The ith
mode ("cause") has a mean-square excitation

To fully understand the microscopic origin of expan-
slvlty 1n any particular system, one IDust also expfess 7p
oI' y~ Ill teITIls of 'tile la'ttlce HRIlllltoMR11. Sllcll calclllR-

This drives the jth mode ("effect" ) via the gIJkgigJgk
term, with a coupling g;;J. The resultant nonzero (QJ ),„
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Recall that in Eq. (26) the index i refers to various
modes which cause the expansivity. In many cases, one
may approximate y„' by its average value over i, denoted
by( ):

(y„')Cy(T) .
3BsV

(37)

i24)
y

(12 )

lF

(21) = Yi

FIG. 3. Logical relation among variables.

contributes to the strain g„with a coefficient A~&lficoJ.

Thus as mentioned earlier, y„' expresses the strength with
which the ith mode couples to the thermal expansivity in
the p direction; there is no such interpretation for y„'.

In one point of view, the mode Gruneisen parameters
may be regarded as stepping stones in the process of cal-
culating expansivities from the Hamiltonian, as illustrated
in Fig. 3. %'hether we proceed by the top line or the bot-
tom line in Fig. 3, the result for a& is, of course, the same.
However, the bottom line, corresponding to the use of
conventional Griineisen parameters, involves a gratuitous
mixing of the p, v indices by C„„in (36), which is undone
in the end by the inverse matrix S„,in (5). The ultimate
result (34) contains no such mixing at all, and the point of
these two sections is to urge recognition of this simple fact
by adopting the new Gruneisen parameters P„' and yz.

It will also be noticed that B does not appear in the
end result (34). This amplifies our earlier remark that B
serves only to provide a convenient scale for the incremen-
tal stresses dt„, thus making the Gruneisen parameters di-
mensionless. First of all, any other scale could do just as
well, hence the absolute magnitude of Gruneisen parame-
ters is of little intrinsic physical significance. Second, it
may be convenient to use not the actual value of B (T),
but the value of B at a fixed reference temperature, say,
0 K. Then from (35), the mode Gruneisen parameters
would be independent of temperature. After all, the
point of the mode analysis is to express the T dependence
of y„(T) in terms of the i dependence of y„' (or equivalent-
ly the dependence on mode frequency co;), in much the
same way as one expresses the heat capacity C(T) in
terms of the density of states p(co). For such an analysis
to be profitable, it is necessary for the mode parameters
[y'& in the case of expansivity or p(co) in the case of heat
capacity] to be independent of temperature, with all T
dependence attributed to the occupation of these modes
through the Bose-Einstein factor C (co; /T) For this.
reason, we have used B (0) for calculating the Gruneisen
parameters y& and y'&.

IV. Two-component model

aq( T)= [y„C"( T) + y„C ( T)],3BsV

where

(38)

C"(T)= g C'(T),
iGA

etc., and we have for simplicity assumed only two classes
of modes; generalization is, of course, trivial.

The behavior of C (T) and C (T) depends on the densi-
ty of states within each class, which could be represented
by three-dimensional Debye distributions, one-dimensional
distributions in the manner of Tarasov, Einstein modes,
etc. However, the spirit of the model is to regard the de-
tails within each class of modes as secondary, so we first
give a general discussion without reference to these details.
The two classes of modes may be described by characteris-
tic frequencies co&,cori, with corresponding temperatures
T„,Tii', without loss of generality let Tq & Tii. Now sup-
pose y

~ ~

&0 and y
~ ~

& 0; then the qualitative behavior of a
~ ~

would be as shown in Fig. 4. Thus the minimum in a~~
(which is quite common in chain-structure axial solids) is
explained in terms of the interplay between the negative
contribution of the softer modes (A) and the positive con-
tribution of the harder modes (B), with the latter being ex-
cited only at higher temperatures. Generally aj for
chain-structure axial solids is positive and has no minima
or maxima; the interpretation would be that only one of
the two classes of modes makes a significant contribution.
The T- dependence would indicate that only the soft modes
contribute to aj. The value of the two-component model
lies precisely in these insights, and the questions that they
prompt: e.g., what are the natures of the soft and hard
modes'? Are they related to interchain and intrachain vi-
brations?

To give quantitative substance to the above remarks, we
have used the two-component model (38) to fit the data on
tellurium. For simplicity, we have assumed the

So (y&) is recognized as nothing more than the bulk
Griineisen parameter y„, which is therefore, to this ap-
proximation, temperature independent. However, elastic
anisotropy necessarily means a substantial difference be
tween phonon branches. In various "one-dimensional"
solids (e.g., polymer crystals, tellurium, and selenium),
spectroscopic and heat-capacity data suggest that broadly
speaking there are two classes of modes, one of which in-
volves intrachain vibrations, while the other does not.
The Tarasov model for the heat capacity attempts to
take account of these differences. Similarly large differ-
ences are found in "two-dimensional" solids such as gra-
phite. Not only are the frequency spectra widely
disparate, but the Gruneisen parameters for the different
classes may have opposite signs, the negative contributions
often arising from the so-called tensional effect. ' '

To take account of the discrete difference between
branches, divide all the lattice modes into various classes
A, B, . . . (e.g., stretching, bending, optical, etc.), and as-

sume that y'„' is constant within each class, e.g.,

y& y& for——all i CA .

Then (37) becomes
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FIG. 4. Schematic diagram showing how a minimum in a~~

(solid line) can arise from the interplay of two components (bro-

ken line) with opposite signs and different characteristic tem-

peratures.

Tg ——97, Tg ——163,

(nw/n)y[[ = —1.51, (nz/n)y~~ =1.42,

(ng/n)y~ =1.57, (n~/n) j~ =0,
(41)

and we have used the fact that the total number of modes
n =nz+nz is 3 per atomic volume: n V/= 98X1 0
cm . The fit is shown in Fig. 1. Data above 200 K has
not been included, since the effect of phonon dispersion
and of possible Einstein modes would certainly invalidate
the quantitative results of the model at high temperatures.
The excellent agreement with data should not be taken to
mean that the modes necessarily follow the Debye distri-
bution; rather the success demonstrates that the precise

modes in each class follow the Debye distribution, so that

C"(T)=n&C(T~/T), C (T)=n~C(TB/T),

where nz, nz are the number of modes in each class and
2g

C(g) =24k/ I dz z (sinhz)

is the Debye specific heat function. The values of the pa-
rameters chosen were (Tq and Tz in units of K) as fol-
lows

distribution within each class may be modeled in the most
naive way as long as the difference between the two
classes has been taken into account.

The expansivities alone do not permit separation of the
individual factors nzln, yz, etc. If one takes fitting of
the heat capacity at face value, the soft modes A seem
to comprise 40%%uo of the total: n~/n-0. 4, nz/n-0. 6.
Using these values, one finds y

~ ~

——3.8, y z —3.9,
P ))

-2.4, )' j. 0——
The fitted values should not be taken too literally;

nevertheless, T„and Tz are in fair agreement with values
obtained in similar two-component analyses of heat capa-
city. It may in fact be argued that the expansivities
a„(T) provide a better way of separating the two com-
ponents than the corresponding analysis of heat capacity.
Firstly, there are two (and in some systems three) expan-
sivities a~~, az to be simultaneously fitted. Much more im-
portantly, the heat capacity is sum of two Debye terms,
which would be difficult to resolve if Tz and Tz are not
too far apart. However, as in the example of tellurium,
the two components contribute to a~~ with opposite signs,
and are readily resolved.

Tellurium is by no means an isolated case. The expan-
sivities of selenium' can be explained by the same ideas.
Polymer crystals such as polyethylene can also be accom-
modated, with one simplification. In this case, the hard
modes, involving vibrations along the chain, are for all
purposes not excited ' [i.e., C (T) &&C"(T)] so most
of the contribution comes from the soft modes only. Thus
a~~(T) is negative and monotonic in T; moreover, o,

~~
and

aq both depend only on C(T~/T) and so have a similar
temperature dependence (though with opposite signs). '

In Sec. II it was argued that the significant temperature
variation of y& (e.g. , for tellurium) reveals important as-
pects of the underlying physics. We can now clarify this
remark in the context of the two-component model. It is
easy to see from (24) that

C"(T) a C (T) a
~P C )P+ C 1P '

Thus variation of j„(T)refiects two important properties:
(i) the difference between y„and y&', and (ii) the difference
between Tz and T~, causing C /Cz and C /Cz to
change with temperature. The conventional y„, being
linear combinations of y&, masks these telling features.

Historically, the two-component model seems to have
been first discussed by Griineisen himself. There are,
however, two differences with our present treatment.
First of all, the conventional parameters y„' were used, re-
sulting in formulas which were less meaningful. Second,
it should be emphasized that mode Griineisen parameters

y& (or y&) carry two indices: the i mode (or A modes)
cause the expansion along direction p. In the earlier
works, ' ' these two indices were identified, so that (with
two components) there were only two Griineisen parame-
ters (labeled as (y„), (y, )) (Refs. 7 and 8) rather than
oul our ('P ii, P ii, 'P i,f'i). his ls a conceptua e rol, cor-
responding to the ignoring of the tensional effect, ' '

which couples transverse vibrations to longitudinal
thermal expansion. Probably for these reasons, these early
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works have been largely ignored in recent decades. It is
hoped that the present paper has clarified the model and
demonstrated its utility in understanding experimental
data.

Logically the two-component model has no relation to
anisotropy, ' however, strong elastic anisotropy brings out
the advantage of segregating the two components. The
idea is not limited to lattice modes; similar considerations
have been used to separate the lattice and electronic con-
tributions to thermal expansivity. ' '

V. CONCLUSION

At the purely phenomenological level, Gruneisen pa-
rameters y„ for the bulk sample are useful for summariz-
ing data, and in addition have definite thermodynamic
significance in terms of the entropy. The new? &, while
retaining the connection with entropy, yields a more direct
relationship with the thermal expansivities, and average to
the volumetric y„.

At a microscopic level, thermal expansion is to be un-
derstood as follows: Various modes i are thermally excit-
ed to mean-square values ( Q; ),„; these drive other modes
into having mean displacements (Ql ),„, which then pro-
j~t onto the strains np. The central question is therefore:
How much does a unit amount of excitation in mode i af-
fect g„? The new mode Griineisen parameters P„' are ex-
actly the answer to this question, whereas y„' are not.

The discussion on both the bulk and mode Gruneisen
parameters in Secs. II and III is general and rigorous;
however, these parameters may not be most convenient for
data ana1ysis, y& being overly simple and y& being possi-
bly too detailed. The two-component model is a judicious
compromise. By focusing on the difference between vari-
ous classes of lattice modes, the model provides qualita-
tive understanding of the T dependence of the thermal ex-
pansivities.

It must finally be emphasized that the new definitions
of bulk and mode Gruneisen parameters are not meant to
supplant the conventional ones, but to complement them.
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