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The strain-amplitude- and frequency-dependent internal friction due to the movements of disloca-
tion of uniform point-defect dragging and randomly distributed weak obstacles is investigated
analytically as well as numerically using the string model. By making use of the computer simula-
tions in regard to the catastrophic breakaway distribution function combined with the uniform
point-defect dragging model, the internal friction coefficient is obtained as a function of the stress
amplitude, the homologous temperature, the driving frequency, and the mean line densities of the
dragging point defects and the weak pinning obstacles, respectively. It has been observed by com-
puter experiments that the frequency dependence is solely associated with the point-defect dragging,
which also shows strong temperature dependence. Similarly, there is a strong maximum in the
decrement—versus—stress-amplitude plot especially for the preferentially oriented single crystal at
very low frequencies. On the other hand, the decrement—versus—homologous-temperature plot re-
veals the existence of two distinct peaks; the dragging and the depinning peaks, respectively, under
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the appropriate conditions.

I. INTRODUCTION

The effect of large stress amplitudes on the decrement
associated with the dislocation damping phenomena has
been discussed with partial success in models based upon
the mechanical depinning of dislocations from weak
pinning-point obstacles."? In the original theory of
Granato and Liicke’ (GL) in regard to the hysteretic
damping, not only the effect of dragging point defects is
neglected but also some analytical approximations have
been introduced that prevent the model from predicting
properly even for the moderate stress amplitudes. Howev-
er, contrary to the common arguments in the literature,’®
one could easily accommodate the effect of temperature
into the model, as we will demonstrate later in this paper
by adopting temperature-dependent pinning forces.

The most notable shortcoming of the classical string
treatment? is the omission of the frequency-dependent part
of the logarithmic decrement which generates very critical
situations at very small and large stress-amplitude regions.
Also the statistical loop-length distribution function em-
ployed in the GL theory yields an underestimation of the
decrement (hysteretic) at the stress amplitudes well below
the peak value of the depinning process. At higher stress
values the situation worsens according to our extensive
computer experiments. In order to obtain a self-consistent
theory of the depinning process which is valid for the
whole range of stress amplitudes, the statistical distribu-
tion function should be kept as exact as possible and it
should be utilized precisely in numerical computations.

The thermally activated breakaway of dislocations has
been extensively studied by Teutonico, Granato, and
Liicke.> Similarly, Koiwa and Hasiguti,* Peguin and Birn-
baum,’ and Liicke, Granato, and Teutonico® tried to find
approximate solutions without introducing the dragging
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defects, as proposed by Simpson and Sosin,”® explicitly

into the string model in order to study the influence of
temperature, applied stress amplitude, dislocation length,
or the number of pinning obstacles.” Recently Schwarz
performed extensive computer simulation studies'® using
the string model, which is strictly valid for metals of low
Peierls barriers,'""!2 by random distribution of weak obsta-
cles including inertial and viscous forces. However, the
effect of point-defect dragging and consequently the
dependence of the decrement on the frequency is com-
pletely neglected or at least underestimated.

In this paper we will give a theory of the dislocation
damping in the field of uniform point-defect dragging
plus the depinning process for a complete range of stress
amplitudes and the excitation frequencies up to the mega-
cycle region using the well-defined statistical distribution
function. However, this mathematically rigorous formula-
tion can only be explored with a sufficient accuracy and in
detail by computer experiments. Finally, we will also
present an analytical treatment which is very well suited
for physical arguments and interpretations for small as
well as medium stress-amplitude regimes still including
the effect of drag and the excitation frequency.

II. FORMAL THEORY
OF STRAIN-AMPLITUDE—DEPENDENT
DISLOCATION DAMPING

In this section we shall first give a formal treatment of
the nonlinear problem of strain-amplitude—dependent
damping based on the assumption that the dynamical
character of the breakaway process can be represented by
a stress-dependent multivalued distribution function
N(l,7) of the dislocation loop length / between the
pinning-point obstacles of finite strength. N([,7) is a
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double-valued function of the loop length and it depends
upon whether one deals with the increasing or decreasing
branch of the applied stress cycle, N(l,7) and N,(/,7),
respectively. The dislocation strain €,(/) produced by the
loop of length [ in a cube of unit dimensions is given by

l
€q(l,t)=b fo E(x,dx , (1

where b is the Burgers vector and &£(x,?) is the displace-
ment of the dislocation segment from its rest state. Thus
the total dislocation strain for a given instantaneous value
of the resolved shear stress 7 can be written as

&an= [ " e al,rIN;(7)dl . @

In the above relationship the subscripts j=1,2 indicate the
double-valued character of the strain as well as the quasi-
dynamic distribution function of the loop lengths. One
should also mention the following trivial, but important,
normalization condition:

A= [Nl 3)

where A is the dislocation density. With the use of the
real-number representation for the stress and the strain
functions, the energy dissipation per cycle per unit volume
of the sample may be written as

AW = § r(t)dey()=— P ey(dr(r) )

which for a simple harmonic excitation 7=r7¢sin(wt) yields
T/4
AW =—2 [ [ e e

T/2
+ L1 Gz,d(t)a,'r(t)dt] (5)

or

(6)

T T
AW=—2 [ [ eratndr— [ ey qridr

Expression (6) is very useful if one deals with the case
which is called the strain-amplitude—dependent disloca-
tion damping, but the frequency-independent dislocation
damping, for which the dislocation strain €;(7), as we will
show later, is directly proportional with the instantaneous
value of 7. Otherwise, the parametric relationship (5) will
be very convenient in actual calculations.

The logarithmic decrement can be obtained by the fol-
lowing expression:

S=AW/2W , (7

where W is the total vibrational energy which is given by
03/2E, oy is the amplitude of the applied uniaxial stress,
and E (0,¢) is the Young’s modulus of the single crystal; 6
and ¢ are the angles which relate applied stress to resolved
shear stress in the slip plane and in the slip direction,
respectively. Using the well-known Schmid’s transforma-
tion 7=0R (6,¢), one can write

8(oo)=E(6,6)R¥6,$)[AW (1) /73] , (8)

where R (0,¢) is the Schmid’s factor which is given by
R (0,¢)=cosBsinbcosd. Equation (8) clearly indicates that
even in the case of an elastically isotropic single-crystal
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specimen the decrement still strongly depends upon the
orientation of the applied uniaxial stress system with
respect to the active dislocation slip system. Similarly, the
decrement in terms of the amplitude of the applied uniaxi-
al stress o will be represented by the following expression:

8(og)=E(6,)AW(|R(6,8)]|00) /05, 9)

and in the case of the polycrystalline sample with random
texture the average value of the decrement can be given by

(8(00))= [ E(6,)AW(|R(6,8)|00)sin0d0dg /403 .
(10)

The relationship (10) can be also given in the following
format which clearly emphasizes the individual character
of the decrement associated with each active slip system in
the crystalline materials:

(8(op))= 3, —G‘—‘ﬁ‘RZ(e,',d;,- )8(70)
; i

b
i T9=00| R(6;,¢;) |

(11)
where

(o) =AWi(10) /G 7 . (12)

In the above expressions G; denotes the shear modulus for
the ith slip system, and for an isotropic single crystal one
has E =2G (1+v), where v is the Poisson’s ratio.

III. STRAIN-AMPLITUDE—DEPENDENT
DISLOCATION DAMPING IN THE PRESENCE
OF POINT-DEFECT DRAGGING

In this section, as far as the main statistical aspect of
the distribution function of N ;(1,7) is concerned, we will
make use of the Koehler-Granato-Liicke (KGL) cata-
strophic breakaway model which was originally proposed
by Koehler! and highly refined by Granato and Liicke.?
However, in the general formulation of the problem, espe-
cially for numerical solutions, we will keep the exact form
of the probability, M, that a catastrophe has occurred in
the network length as

M =[1—(g +1)exp(—q)]"

rather than the one used by the above authors (GL) as a
good approximation for the early stages of the breakaway
process:

(13)

M=n(q+1)exp(—gq), (14)

where g =L /L., L is the critical breakaway length and L,
is the mean length between the weak pinning points. Here
n is the number of weak pinning points in the network
length.

According to the KGL model there are two distinct
types of pinning points situated along the dislocation line:
the network pinning points which have infinite breakaway
strength and are uniformly distributed along the disloca-
tion with an average length Ly, and pinning points that
are randomly arranged along the dislocation segment and
which exhibit finite breakaway strength or the maximum
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pinning force denoted by f,,. When the force exerted by
the dislocation line on this pinning point is larger than the
breakaway force f,,, the so-called catastrophic breakaway
process starts and continues until the whole dislocation
segment between two strongly pinned network points has
broken away completely. The distribution function ob-
tained by Granato and Liicke? using Eq. (14) may be sum-
marized, which will be also utilized in this paper later for
the analytical solution of certain special problems, as fol-
lows:

(A/LH[1—n (g +1)exp(—gq)lexp(—I/L,) ,
O<l<L <Ly (15)
(A/Ly)[n(qg+1exp(—q)]8(I —Ly) ,

Nl(l’q)=

L<«l<w (16)

and

Ny(l,g)=N,(l,q0), O<l < . (17)

In addition, one must impose the following condition: If
q>7: y—q, where y=Ly /L.. This means that the upper
limit for the critical breakaway length L is Ly, the dislo-
cation segment length. Similarly, the average value of n is
givenbyn =(Ly/L,)—1orn=y—1.

The critical breakaway length may be given by
]
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L ~f,, /7, where the exact nature of the proportionality
constant depends upon the specific model calculations.
According to our analysis ¢ =TI, /7, where I', is given by
7 f,n/4aL, as a first-order approximation.'>'* Similarly,
qo= Fc / T0-

The mean line density of the weak obstacles is presented
by N4 =(n+1)/Ly or N% =y/Ly, if one uses the con-
ventional definition of N% =1/L,. Therefore, for a given
dislocation network length Ly, the line density of the
weak pinning-point defects can be uniquely represented by
7. In computer experiments it is better to normalize the
stress amplitude with respect to a quantity defined as
[y =7°f,, /4aLy which is independent from the line den-
sity of the weak obstacles, and hence g =y(I'y /7). Physi-
cally, 'y /2 corresponds to the minimum-resolved shear
stress level necessary for the breakaway of those loops
which have lengths equal to the network length L.

The exact distribution function can be obtained using
Eq. (13) rather than Eq. (14), which is valid for the whole
range of stress amplitude and also satisfies the conserva-
tion of the dislocation density as described by Eq. (3). Us-
ing the statistical arguments along the line of the cata-
strophic breakaway process as advocated by GL, one ob-
tains the following distribution function which has a wid-
er range of validity, but still assuming that the loop
lengths are statistically independent?:

(A/LH[1—(g +1exp(—q)]"~'exp(—I/L,), 0<I<L <Ly

Nl,g <y)=

(A/Ly){1—[1—(1+glexp(—q)]"}8(I —Ly), L <l <

and

Ni(l,g>y)=(A/LYO(Ly —Dexp(—1/L)+(A/Ly)(1+7y)e~"8(I —Ly) ,

where ©O(z) is the Heaviside function defined by
O(z)={0,2<0}; {1,z>0}. Furthermore, we have N,(/,q)
=N,(l,q0) when 0<!/ < .

The relationship denoted by Eq. (19) is very interesting
and it clearly states the existence of a threshold stress level
below which the loop distribution function is completely
frozen-in. This threshold stress level as stated previously
corresponds to the stress which is just strong enough to
break away a dislocation loop of length denoted by Ly
which results in g4, =% and 74, =T'y. As one might ex-
pect from the model, the threshold stress level gives the
upper bond for the stress-independent region of disloca-
tion damping as also proved to be the true conclusion by
our extensive computer evaluations. This threshold stress
level also gives the upper limit of the stress beyond which
the linearity between the strain and the stress starts to
disappear. The important feature of the distribution func-
tion presented by the present authors is that for large
values of the stress, g—0, Eq. (18) predicts properly that
all the loops will be concentrated at / =L (the 6 function)
which cannot be deduced from the relationships Egs. (15)
and (16) introduced by Granato and Liicke.> However, for
small stresses, Eq. (18) yields the same expressions given
by Eqgs. (15) and (16) from the binomial expansion keeping
the first significant term. Finally, we want to point out
that the main reason for the occurrence of the sharp

(18)

(19)

[

threshold stress level is the fact that the network lengths
are assumed to be uniform in value denoted by Ly (the §
distribution). To be more realistic, the model should be
further modified in the mathematical treatment to take
account of the fact that a distribution of network lengths
do occur in nature. For an arbitrary network distribution
function P(Ly) the total decrement can be calculated
from the following formula:

8r= [ " [8(Ly)/AyILyP(Ly)dLy , 20)

for a random distribution of network loop lengths one
furthermore has

P(Ly)=[Ar/{Ly)*] 'exp(—Ly/{Ly)),

where 8(Ly) is the decrement obtained assuming that the
network points are uniformly arranged along the disloca-
tion line. Ay is the dislocation density associated with the
network length Ly. Similarly, (Ly ) is the average net-
work length and Ay denotes the total dislocation density.
In the present work we shall deal with the calculation of
S(Ly) only.
A. Dislocation oscillations under the effect
of uniform point-defect drag

In addition to the immobile but finite breakaway
strength exhibited by point defects (obstacles), we will also

21)
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consider those point defects which are highly mobile due
to the thermal fluctuations, and exert the viscous drag: ef-
fect on the moving dislocation segment under the action
of the applied stress system. According to the breakaway
statistics adopted in the present work, the pinning points
due to the immobile impurities are rigid boundary condi-
tions below the certain critical-resolve shear stress value
(which can be calculated for a given maximum pinning
force f,, in terms of the adjoining loop lengths). There-
fore, the unified dislocation damping theory associated
with the point-defect dragging developed by Ogurtani'>
is strictly valid in the calculation of the displacement of
the dislocation line segment up to the critical-resolve stress
level beyond which the catastrophic breakaway or depin-
ning process starts and continues until the whole disloca-
tion segment in question between two network points (or
strong obstacles) has broken away. Hence we can write'?
the following expression:

broexpliot)a?
C

_cos[(x —1/2)/a]
cos(l/2a)

£4(L,t)=Im

b

(22)
where / < L, and similarly for the dislocation strain
€4(L,t)=Im{ —27,C ~expliot)a’h?

(23a)
]

x[1/2a—tan(l/2a)]} ,

iot

(2m +1)72

2m +1)2—Q} Qp
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where a’=iC/w(iw+d)A and d =B/A. In the above ex-
act expressions A is the effective mass per unit length of
the dislocation segment, C is the line tension which is as-
sumed to be constant along the dislocation line, and B is
the effective damping constant associated with uniform
drag which can be given by the following relationship'>:

B=By+B;(N,+1)/1, (23b)

where B, is the viscous damping constant or coefficient
(background damping) in the absence of the mobile defects
and By is the damping constant for each of the N, drag-
ging point defects along the dislocation loop of length
equal to I. In the case of uniform (continuum-limit) distri-
bution of the mobile defects we can have the following re-
placements: By;=kT /D, (Einstein-Nernst relationship)
and (N, +1)/I =n2(T), where D, is the diffusivity of the
mobile dragging defects denoted by a in the immediate vi-
cinity of the dislocation line and nZ is the mean-linear
density of these defects at the dislocation segment. The
temperature dependence of nf( T) is very critical in char-
acter and shows a Fermi-Dirac type (or the analog of the
Langmuir-adsorption isotherm) functional behavior with
low-temperature site saturation (see the Appendix).

In the analytical manipulations of the frequency depen-
dence of the problem, the following Fourier sine series ex-
pansion of the closed form [Egs. (31), (32), and (35) in Ref.
13 should be divided by 7] given by Eq. (23) in the inter-
val of [0,/] is very convenient,'

(24)

807’ 0€ &
G m=0

where 8,=8Gb%/7°C, Q, =0/0Y, and Qp=w/0%. ©3 is
the fundamental resonance frequency of the dislocation
segment which is given by 0§ =(7/I)(C/A4)'/2. Similarly,
wp is the fundamental resonance frequency of a vibrating
dislocation segment without inertia in the viscous media,
and it is given by 0% =(7/1)*C /B.

The first summation in Eq. (24) indicates the existence
of the linear relationship (in phase) between the plastic
strain of a dislocation segment and the instantaneous value
of the applied resolved shear stress. In the calculation of
the hysteretic dislocation damping which shows only the
stress amplitude dependence but not the frequency, the
first term in the first sum in Eq. (24) has been used by
Granato and Liicke? assuming further that Q, and Qp are
identically equal to zero.

The second sum in the above expression (24) which lags
90° behind the excitation corresponds to the energy dissi-
pation which shows also strong frequency dependence.
Our extensive computer model experiments have indicated
that if one works in the driving frequency range which is
less than, e.g., 0.010% (for an exponential loop distribu-
tion), where @} =(m/Ly)(C/A)'/? which is almost in the
megacycle range, the inertial term 4 can be completely
neglected in Eq. (24).

Hence up to and including the megacycle range the fol-
lowing expression can be safely used in the representation

€4(L,t)=Im ’

—i
[(2m +1?—QLP+Q% [2m+172—Q21P+ 03

’

of the strain associated with the dislocation line segment
of length I:

807' ol 3
TG

Qgcos(wt)
1+03

sin(wt)
1+ 03

€q(l,t)= (25)

The relationship (25) can also be written in terms of the
instantaneous value of the shear stress which shows expli-
citly two distinct branches whether 7 is increasing or de-
creasing, minus or positive sign in front of the seccnd
term, respectively, as follows:

Sl [~ +ng<fé—72)1/2
G | 1+Q3 T 140}

e[,d(l,T)

62"1(],7')

| oo

where Q3 is a function of the dislocation loop length ac-
cording to our previous definition, and it may be rewritten
in the following normalized fashion:

Qp=Qp (/L)
and (27)
wBL}
Qpn= 72—(;] ,

to emphasize the loop-length dependence of Q explicitly.
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B. Amplitude and the frequency-dependent decrement Now and then we will investigate the above-mentioned
in general format in-phase and out-phase contributions which will be denot-

. . . . . ed by the superscript I and II, respectively, as individual
In this section we will give the analytical expression for and separate terms. From Egs. (2), (18), (19), and (26) the
the logarithmic decrement associated with the hysteretic following can be immediately obtained:

damping which is presented simultaneously with the
mobile defect dragging process acting for the whole fre-

quency range of main experimental interest (up to and in- 61 dT)=—= 0 — N(lg)dl, (28)
cluding the megacycle region), and covering the rather G +Qp
wide stress amplitude span which is somewhat below the
operation level of the F-R source. hence for g <y or 7>y
_
8o | A Pe e A Ly
€LalT)=— 1—(g+1e~9"~! + —{1-[1-(1+@e N} —F— |, (29)
he G ch[ 9 ] fo 14Q5 y(I/L)y~* Ly 1=t 7 I 1403 v
and wheng>yor7<Ty
8o 1Be Eeqy L
I 0 e _ N
€,4(T)=—+ +——(1+ Je 7’ ) (30)
LET=0G L? fo 14+03 y(I/L, y~* 4 +Q5

where L /L. =T, /T=q, n =%,, and y=Ly/L.. Similarly, one has also the following expression for the out phase (90°

lagging):

8o(mo—N"? o QRN (l,g)dl
7G 0 1+05

erg(r)=— ) (31)

which results for ¢ <y or 7> Ty,

8o(Ta—12)172
G

—I/L,
(A/L,:z)[1~(q+1)e_q]n_1fL VZISQB,N(I/Lc)Ze dl

€halr)=— O 14+Qp N(I/L Yy

+(A/LN){I—[I——(1+q)e‘“]"}—L—Iﬁ)—%N— , (32)
14+ Q3§
and when g >y orr<Ty,
-/, 3
ella(r)= —99(7‘2’——1%2& (ALY [ OL” yzl:z’;giff/‘ziw_4dl +(A/Ly)(1+7e —Y%‘%%
(33)
For the decreasing part of the stress cycle one may use the following identities:
&a(1)=€1a(T) | =g, (34)
and
e%‘,,,(r)= —ellfd(r) | g=q0 (35)

Using the above results in connection with the relationships (6) and (7) the logarithmic decrement can be formulated
which after rearrangements takes the following format:

5=58'+8", (36)
where
8 _IRIE[ 2 *o[1—(g+De= "' [ 4 yle 1=[1-(1+gle ="
= ——= 1 16( ) dy+ x dx
vzl e e P 7 s 1405y

+ [1-6(y—9)] x dx

0 1403 vyty 1+ Q5 v

7 yle=? (14+yp)e~Y
f {,yz W+
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Oty —an) X0 [1—(go+1)e """ I yle™ dy+1—[1—<1+qo>e“’°]"
—6(y—g0)= 7 o 1405y 1+Qf
2
Xo | 1 p7 yle? (1+yp)e~Y
—[1—=6(v—qg)]— | — dy + R (37
[1=0=a)l5 1% J; 1+05 %~ 1405y

where xo =1/, g =1/x, and qo=1/x¢; ©(z)=1 for z> 1 and 6(z)=0 for z <0.
Similarly, one has the following expression for the out-of-phase contribution to the decrement:

8! IR |E [ 2 % [1—(qg+1e "' | pa Qpyy’e™
= = 11 6(y—q) ’
8oAL G | x§ r—a fo vt fo 14+ Qp ypty~* Y

l—[l——(q +1)e—q]ﬂQB’N

(x3—x*)12dx

1+ 05 v
|1 v Qanye” (1+y)e~7Q
+[1—G(y—-q)][ A ’ BN | 2_ 212
J; 7t J; T A g a3, |Xo—x)dx
L O(y—gy) ™ 1=+ De ™! [y Qpyple  1-[1—(go+Le Ty
4 ‘}/4 0 1+Q§’Ny4y_4 'y 1+Q§,N
ﬂ'x% 1 Y QB,NySe"-" (l+y)e—yﬂB,N

'y +
vt o 1405wyt 1405 5

} . (38)

The above rigorous expressions for the logarithmic decrement involve certain double integrals which cannot be
represented in terms of the well-known special functions. However, they can be studied numerically under the wide range
of parametric variations which will be discussed later in this paper. In the following sections we will give an analytical
treatment of the linear frequency region as a special case which still contains much information in regard to the damping
behavior of dislocations at high stress amplitudes.

+[1-8(y—q0)]——

C. Amplitude-dependent dislocation damping in the linear frequency region

In the low-frequency range where » < % one can obtain the following expression from Eq. (24), or perhaps more easily
from the compact and closed relationship (22), which yields (4, —0)

(L,2) bl -2 ’ t (39
€4(L,)——-— |sinwt — = —cosw
or
67'013 . ,
€q(l,t)— (sinwt —Qpcoswt) , (40)

where 8y=mGb?/12C, Qp =w/w¥ , and 0§ =10C/BI%. Note the small numerical differences between these newly de-
fined quantities and the analogous ones defined previously. This is due to the fact that in the derivation of Egs. (39) and
(40) we have used the complete infinite series expansion rather than the first terms as has been done in connection with
expression (25). However, the numerical differences are extremely small. With the use of Egs. (2), (9), (15), and (40), the
following exact expressions can be derived:

o) 1 3 2
e},,,,(r):ﬂ—émLém 14+e~? 1@-1)%—- %'—+%'—+q+l+(y——l)(q+l)
g 2
+ =g+ | L+ L g r1]e 1)
for g <y, otherwise y—gq in the above relationship and
8oQp N(TE—)V2 L} s om
I _ 0°28,N\T0 N —ql.a q+1 q
@)= — A—-5! 9 -1 ——— —
€1,4(7,0) G 7/45 I+e 9 (y—1) ! mz;,om! +(y 1)(q+1)H

5
5 m
+(1/-—1)(q+1)[ S —q——]e_z"l ) (42)
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for q <v; otherwise y—q (replacement operation) in the
above expression, where y=Ly /L, and it is closely relat-
ed to the average linear density of the weak obstacles
denoted by N §b= 1/L, or N% =y/Ly. The relationship
(41) is very similar to the one obtained by Granato and
Liicke? with a slightly different numerical factor of 8/7*
rather than 7‘2— However, the g >y case has not been
treated explicitly in their paper which causes serious prob-
lems if one calculates the logarithmic decrement for small
and medium stress levels.

Using the relationships (41) and (42) in connection with
Eqgs. (6), (7), (34), and (35), one can obtain the internal fric-
tion behavior of the system in the linear frequency range
as follows:

8 2 —1
= |R |’E(wG)~'[D(qo)—D(p)], (43)
SOALI%r |R | ™ [D (g0 12)|
where g < 7; otherwise Y—¢q,. Furthermore,
D(2)=(32/2) —e‘zl—;;3+(y—l)l-7§—l E\(2)
SNEATY ESNEANE I
L TR TR
+ (y—1E(22) | , (44)

where E,(z)= f * e~%~1dz is the exponential integral*
function mostly *denoted by the notation of —Ei(—2z).
The relationship (43) is obtained exactly without having
any mathematical approximation, only assuming that the
distribution function given by Granato and Liicke? is valid
[see Egs. (15) and (16) and the imposed condition].

In the above exact relationship the terms which involve
E(2z) are completely negligible. We should also mention
that the stress-amplitude dependence comes from the fact
that go=T", /7, or in terms of the applied uniaxial stress
system one has ¢o=I./|R(6,¢4)|0y. Equation (43)
yields an identically equal to zero logarithmic decrement
for the stress-amplitude levels below the threshold level
which was also stated previously in connection with the
rigorous solution, go=y or Ty,=Iy. Well above the
threshold level the D(y) term also gives a negligible con-
tribution which can be immediately discarded. However,
if one wishes to obtain consistent theory in regard to the
temperature dependence, then one must deal with the
stress-amplitude—independent region as well as the stress-
dependent range simultaneously, therefore in that case the
D () term should be kept in numerical calculations.
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The logarithmic decrement represented by Eq. (43) has
a well-defined maximum with respect to the applied uni-
axial stress amplitude which can be determined from the
following transcendental equation numerically:
(y— 1) /31— D[2E (g ) —exp( — )]
+(g2 —2gm —2)exp(—g,, ) /3!1=0,  (45)

which actually yields a very simple but highly accurate ex-
pression for y > 3, such as

2E (g )—exp(—g,)=0, (46)

which results in g, =1.3. The corresponding peak value
of the logarithmic decrement may be immediately written
using this finding:

5! R2E [(y=D2/31—1)
=22(2.76/ —0.38},
SoAL% v 2

peak value
47)

which clearly indicates that the peak value of the hysteret-
ic dislocation damping that is represented by 8' versus the
strain-amplitude plot depends upon the concentration of
the weak obstacles along the dislocation line. This depen-
dence is almost linear for the value of y greater than about
5, which means on the average four obstacles per network
length. Hence

51

3
8oALy peak value

=RE/mG)0.23N%, y>5. (48)

In Fig. 1 the amplitude-dependent—only logarithmic de-
crement denoted by &' is plotted with respect to the nor-
malized applied uniaxial stress amplitude 0(/T", for vari-
ous values of the number of weak pinning obstacles, y us-
ing the plotter facilities of an HP-9821A minicomputer
for a single crystal. In this example we have selected
|R(6,4) | =+, which corresponds to the best orientation
of the active dislocation slip system with respect to the
uniaxial stress system. There are two important features
associated with these plots: firstly, the fact that the max-
imum in the decrement (hysteretic in origin) occurs at
about 0¢/T';=1.5 regardless of the value of 7y, which
yields gm.x=1.33 as an excellent agreement with the
analytical result of 1.3 obtained from Eq. (46) previously.
Secondly, the nonlinear behavior of the decrement in re-
gard to its dependence on the obstacle density extends up
to the value of y=150 (approximately).

D. Linear frequency-dependent region

The logarithmic decrement related to the out-of-phase contribution to the strain denoted by Eq. (42) can be formulated

in the following;:

8! R’E
=——Q0p vZ(¥,90) ,
8ALYZ wG BV 40 4o=T,/|R | o,

where

(49)
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Z(ra0=r"a |, [F(y,q)+F<y,qo>]<q2—q%>“2i;% : (50)
and according to Eq. (42)
5 m 5
F(y,q)=5! [1+e“1 74(7—1)55%1— {2 i—' ’—(y—l)(q +1) | +y—1g+1D |3 —;% e‘z"] , (51)
! ~ m! ~ m!

for g < y; otherwise y—q (replacement operation) using the relations (6) and (7). Imposed restriction on the F(y,q) due
to frozen-in loop distribution below the threshold can be eliminated rigorously by redefining the function Z (v,q,) as such

Z(y,q0) | q0<7'—__7’—4QO

and

— o d
Z(1,90) | go>r=7 ‘q02F (1,7) fqo (q2_q3)1/2_¢§_ .

(53)

The integral in Eq. (53) can be easily evaluated which
yields

Z(7,q0)=(w /2y *F(v,y), qo>7 (54)

and clearly tells us that the frequency-dependent part of
the logarithmic decrement is independent from the stress
amplitude below the threshold stress level as it should be
according to our physical model of the breakaway process.

The above integrals may be reduced into the Weyl frac-
tional integral transform!® which, however, in the present
case does not yield any complete analytical solution in
terms of the well-known special functions. For analytical
as well as the numerical procedure conveniences the func-
tion given by Eq. (51) may be separated into the following
two terms which are capable of representing the linear fre-
quency dependence (for moderate stress amplitudes) of the
damping behavior of the dislocation plus the dragging im-

NORMALIZED DECREMENT

IRl = 0.5

2

6/8, I\Li va} J{IRIE[mG}

STRESS /B STRESS s 10 |

NORMALIZED STRESS AMPLITUDE [U“/r:}

FIG. 1. Amplitude-dependent—only logarithmic decrement &'
is plotted with respect to the normalized applied stress ampli-
tude for various values of the number of weak pinning points y.
The decrement has been normalized to the factor 80ALZ2, where
8o is a constant of order of unity, A is the dislocation density,
and L, is the mean loop length between the weak obstacles
(linear frequency region).

© d o
Joy Fr@)+Frgola*=a) > 5+ [ [F(m)~F<y,q>1(q2—q%>“2%

(52)

I

purity system for large and small obstacle densities effi-
ciently, respectively. This separation into terms becomes
more transparent for the obstacle densities, y > 10 (approx-
imately). Otherwise, for low obstacle densities both terms
should be considered simultaneously. Hence one can write

F(y,q)=F(y,9)+F,(v,q) , (55)
where
Fi(y,g)=51*/5'—1)(y—1)(1+g)e 1 (56)
and
5
Fy(y,q)=5! [l—e‘qz(q'”/m!) , (57)
0

where g <y. Using the above definition in connection
with Eq. (52), one can write

Z(v,90)=2Z,(7,90)+Z,(v,90) +R(V,q0) , (58)
where
Z(7,90) =5/ /51— 1) (y—1)
><[(1+qo)e—q°ﬂ-/4+qoLo(qo)+L1(qo)]
and (59)
5! —ap 90 |7 5. L,(qo)
Z,(v,q0)=—| [2—e 0y = | T _
2(1:40) 7/4[ ¢ %m 4 q"% n |’
(60)

here L,(z) is a new class of special functions which can be
represented by

L,(z)= fzwx”“3e_x(x2-—22)1/2dx (61)
or
L@=1 [T x"=2%=V(x —y)'"ax (62)
y=z

which is closely related to the Weyl fractional integral
transform of the function denoted by x"/2~2exp( —\/g; ).
The function R (7,q¢) which appears in Eq. (58) is corre-
sponding to the following term:

w d
R(v,q90)= |F(y,7) fy (q2__q(2))1/2q_g

— fmF(y,q)(qz—q%)l/2ﬂ , (63)
Y q3
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which has a negligible contribution to the decrement for
medium and high stress-amplitude regions, especially
large values of y about 10 therefore will not be considered
for our subsequent discussion.

Only for two special cases, n=3 and n=4, does one
have the following simple results in terms of the well-
known “modified Bessel functions” of orders of 1 and 2,
respectively:

Li(z)=2zK(2)

and (64)

L4(Z)=ZZK2(Z) .

Otherwise, it seems that there is no simple and direct con-
nection between these two classes of special functions.

For small values of g, the large stress amplitudes, using
the definition of the y functions in connection with Eq.
(59), one obtains L,(qq)—(n +2)! for n> 1. With the use
of the properties of L,(z), the following important and
useful relationships can be written for medium and large
values of the stress amplitudes, respectively.

(a) Small stress amplitudes: lim[Z(y,qy)]—0; when
qo—> .

(b) Small stress amplitudes: lim[Z,(y,q9)]—(5!/7*)
X1r/2; qo—> 0.

(c) Large stress amplitudes: Lm[Z,(y,q0)]1—(5!/7*)
X (P /51— 1)(y—1)(147/4); go—O0.

(d) Medium stress amplitudes: Lim[Z,(y,q,)]—(5!/7*)
X (m/16)q0; 5 < g9 <0.1.

(e) Large stress amplitudes: lim[Z,(y,q0)]—(5!/7*)
X 6.7E —3; when g < 0.04.

In Fig. 2 the frequency-dependent part of the decrement
denoted by 8 is plotted with respect to the normalized
stress amplitude on a double-logarithmic scale using Eq.

3
2 r=1
ot
3
o
o
3 [ r=3
=
<
=
N—‘z =5
- 1 =
Se
~
w
bl ]
se r=10
o2
S
-3 7=15
=20
r=25 -2

LDGW(NORMAUZED STRESS AMPLITUDE {UO/T‘C} )

FIG. 2. 8" is the frequency-dependent part of the logarith-
mic decrement which is plotted with respect to the normalized
applied stress amplitude for the various values of the number of
weak pinning points per network length denoted by ¥, where the
normalization frequency Qp=w/w} is taken to be equal to unity
as an example. Here w3 is the fundamental frequency of the
dislocation loop of length L. in the absence of the inertial term
(Ref. 13) and it is given by C#*/BL2.
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(49) for the numerical-integration procedure. It can be
demonstrated that for the small number of obstacles the
dominant contribution comes from the term denoted by
Z,(y,90) which also shows a large region of amplitude-
independent behavior as can be easily anticipated from
Fig. 3. For the large obstacle densities the Z(y,q,) term
becomes very pronounced and almost determines the
whole damping behavior (for the linear frequency range)
for ¥> 10, and it is a monotonically increasing function of
the stress amplitude.

Our extensive computer experiments indicated that the
following analytical expression can be used very effective-
ly for the small stress-amplitude region which has an
upper bound as oy | R | /T, <0.25:

-4

me
(y—l)—————qo T

+ T2)

81 RZE

8AL} 7G

5!

QB,N 5!'}/—4

(65)
and similarly for the large stress-amplitude region which
can be defined by the following inequality: o |R | /T >5.
The following asymptotic expression yields a very accu-
rate result. [In Eq. (66) when oy | R | /T > 25, the 7q,/16
term should be replaced by a constant which is given by
6.7E —3]:

sl R’EQp y

= 514
SoALZ G 7
4
Y _1la —doT | T
X115 (14go)e 4 T 1690

(66)

In Fig. 3 the functions Z(y,q,) and Z,(v,q,) are plot-
ted using the numerical integrations of qus. (59) and (60),
as a function of og|R | /T where R =+, in a double-
logarithmic scale. For the most critical region where de-
pinning occurs one has to use the full analytical expression

3
2
1 22<1,0>
0
=
N
~
o
w2l _2 z145,0>
o
-
b -3
-2 -1 0 1

LOGm(NORMALlZED STRESS AMPLITUDE (0'“/1"} )

FIG. 3. Z(5,90) and Z,(5,q,) functions are plotted with
respect to the normalized stress amplitude oy/T". on a double
logarithmic scale using a numerical integration procedure.
Where I',=mf,, /4aL., f,, is the maximum pinning force.
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(0.5<0¢|R | /T <5) to obtain accurate and meaningful
results. Otherwise, the above equation denoted by (66)
yields good numerical values especially for moderate and
high y> 5 for this special region of main interest.

IV. DISCUSSION

In Fig. 4 the logarithmic decrement for the linear fre-
quency region 8==58"48" is plotted with respect to the
normalized stress amplitude o(/I', for various values of
the normalized frequency denoted by Qp 5 and the num-
ber of weak pinning points per network length ¥ on a
double-logarithmic scale. This plot immediately reveals
the existence of the two regions, the stress-amplitude in-
dependent and dependent, respectively. The stress-
amplitude—independent region as well as the very high-
stress-amplitude range are completely dominated by the
dragging point-defect—associated dislocation damping.
However, at the medium-stress level where the repinning
process becomes the rate determining step the damping is
almost frequency insensitive. Again the peak in the decre-
ment occurs which is hysteretic in origin at about
0o/T . =1.5 regardless of the value of y.

The most interesting feature of the whole dislocation
damping phenomena in the presence of the dragging point
defects plus the weak obstacles can only be deduced from
the rigorous and the exact numerical integration solution
of the expression denoted by Egs. (37) and (38). In Fig. 5
the logarithmic decrement obtained from the rigorous
solution is presented as a function of the normalized stress
amplitude oy/I", for various values of the normalized fre-
quency Qp and using two different obstacle densities.
This plot indicates the existence of the three distinct stages
as far as the stress-amplitude dependence is concerned:
the stress-amplitude—independent low-stress levels, the
depinning-controlled transition region of medium-stress
level, and the stress-amplitude—insensitive stage of large-
stress levels. The maximum in the decrement occurs at
exactly Q5 =0.1 normalized frequency with respect to the

2
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FIG. 4. Total logarithmic decrement §=28'+38" is plotted ac-
cording to Eqgs. (37) and (38) with respect to the normalized
stress amplitude on a double logarithmic scale for the various
values of the normalized frequency.
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FIG. 5. Total logarithmic decrement according to the

rigorous theory is plotted using a numerical integration pro-
cedure as a function of the normalized stress amplitude for dif-
ferent values of the normalized frequency Qp y.

mean loop length L, of the dragging point defects at the
stress-amplitude—independent stage, respectively. In the
depinning stage there is a continuous transformation from
this peak into another one with a maximum normalized
frequency of Qp y=1, which corresponds to Qp=1/7%
Close inspection of Eq. (38) clearly reveals the fact that at
the end of the depinning process all the dislocation seg-
ments will be accumulated at the network length Ly
which has a sharp relaxation maximum at exactly
Qp y=1 due to the § distribution function of the segment
length. According to Ogurtani in a previous observa-
tion,’* the dragging peak in the stress-ampli-
tude—independent region shows a maximum when
Qp=0.1 for a random distribution of the dislocation seg-
ment lengths. At the depinning stage the maximum in the
decrement can be easily observed for very low normalized
frequency values which yields oy/I'.=0.5 regardless of
the magnitude of y. This value of the depinning effective
stress amplitude is a factor of 3 smaller than the one ob-
tained previously using the nonrigorous solution of the
problem. As we mentioned earlier the nonrigorous solu-
tion employs a distribution function which is rather crude
at medium and high-stress-amplitude regions.

At the high-stress-amplitude stage where the depinning
process nears completion, again decrement becomes very
insensitive in regard to the variations in the normalized
frequency. However, for very low frequencies sensitivity
starts to reappear, and the decrement decreases with the
stress amplitude.

The effect of pinning-point density which is denoted by
v follows similarly as discussed previously in connection
with Fig. 2. Solely, the increase in the obstacle density re-
sults decrease in the peak height in stage I and causes just
the opposite effect on stages II and III, respectively.

The temperature dependence of the amplitude as well as
the frequency-dependent dislocation damping could arise
through three distinct and important factors according to
the present model calculations. The first factor is the tem-
perature dependence of the drag coefficient B which is in-
troduced by Eq. (23a) and fully developed in the Appen-
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dix. The second factor which also causes variations in the
decrement with temperature is due to the concentration of
the weak obstacles N ;,‘b along the dislocation line through
the parameter y. This concentration shows also the
Langmuir-type adsorption isotherm described by its own
binding energy. The third but the most important contri-
bution to the temperature dependence might come from
I',, the depinning stress, through the factor f,,, which has
been called as the maximum depinning force. The tem-
perature dependence of f,, may be represented by
Feexp(H% /kT) above the softening temperature, where
H gﬁ is the depinning activation enthalpy. However, a
better description can be given by the following ad hoc ex-
pression which takes care of the hard as well as the soft
interaction modes through thermal fluctuations simultane-
ously:

Fm =oAL +(f2 /f2)exp(—HR /KT,

which indicates that the thermal activation of the depin-
ning process below a certain characteristic temperature
will be almost frozen-in and cannot show any temperature
variation. Hence similarly one can write

[ =T1+(T/T2)exp(—HR /KT,

(67)

(68)

where f2 and I'? are the depinning force and the stress at
absolute temperature, respectively. f,, and I'° are the
similar quantities at the infinite temperature. The rela-
tionship between I, and f, are as follows:
I'.=muf,/4aL., and it was mentioned previously that the
exact nature of this expression depends upon the specific
model of force calculation on the pinning point due to
bow-out dislocation segment.

In Fig. 6 the logarithmic decrement obtained from the
rigorous solution is plotted as a function of the homolo-
gous temperature T /T,, for various values of the stress
amplitude, the obstacle density, and the excitation fre-
quency, respectively, on a double logarithmic scale. In
this universal plot the energies such as H;, E;;,, and H &
are all normalized with respect to kT,,, where T,, is the
melting temperature and k is Boltzmann’s constant. With
the adopted normalization procedure one can easily inves-
tigate the general behavior of the system without referring
to any specific material parameters. In Table I our exten-
sive finding in regard to the numerical experiments are
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FIG. 6. Total logarithmic decrement according to the
rigorous theory is plotted as a function of the homologous tem-
perature T /T, for various values of the normalized stress am-
plitude and the excitation frequency using two different obstacle
densities.

presented in terms of the peak position and the peak
height. Figure 6 clearly reveals the existence of two dis-
tinct peaks in the internal friction versus homologous tem-
perature plots. The first peak which appears at the low-
temperature side is due to the dragging point defects and
it has the nature of viscous damping as can be anticipated
from its strong frequency dependence and the stress-
amplitude independence. The second peak which is rather
skew on the high-temperature side shows strong stress-
amplitude dependence in regard to its peak position and
complete insensitivity with respect to the variations in the
excitation frequency. This second peak is closely related
to the depinning process of the dislocation segment from
the weak obstacles, and its height increase with the in-
crease in the obstacle density. On the other hand, the
dragging peak shows just the opposite behavior with
respect to the similar variations in the density of the weak
obstacles. For high values of the stress amplitude these
two peaks start to overlap considerably.

In order to investigate the global behavior of the dislo-

TABLE 1. General behavior of the internal friction peaks associated with the dislocation damping in the presence of the dragging
point defects plus the weak obstacles on a homologous temperature plot. I corresponds to stage I (stress independent), II corresponds
to stage II, the transition region. “S > means that the effect of saturation hinders the variations.

Increase in

Increase in Increase in Increase in

stress amplitude excitation freq. obstacle density drag conc.
Dragging I II
peak Peak position 1 ) 1 torS
Peak height 1 i
Depinning
peak Peak position 1) )
Peak height ! t Lor S

at very high Qp
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cation damping phenomena in regard to the variations in
the excitation frequency @ we have adopted the following
frequency renormalization procedure using Egs. (27) and
(A10):

0y g 2PN _ o (69)
B,N 17'2C = 1)
where
wL}kT
&= (10—~ (70
w CbDi,O
and

(T /Ty )3 exp(H| /kT)

7= 12 . . (71)
1+3(XD)lexpl —E; 5 /KT)

In Fig. 7 the strain-amplitude—dependent decrement for
a polycrystalline material is plotted assuming that the ma-
terial is elastically isotropic and individual grains are ran-
domly distributed employing Eqgs. (10) and (43), respec-
tively. This plot immediately reveals the fact that in a
polycrystalline sample the depinning peak shows a sub-
stantial amount of reduction in the height, and as well for
the large skewness on the high stress-amplitude side (or
high-temperature side on the homologous temperature
plot) of the maxima.
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APPENDIX: THERMAL EQUILIBRIUM
SEGREGATION ON DISLOCATIONS

The statistical thermodynamics of a solution of point
defects of a single type which do not interact is the sim-
plest possible case to consider. We write the small canoni-
cal partition function Q¢
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FIG. 7. Frequency-independent part of the decrement is plot-
ted with respect to the normalized stress amplitude for a
polycrystalline sample (elastic isotropy) for two different values
of the weak obstacle densities.
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Q=(NM~"' 3 exp(—EP4/kT),

J (states)

(A1)

where Nf is the number of interstitials distributed over
N£° available sites at the dislocation and 7 is the ratio of
interstices to regular lattice sites, E}”d is the energy of
state j, and the summation is over all states but with the
specific condition that no more than one interstitial occu-
pied a site. Using the usual maximum-term method, we
find that

pi=—kTn +EM,

(A2)

1

where 0:” =N,-"/N,-d’°. One can write exactly the same rela-
tionship for the bulk phase. Thermochemical equilibrium
between the dislocation region and the bulk phase in re-
gard to the chemical species i requires that

pi=p! (A3)
or
1—6 1—6¢
—kTln a”' +EPP = _kTIn e"' +EM,
i i
(A4)
which after arranging the terms yields
o o By (AS5)
= ex ,
1—68  1-62 P | %kT

where E; =EP*—EP? is the enthalpy of binding of the
interstitial species to the dislocation line. The relationship
between 0; and the atomic fraction X; is as follows:

X, S (A6)
ey
where v is the ratio of interstices to the regular lattice
sites, and it is equal to 3 and 6 for the octahedral and the
tetrahedral sites in a bcc lattice, respectively. For dilute
interstitial solid solutions the atomic fraction in the bulk
phase may be taken as X,-b 576,'? as a good approximation.
Hence one can write

. : (A7)

i

67 = ‘14—

which shows a 50% saturation temperature T, and it may
be obtained from the following expression:

T,=—E;, /kIn(X}y~") . (A8)

One can also obtain an exact expression for 7, without
making any dilute solution approximation using Eq. (A5)
directly which results in
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INTERSTITIAL DRAGGING ON DISLOCATIONS
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FIG. 8. Normalized mobile impurity drag coefficient is plot-
ted for various values of the enthalpy of diffusion and the bind-
ing energy as a function of the homologous temperature for the
bulk atomic fraction X?=10"°.

Eip
Ty=— 7 e (A9)
kIn[6;/(1—-6))]
Now if one combines Eq. (A7) with Eq. (23a) the fol-
lowing relationship can be deduced:
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yexp(H; /kT)
1+ 91X~ lexp(—E; , /kT) ’

B =By+kTb*mn D5

(A10)

where n; is the density of regular lattice sites which is
equal to 2/a* for a bcc metal and H; is the enthalpy of
migration of the interstitial impurities in the vicinity of
the dislocation core region (see Fig. 8).

The temperature dependence of the damping coefficient
associated with the mobile point defects can be easily ob-
tained from Eq. (A10) which yields the following expres-
sion exactly for the complete range of temperatures:

dIn(B™/T) _ ., Eip
d(1/kT) " 14y~ 'XPexp(E,, /kT)

(A11)

Qetr=

which yields Q. =H; well below the saturation tempera-
ture and results with Q.=H; +E, , similarly above that
temperature. Therefore, the apparent activation energy of
the process shows very large temperature dependence or
broadening if the peak temperature lies in the vicinity of
the saturation temperature T.
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