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Collective excitations of semi-infinite superlattice structures:
Surface plasmons, bulk plasmons, and the electron-energy-loss spectrum
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We consider a semi-infinite superlattice structure, with constituent A characterized by dielectric
constant eq(tu) and constituent 8 by es(to), and examine collective excitations of the system in the
absence of retardation effects. Also, we explore the energy-loss spectrum of electrons backscattered
from such a structure. Detailed application is to the case where one constituent, a semiconductor or
metal, contains free carriers, while the second is described by a frequency-independent dielectric
function. Surface excitations (surface plasmons) on adjacent interfaces couple through macroscopic
electric fields to form a propagating band of collective excitations of the whole structure capable of
transporting energy normal to the interfaces. We then find surface excitations of the entire struc-
ture. These are linear superpositions of modes localized at successive interfaces, combined with an
envelope function which decays exponentially as one moves down the stack. By explicit calculations
of the energy-loss spectrum, we show how electron-energy-loss spectroscopy may be used to study
these and other collective modes of the array.

I. INTRODUCTION

Recently there has been considerable interest in the
properties of superlattices, which are structures composed
of alternating layers of different materials. Typically the
thickness of an individual layer lies in the range
100—5000 A. If one constituent, material A, always has
thickness di, and the second, material 8, always has
thickness d2, one has built a periodic structure known as a

superlattice.
Superlattices composed of semiconducting materials

have been studied extensively. Here electrons may be
trapped on the near vicinity of the interfaces by band-
bending effects, to form a thin, two-dimensional gas.
More recently, metallic superlattices have been fabricat-
ed, and their elastic properties have been studied. One
may also fabricate structures which consist of alternating
layers of magnetic and nonmagnetic metals.

Most studies of the semiconducting superlattices sup-
pose the material consists of parallel sheets of free car-
riers, each independent of the other. The superlattice
structure than allows access to the two-dimensional elec-
tron gas, under conditions where the average volume den-

sity is rather high, which is convenient from the experi-
mental point of view.

One may inquire if there are collective excitations of the
whole superlattice structure, with properties distinct from
those characteristic of either constituent. The answer is
clearly in the affirmative. Some years ago, Fetter con-
sidered the elementary excitations of an infinitely extend-
ed stack of two-dimensional plasmas. Excitation of a
plasmon within one constituent produces electric fields
which extend outside its boundaries, and these fields cou-

pie the elementary excitations of the various layers.
Through use of Bloch's theorem, one then sees that a
consequence of this coupling is a set of collective plasma
excitations of the whole superlattice structure, character-
ized by a wave vector normal to the interfaces; these
modes may thus transmit energy normal to the layers of
the superlattice structure.

Recently, the collective spin-wave excitations of semi-
infinite magnetic superlattices have been studied theoreti-
cally, ' and a striking prediction emerges from these anal-
yses. First of all, on each interface between a ferromagnet
and its nonmagnetic partner, one has surface spin waves,
and surface spin waves on adjacent interfaces couple
through dipolar fields generated by the spin motion, very
much as in Fetter's study of plasmons. When the super-
lattice is terminated, of course each normal mode of the
structure (this is a linear combination of surface spin
waves, combined via the Bloch theorem to form a propa-
gating mode of the whole structure) may propagate to the
surface, to reflect off of it. In addition, one finds a sur-
face mode of the semi-infinite superlattice. ' This is a
linear combination of surface spin waves, combined with
an envelope function which decays exponentially as one
moves into the stack. This mode has the remarkable
property that its frequency is exactly that of the surface
mode appropriate to a semi-infinite ferromagnet, though
its wave function is clearly very different. If di is the
thickness of the magnetic constituent, and d2 that of the
nonmagnetic layers, the surface mode exists only when

d» dz. As 1i ~dz from above, the surface mode merges
with the "bulk" excitations of the system, and is absent
when d& &d2. Experimental studies of spin waves in these
materials by Brillouin scattering confirm these predic-
tions.
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The present paper presents analysis of a semi-infinite
superlattice, which consists of alternating layers of materi-
al, where one or both constituent contains free carriers, or
possibly electric-dipole-active collective excitations such
as optical phonons or excitons. We inquire if a semi-
infinite structure of such materials may support a surface
excitation similar to the spin wave described in the preced-
ing paragraph, and find the answer to be yes, under the
conditions outlined below. We argue that one should be
able to observe such modes by means of electron-energy-
loss spectroscopy, and we present an analysis of the
electron-energy-loss spectrum in a backscattering geo-
metry to illustrate this point.

The paper is organized as follows. Section II presents
the theory for both the "surface" and "bulk" collective
modes of the structure just described, and we derive the
idispersion relations of the various modes. Numerical re-
sults are then presented for particular structures. In Sec.
III we present the theory of the electron-energy-loss cross
section, and Sec. IV is devoted to a summary of our prin-
cipal conclusions, including the numerical studies of the
electron-energy-loss cross section.

II. DISPERSION RELATIONS AND GENERAL
PROPERTIES OF ELECTRIC-DIPOLE-ACTIVE

COLLECTIVE EXCITATIONS
OF SUPERLATTICE STRUCTURES

It is useful to break the discussion of the present section
into several parts. We consider first a review of the col-
lective modes of an isolated dielectric slab, then turn to a
superlattice structure of infinite extent, and next the ter-
minated superlattice. Then we proceed to some numerical
examples.

A. Isolated slab

V $(x,t)=0.
Then inside the slab we have

e(co)V P(x, t) =0 .

(2.1a)

(2.1b}

In general, an excitation in the slab will set up a Auc-

tuating electric field in the vacuum above and below it.
We denote the electrostatic potentials in these tmo regions
by P~ and P ~, respectively, and that within the slab by P;.

Translational invariance parallel to the two surfaces en-
sures that all elementary excitations are characterized by a

For what follows, it will be useful to consider those col-
lective excitations of an isolated dielectric slab (possibly a
metal) which in the long-wavelength limit generate a mac-
roscopic electric field. Then if we confine our attention to
only this limit of long wavelengths, the mode structure is
described fully by macroscopic theory. Suppose the slab
has thickness d, vacuum above and below, and has a
frequency-dependent dielectric constant e(co), assumed
real in this section. The macroscopic electric field associ-
ated with the elementary excitations of interest may be de-

rived from an electrostatic potential P(x, t); throughout
this paper, we ignore retardation, so P( x, t ) obeys
Laplace's equations everywhere outside the slab,

two-dimensional wave vector k parallel to the surfaces.
Without loss of generality, we may chose k directed along
the x axis. Then the electrostatic potential everywhere
has the form

P(x, t) =4(z)e' (2.2)

We then have the following two distinct sets of elementary
excitations which generate a macroscopic field.

(i) Surface excitations A. n isolated dielectric-vacuum
interface supports a surface excitation with a frequency
independent of wave vector k, at any frequency co, for
which e(co, )= —1. If the interface coincides with the
plane z=0, the electrostatic potential falls to zero ex-
ponentially, as one moves away from the interface in
either direction. One has 4(z)-exp( —k ~z

~
) for such

modes.
The finite slab, considered very thick for the moment,

supports two such modes, one on each surface. With a
thickness finite, the two modes couple to produce an odd-
or even-parity pair, split by interaction between the two
surfaces. We thus have dispersion relations co (k) and
co+(k), respectively.

The m mode is described by the implicit dispersion re-
lation

e(co )=—coth ( —,
' kd) . (2.3a)

If e(co)=e +Qzl(coo co ), then —as kd~oo, co (k) ap-
proaches the single-interface surface-mode frequency
co, =coo+Qe/(I+e ), while as kd~O, co (k)~coo, where
e(co) is infinite. If we have a metal, then coo=0, and so
co (k)~0 as kd~0, with co (k)=Q&( —,'kd)'~ when

kd &&1. This mode is an odd-parity mode in the sense
that the electrostatic potential is odd under refiection
through the midpoint of the film.

The co+ mode has the implicit dispersion relation

e(co+)= —tanh( —,kd ) . (2.3b)

Then as kd —mao, co+(k) also approaches co„while as
kd~O, co+(k) approaches the frequency for which e(co}
vanishes. This is the LO-phonon frequency in a simple
ionic insulator, or the bulk-plasma frequency for a metal.
The electrostatic potential has even parity under reflection
through the midpoint of the film.

The results above are mell known, and may be derived
in a few lines by noting that P(xt} satisfies Laplace's
equation everywhere, including inside the film [because
e(co)&0]. Then by requiring that P be continuous at each
interface along with normal components of D=e(co)E,
constraints which lead to the dispersion relations follow.

(ii) Bulk excitations. An infinitely extended dielectric
rnediurn supports bulk excitations of longitudinal charac-
ter (plasmons, LO phonons, and longitudinal excitions) at
those particular frequencies where e(co):—0. Here we are
no longer constrained to have V P =0 within the medium,
since e(co) vanishes in Eq. (2.1b). For the slab, elementary
arguments given elsewhere serve to delineate the proper-
ties of the bulk excitations of a finite slab. One has a se-
quence of standing-wave resonances of the slab, each with
frequency such that e(co)=0, i.e., the frequency of each
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slab resonance is identical to that of the relevant bulk ex-
citation. The boundary conditions require (t) ~(xt) and

(X,I ) valllsh ldcIltlcally, so thc modes gcIlclatc ilo Inac-
roscopic electric fieId outside the slab itself. If the slab
surfaces are located in the planes z =0 and z =d, then
4(z)-sin(nqrzld), so there is a macroscopic field of
standing-wave character within the slab. These con-
clusions will be altered by the presence of spatial disper-
sion effects not examined here; these will be small in the
long-wavelengths limit and in a number of geometries of
practical interest.

8. Superlattice of infinite extent

We consider here the structure shown in Fig. 1. Materi-
ll A has a frequency-independent dielectric constant

e~(co), and thickness d I, while material 8 has a dielectric
constant @II(ro) and thickness dz. For the purposes of the
present discussion, eq(ro) and @II(co) will be supposed real;
this restriction is relaxed later in the paper. The "unit
cells" of the structure are designated by the index n, as il-
lustrated in the figure.

As we saw in the preceding subsection, an isolated slab
of material A or 8 has standing-wave resonances (bulk 1.0
phonons, bulk plasmons, etc.) which generates a macro-
scopic electric field at any frequency for which e~(co) or
@II((0) vanishes. The electric field associated with such ex-
citations is totally confined within the slab, so when a su-
perlattice such as that in Fig. I is constructed, each con-
stituent still possesses bulk resonances identical to those in
the isolated film. These are unaffected by the fact that
the film in question is now incorporated into a superlattice
structure.

Here we study the collective excitations of the whole
structure which have frequency co such that neither e„(io)
nor CII(co) vanish. The electrostatic potential $(x,t) then
satisfies I.aplace's equation everywhere,

I —k 4(z) =0 . (2.6)

Quite clearly, the general solution of this simple equation
ls

4(z) =A+e+ +A e (2.7)

Since the structure in Fig. 1 is periodic in the z direc-
tion, our' task ls to synthesize thc basic solutions ln Eq.
(2.7) so that proper boundary conditions are satisfied at
each interface, and so that the solution forms a Bloch
wave, with respect to translations normal to the interface.
Thus, if L =d I+dz is the length of a unit cell, we require
that @(z)be written in the form

4(z)=e'q'Uq (z),
whclc for ally llltcgcl II,

Uq(z+ nL ) = Uq (z) .

(2.8)

(2.9)

First consider the form of the electrostatic potential
within the nth slab of material A, which extends from
z=nL to z=nL+di. One readily verifies that the most
general solution of Eq. (2.6) which also satisfies Eq. (2.9)
may be written

and must obey appropriate boundary conditions at each
interface.

Since we have tr'anslational invariance in the two direc-
tions normal to thc z axis, each normal IDodc 18 chalactcr-
ized by a two-dimensional wave vector k parallel to the xy
plane, as in the case of the isolated slab. We assume each
material is isotropic, so that without loss generality, k
may be taken parallel to the x axis. Thus, P(x,y, z, t) will
have the form

P(x,y, z, t) =4(z)e'~

and Eq. (2A) leads to

Vzg(x, t) =0, (2.4) e
—iq(s —sL)(A e k(s sL)+A — k(s aL ))——

nL (z &nL+d( (2.10)

@(z) &iqsL(A &
k(s —sL)+A &

k(s sj ) )— —
+ (2.11)

cl I

' Z
dp

PICx. I. Infinitely extended superlattice. The structure is
made of alternating layers of material A and 8, each character-
ized by the relevant dielectric constant. The unit cells of the
structure are indexed by n, as illustrated.

» this discussion, q is a wave vector that will ultimately
enter the dispersion relation of the collective excitations of
the superlattice.

Similarly, one may write the most general form of the
scalar potential within the nth layer of medium 8, which
extends from z =nL +di toz =(n+1)L. We have

There are four arbitrary constants, A+, A, 8+, and8, hih pp i th l p t ti 1. T
these and obtain an explicit dispersion relation for the col-
lective excitations wc require that boundary conditions at
the various interfaces be obeyed. These are that the elec-
trostatic potential be continuous across each interface,
along with normal components of D. Through the use of
the above forms, we apply these at z =nL and z =nL+ d I,
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eg (co)(A+ e ' —A e ') =eii(co)(8 ~ 8—), (2.14)

and the Bloch property of the basic solution insures they
are satisfied everywhere else.

Continuity of 4(z) at z=nL+di, along with normal

0, gives the two constraint equations

~+e '+~ e '=~+++ (2.13)

and

collective excitations discussed here may be viewed as a
linear superposition of surface polaritons, one localized at
each interface in Fig. 1. When di and 12 are finite, they
couple because their fields overlap, resulting in normal
modes of the whole structure. Their nature is controlled
by Bloch's theorem, which dictates the form assumed by
the resulting electrostatic potential.

Suppose kdi »1 with kd2 finite, i.e., let di —+ oo with

d2 fixed. Then one readily sees that Eq. (2.19) degenerates
to

while the same conditions applied at z =nI. give

A++A =e 'i~(B+e '+8 e ')

and

(2.15) eii(co)
'coth ( —,'kd~)

tanh ( —,'kdz), (2.23)

cosh( kd z )cosh(kd i ) cos(qL )—
c(k, q) =

sinh(kdz)sinh(kd i )
(2.18)

a positive definite quantity for any choice of k or q, then
Eq. (2.17) admits solutions whenever

2 in= —c(k,q)+[c (k,q) —1]
eg(co)

(2.19)

For the frequencies which emerge from Eq. (2.19) to be
real, we must append the condition

c(k, q) &1 . (2.20)

It is then convenient to parametrize c (k,q) by writing

c(k,q) =cosh/(k, q), (2.21)

where, when Eq. (2.20) is satisfied, P(k, q) is real. The im-
plicit dispersion relation in Eq. (2.19) then reads

=—exp [+g(k, q )],
eg(co)

(2.22)

so that our collective excitations occur only in frequency
regimes where the ratio eq(co)/equi(co) is negative

The frequency regime where ez(co)/equi(co) is negative is,
in fact, the spectral region where surface polaritons may
propagate on the interface between medium A and B. The

eg(co)(A —A )=ett(co)e ' (8 e ' Be —').

(2.16)

By setting the appropriate 4X4 determinant formed
from Eqs. (2.13)—(2.16) to zero, we obtain an implicit
dispersion relation for the collective modes of the super-
lattice. This reads

P

e~ (co)
1+ sinh(kdz)sinh(kd, )

Ett co'
eg (co)

+2 [cosh(kd2 )cosh(kd i )—cos(qL)] =0 .
eii(co)

(2.17)

In general, this implicit dispersion relation must be
solved numerically. For fixed k, this yields the frequency
co as a function of q, the wave vector of the collective exci-
tation in the direction normal to the stack. If we define

the generalization of Eqs. (2.3) to the case where a finite
slab of material 8 of thickness dz is embedded in medium
A. Of course, Eq. (2.19) is symmetric under interchange
of di and d2, so that if d2~0o with di finite, we obtain
the dispersion relation of the surface modes of a slab of
medium A with thickness d i embedded in medium B.

Explicit expressions for the dispersion relations may be
obtained for a variety of special cases. For example, let

2

e~(~) =eZ +( ) Qp
(2.24)

No —N

so that material 3 is possibly a polar semiconductor or a
nearly-free-electron metal (cop~0). Then let ee(co)=eii"',
corresponding to a nonpolar semiconductor or an insula-
tor. Then we have

2

co~(k, q ) =cop+
ez" '+ ez" 'exp[+/(k, q )]

(2.25)

C. Semi-infinite superlattice; excitations localized
near the surface

We now consider the geometry illustrated in Fig. 2. We
have a superlattice structure identical to that in Fig. 1, but
the structure is terminated at the plane z=o, with the
half-space z &0 filled with material that has a dielectric
constant e, (co}.

As we remarked in Sec. I, terminating the superlattice
structure destroys its periodicity in the z direction, so that
we no longer have collective excitations with Bloch char-
acter in the z direction, as described by Eqs. (2.8} and

The model considered above has three characteristic
frequencies. The first is cop, which is the TO-phonon fre-
quency if we view material A as a polar material. Then
we have the LO-phonon frequency of material A, given by
co +0 /e~ ', and finally there is the frequency
co =cop+ 0&/(eg + erat ), the frequency of the surface
polariton which propagates on the single interface between
a semi-infinite half-space filled with medium A, with the
other side formed from medium B. From Eq. (2.23), one
sees the co+(k,q) branch lies in the frequency regime
co, (co (co„while the co branch lies in the regime
co, & co & co„o. If medium A is a metal, then cop —+0, co, is
the surface-plasma frequency, aiid coLo becomes the bulk-
plasma frequency of material A.
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this is done,

n-"0 )

n=t

n=2 (

rXr

A (Gt)re/

r re
(~)

1+ (e ' —e ~ e ')A

+ 1 — (e ' —e ~ e )A =0 (2.29)

(
kd) PL kd2)A

EB

FIG. 2. Semi-infinite superlattice. The structure is made of
alternating layers of material A and 8 as in Fig. 1, but the struc-
ture is terminated with the half-space z (0 filled with material
C.

(2.9). There will surely be modes which may be viewed as
propagating up to the surface from z=+ oo, then reflect-
ing back into the superlattice structure, with a reflection
coefficient that may be obtained by a suitable extension of
the discussion in the preceding subsection. Here we will
not be concerned with these modes, but instead with a new
class of solutions that emerge. These modes have their ex-
citation localized in the near vicinity of the interface be-
tween material C and the superlattice. One may view
these new excitations as linear superpositions of surface
modes localized to a particular interface, with an envelope
function that decays exponentially as one moves into the
stack.

The surface modes may be described by taking, for the
electrostatic potential in the slab of material A in the re-
gion nL &z & nL +d i, the form

@( ) pnL(A ek(n nL)+—A e
—k(s nL))— —

(2.26)

while in medium B, in the region nL +d, &z & (n +1)L,
we shall have

+ 1+ (e ' —e ~ e ')A =0 . (2.30)

cosh(PL )=cosh( kd i )cosh( kd 2 )

1 ~a ~B+— + sinh(kd, )sinh(kdz),
&B

(2.31)

a relation equivalent to Eq (2.17.) with q replaced by ip
Further constraints are obtained by requiring the boun-

dary conditions to be satisfied at the interface z=0.
These give simply

and

C=A++A

e, C=eg(A+ —A ),

(2.32)

(2.33)

or with C eliminated, we have a new equation which in-
volves A+ and A

r

We have dropp(xl explicit reference to the frequency
dependence of the dielectric constants for convience. For
Eqs. (2.29) and (2.30) to be satisfied with A+ and A
nonzero, the appropriate 2)&2 determinant must vanish,
leading to a constraint on the attenuation constant p. One
must have

1 —-- A++ l+ A =O.
&c &C

(2.34)

Recalling that k is the magnitude of the wave vector
parallel to the surface [Eq. (2.5)], the attenuation constant
P will be determined in the subsequent analysis. Of
course, we require Re(P) )0.

In the region z & 0, where material C resides, we have

We have three unknowns, A+, A, and p, and Eqs.
(2.29), (2.30), and (2.34) provide three constraint equa-
tions. Upon combining Eqs. (2.30) and (2.34), we have

e ~ =e '[cosh(kd i )+Pisinhkdi ], (2.35)

4(z)=Ce+~ .

In our applications of the theory, we shall take e, (co)=1
for simplicity, although the general formulas obtained
below allow this parameter to take on any desired value.

We now turn to the boundary conditions. The four
conditions at the interface z =nL and z =nL +d i provide
a set of relatians for A+, A, B+, and B identical to
those in Eqs. (2.13)—(2.16), except iq is replaced every-
where by —P. It is convenient to eliminate B+ and B
fram these equations in order to reduce the set to two
equations which involve only A+ and A . We have, once

e i =e [cosh(kdi)+Pzsinh(kdi)],

where

(2.36)

2
&a +&B&c

P2 ——
eg (e +ei) )

(2.37)

2 —E'B E'c
I'] ——

e~ (ee —es )

while we may also combine Eq. (2.29) with Eq. (2.34) to
find a second relation for exp( —pL),
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The right-hand side of Eq. (2.35) must equal the right-
hand side of Eq. (2.36), so that we have the final con-
straint

2 cosh(kd 1 )sinh(kd1 )

+sinh(kdi )[P2e ' —Pie ']=0 . (2.38)

Equation (2.38) constitutes an implicit dispersion relation

for the surface wave. Once this is solved, we must then
check the value of P as found, say, from Eq. (2.35), to be
certain that Re(P) & 0.

At this point, we may turn to a number of special cases.
I.et us suppose for definiteness that both ee and e, may be
regarded as frequency independent in the spectral regime
of interest, while it is ez(co) that varies with frequency.
Then after some manipulation, Eq. (2.38) may be used to
generate a quadratic equation satisfied by ez (to),

sinh(kd 1 )[ezcosh(kdz )—e,sinh(kd2) ]ez (co)+ (ez e,—)cosh(kd 1 )sinh(kd2 )ez (to)

+cite, sinh(kd 1 )[eiisinh(kd2) —e, cosh( kdi)] = 0, (2.39)

so that the possible frequencies of the surface modes are such that

—1
eg(r0) =

2 sinh(kd 1 )[eel cosh(kd2) —e,sinh(kd2)]

)& ((e~ e, —)cosh(kd 1 )sinh(kd2)+ I (etl —e, ) cosh (kd 1 )sinh (kd2)

+2eiie, sinhz(kd 1 )[2e1le,cosh(2kd 1 ) —(es+ e, )sinh(2kdz) ]I
'~ ) .

A particularly striking special case is that for which
eli =e, . For a semi-inifinite stack of films formed from a
"surface active malum" (i.e., one with a negative dielec-
tric constant in certain spectral regions) separated by vac-
uum, with vacuum above, we have ez ——e, =1. Then Eq.
(2.40) reduces to the simple pair of statements

(2Ala}

If we choose the upper sign, we see that P= —k, an unac-
ceptable value. However, if

(2.41b)

(2.41c}

which is quite acceptable if d 1 & di.
Thc coild1tlon in Eq. (2.41b) is pÃeclselp tke SQme as that

which determines the surface-polariton frequency, in the
neglect of retardation, on the interface between a semi-
infinite slab of material 8 joined with a semi-infinite slab
of material A. The penetration constant P differs, howev-
er, in that one has p=k when di —0, and only material A
resides in the upper half-space z ~0. For our problem, we
see that P decreases to zero as d2~d 1 from below, and no
surface wave exists when d1 ~ d i. This mode is a precise
analog to the surface spin wave of the magnetic superlat-
tice discussed in earlier papers, ' and which has also been
studied experimentally. ' We shall explore this wave fur-
ther in the next subsection, where its relation to the bulk
excitation spectnim of the superlattice structure will be
elucidated.

D. Some explicit examples of superlattice
excitation spectra

Here we present some numerical studies of the disper-
sion relations of collective excitations in semi-infinite su-
perlattice structures. In what follows, we suppose
e~(to)=1 —m~/t0, with co~=15 CV. This corresponds to
a model of aluminum. For e„we choose unity, so that we
have a semi-infinite stack of aluminum films separated by
a dielectric space with a dielectric constant e~.

In Fig. 3 we show dispersion curves where di ——2di, and
crt ——1. We see that the bulk excitations described in Sec.
II 8 fall into two bands separated by a gap. Note that as
one scans through the frequency spectrum of bulk modes
with a finite wave vector k parallel to the surface, the
modes tend to crowd together, forming a high density of
states near the boundary lines with qI. =m.

In Figs. 4(a) and 4(b), for two values of the parameter
kdi, we illustrate frequencies of the collective modes of
the semi-infinite superlattices as a function of the ratio
di/d2. The co+ and co bulk bands [Eq. (2.23)] are al-
ways separated by a gap, except for the special case
d 1 ——d2, where their lower bounds just touch. The surface
mode always lies within this gap, but it exists only when
d i )d2, as oilc secs floni our callicl' discussion.

A diverse variety of collective-mode spectra may be
found, depending on the nature of the two constituents.
Figure 5 illustrates the effect of an insulating spacer
placed between the Al model films. We still have e, = 1 in
this figure, but now erl ——3, a reasonable value for A1201
or some other wide-gap insulator. For large values of kd 1,
both the to+ and to bulk modes are down-shifted in fre-
quency by virture of the screening provided by the oxide.
For large values of kdi, the surface branch lies near the
surface-mode frequency appropriate to the Al/vacuum in-
terface, 10.6 CV. Thus, in contrast to the earlier example,
the surface mode lies above the t0+ bulk-wave branch. As
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the text.

at smaller values of kd~, we find a surface mode that lies
in the gap between the ro and ai+ bulk branches. This
mOdC 8180 mCI'gcS WVlth thC AP+ COIltiIlUQm Rf, 8 %VSVC VCC-

tor very close to that where the high-frequency branch
does. On the low-frequency surface-mode branch, pL is
purely real, and vanishes as the critical wave vector is ap-
proached from below.

In contrast to the simple case where equi
——e„when

e~~e, we find surface waves of the structure when
di ~ d2. This is. illustrated in Fig. 6, where, for the choice
d2 ———,

' di, we give the excitation spectrum of the superlat-
tice structure with e, =l and ez ——3. We have a high-
frequency branch of surface waves, again with P=im+X
This branch behaves in a manner qualitatively similar to
the upper branch in Fig. 5. We also have a second surface
wave in the gap between the r0+ and r0 bulk branches
again (with p real as before), but now the branch does not
merge with the bulk excitations as kdi increases to a criti-
cal value. As far as we can tell, the surface mode survives
in the limit kdi ~ ac, always "trapped" between the two
bulk branches. Quite clearly, we have a rich spectrum of
elementary excitations in these structures, depending on
the nature of the constituents and their relative thickness.

kdi decreases, tllis inode merges witll the ah+-mode con-
tinuum at kd i =-1.5, for this choice of dq. On this branch,
we have pL =im+X, were X assumes the value 6.37 at
kdi ——5.0, then decreases monotonically to reach zero as
the surface mode merges with the bulk continuum. Then,

In Sec. II we presented the theory of the collective exci-
tations of superlattice structures. We next turn to the
question of how their properties may be studied. If we are
concerned with metallic superlattices, possibly with insu-
lating spacers between adjacent metal films, then small-

~qL- m
qL=O 6 7r

qL=O. 4 m

q L=O

SURFACE MODE

F&G 4" F« the «se s's =s'~ = &» we»ow» for (a) kd =&.»ud (b) kd =0.1, the frequency spectrum of the bulk co+ and r0 bands
of thc semi-1Bfinitc sQpcI'18tticc Rlong %'1th thc sQIfRcc Blodc. Tbc sQrfRcc mode is Rbscnt %vhcIl dg p di, Rs discQsscd 1Q thc text.
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in the vacuum outside the material and the homogeneous
version of Eq. (3.4) within the material. If the electron
strikes the surface at t =0, then

Uit for t (0,
z(t) =

ui—t for t ~ 0 .

ll~l e —PL ~ll~2

gild, &~ glim,
(3.13b)

A.s in Sec. II, the sample occupies the half-space z &0. If
we write

P(Qii, z;t) = f $(Qii, z;cu)e (3.6)

(3 5) with P determined from Eq. (2.30), after k is replaced by

Q~~. Tllc colldltloll Rcp) 0 ls Rppclldcd.
From Eqs. (3.12), we then find an expression for C+,

eg—A (F 1)—
C+ —— =—RA. (3.14)

(cz —1)F (c~—+ 1)

one finds that P(Q~ ~,z;c0) obeys

(3.7)

and the homogeneous form in the medium.
A particular solution of Eq. (3.7) in the half-space z ~0

ls

It is a straightforward matter to use the electric field
generated from the term C+exp(Q~~z) in Eq. (3.10) to cal-
culate the work done on the electron by the induced field.
The work performed by this source has a magnitude

2e ui ~ d
)V= J )m[)](g)~),a&)],"

[(UIQ~()'+(cu —v)~.Q~()']

PI)(Qii, z;c]I)=A (Qii, co)cos (co—v ii'Qii)
Uj

where

(3.9)

eg (co)(F 1)—
R(Q((, co) =

[e~(~)—1]F—[c~(~)+1]
l

1+ eg (co)(1—F)/(1+F)
(3.16)

We have to append to Eq. (3.8) a general solution to the
homogeneous form of Eq. (3.7), and then match the re-
sulting form to the solution of Laplace's equations in the
sample, so that the proper boundary conditions are obeyed
at each interface. We shall suppress reference to the

dcpclldcncc of varlolls qualltltics oil Q~
~

alld co for brevity.
Thus, in the region z &0 below the sample, here assumed
to be vacuum (e, = 1 in the notation of Sec. II), we have

The expression for the energy lost by the electron may
be cast into the form

dao I' a)

where P(cu) is interpreted as the probability per unit fre-
quency that the electron has lost the energy fico. We then

have, noting that Im[R(Q~~, co)] is an odd function of fre-
quency,

P(z)=A cos (co —
Qii vii) +C+e

Z ll
Uj

(3.10)

while, as in Sec. II, the most general form of the potential
in the outermost superlattice hyer is

P(co) =
e ui f d Q)(Q(~1m[a(Q~(, co)]

[(ui Qii)'+(~ —'ii %i)']'
(3.18)

y(z)=A. e']]'+A e ']]', 0(z&-d . (3.1 1)
Upon noting that R(Q~~, c]I) depends only on the magni-

tude and note the direction of Q~~, we may write

The term proportional to C+ in Eq. (3.10) generates the
induced field which does work on the electron.

Continuity of the total potential and normal component
of D at z =0 gives the two conditions

(3.12a)

&(co)=
z f dQ~~Q(~1m[a(Q(~, a)))

X
[(u&Qii) +(co—QiiuiicosH) ]

(3.19)
e~(c0)(A+ —A )=C+ . (3.12b)

If the second constituent of the superlattice is described
by the dielectric constant CI], as in Sec. II, then from the
discussion given there we know that

(3.13a)

Thc illtcgl al oil H Illay bc cvaluRtcd ill closed foHI1.
Since this integral is encountered frequently in the theory
of small-angle electron-energy loss, we shall quote the re-
sult explicitly. Let Ht be the angle of incidence of the



R. E. CAMLEY AND D. L. MILLS

electron beaxn measured relative to t4e normal to the sur-
fRCC. T11CI1

U
) I

=Uosin81

where uo is the speed of the incoming electron. The result
is conveniently expressed in terms of the dimensionless
variable g given by

Uj =Uocos8I ~

g=U, Q~~/~ .
(3.20b) The loss function then becomes,

U2oc dQ~~Q~~Im[R(Q~~, co)]
P(co) =

vrfico cos 8I I g [(g —1) +4/ cos 81]

&& RCI (g —1+2ig cos81)'/ [(1+2/ cos8I+i g cos8&)(1+icos 8I }

+g sin 8I(3pcos 8I 2 i—/co—s8I)+g sin48I]I .

In the calculation of the loss cross section, the integral on
the magnitude of Q~~ quite clearly must be performed nu-

merically. But our analytic evaluation of the angular in-

tegration in Eq. (3.19) reduces this to a simple task, out-
lined below, since the calculation involves integration over
only one variable.

It should be noted that for R(Q~~, co} to be nonzero, one
or more of the dielectric constants of the substrate must
have a nonzero imaginary part. In our study of the
dispersion relations in Sec. II, all dielectric constants were
taken to be real. Thus, here the attenuation constant P, as
found from Eq. (2.31), has a nonzero real and imaginary
part, and care must be taken to always choose P so that
RCP&0. In the calculations reported in Sec. IV, the
aluminum film is modeled by the choice

2

eg(c0)=1-
CO(C0+ I )')

(3.23)

with y the conduction-electron relaxation rate.
Near-specular electron-energy-loss studies generally col-

lect not all the electrons scattered via the mechanism
described above, but rather collect those sca,ttered within a
certain angular range about the specular direction. This
range is determined by the slit width of the spectrometer,
which generally subtends an angle of roughly 1', as viewed
from the sample. In our calculations, we simulate this by
cutting off the integral on Q~~ in Eq. (3.22) at the value
QIf'=k' 'b8, with k' ' the wave vector of the incident
electron. In the scattering event, RQ~~ is the momentum
transfer suffered by the electron projected onto a plane
parallel to the surface, so that this procedure assumes that
all electrons which suffer a momentum transfer (projected

collected. One could envision a more realistic cutoff pro-
cedure, reflecting the actual slit geometry, but this method
allows the integration on 8 to be performed analytically,
as described above. The results of the calculation are not
very sensitive to the details of the cutoff procedure.

IV. NUMERICAL CALCULATION
OF THE ELECTRON-ENERGY-LOSS

CROSS SECTION—GENERAL DISCUSSION

We now turn to our numerical studies of the electron-
energy-loss cross section for scattering off a superlattice
structure.

We first consider the case where es ——1, since, as we see
from Sec. II, the excitation spectrum for this case is par-
ticularly simple. In the figures that follow, we choose the
incident-electron kinetic energy to be 200 eV, with a 45'
angle of incidence. The spectrometer sht widths are as-
sumed equal to 1', as mentioned at the end of Sec. IV.
Material A is modeled through use of the dielectric func-
tion in Eq. (3.23), with co~ = 15 eV and y =0.2 eV

In Fig. 7, we show the loss spectrum for two cases: The
first has di ——20 A and dz ——15 A, while the second has
di ——15 A and dz ——20 A. Clearly visible is the prominent
surface-mode peak at 10.6 eV for the former case, while
only a hole is present for the latter, near the
aluminum/vacuum surface-plasmon frequency of 10.6 eV.
The broad feature which rises dramatically with decreas-
ing energy loss has its origin in scattering off of the con-
tinuum of "bulk" excitations which, as one sees from Fig.
3, extend down to very low frequency when Q~~d, is small.
This feature will be evident in data as a broadening of the
quasielastic peak, which varies as the thickness of the
aluminum film is changed. Such a broadening of the
quasielastic peak is evident in recent studies of thin films
of Ag deposited on GaAs here the whole feature is
shifted to much lower energies by virtue of the smaller
bulk-plasmon frequency of Ag Rnd by softening of the
low-frequency collective modes of Ag produced by the
screening of the electric fields provided by the GRAs sub-
strate. A theory identical to that employed here provides
an excellent account of the variation of the broadening
wlt11 incicas111g Ag film thickness. Note, that as 111 fhc
earlier example, ' with increasing aluminum film thick-
ness, t4e intensity of the quasielastic background decreases
for films thicker than a few monolayers.

It is well known that if one scatters electrons off a
semi-infinite sample of aluxninurn, then the mechanism
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FIG. 7. Electron-energy-loss cross section for near-specular
scattering of 200-eV electrons off of a semi-infinite superlattice
of very thin aluminum films interspersed with vacuum. Two
cases, as indicated, are considered.

FIG. 8. Electron-energy-loss cross section for near-specular
scattering of 200-eV electrons from a semi-infinite superlattice
of aluminum films with vacuum in between. In all cases, the ra-
tio d2/di is fixed at the value —,.

considered here leads to a loss peak at the frequency of the
surface mode of the aluminum/vacuum interface, 10.6 eV
for our model. It is interesting to inquire how such a
spectrum evolves from that given in Fig. 7 if d, is in-
creased with the ratio d2/di held fixed at a value greater
than unity; the point is that in the limit d i ~ oo, we must
have a loss peak at 10.6 eV as the only feature in the spec-
trum, but the discussion of Sec. II shows we never have a
surface mode at this frequency for any finite value of d, if
d2/d i is greater than unity (see Fig. 4).

We study this point in Fig. 8, where we show the
energy-loss cross section for several values of di with the
ratio d i /d2 fixed and d i increasing to rather large values.
For d& ——120 A, we see a shoulder near 2.5 eV produced
by scattering off the co branch of excitations. As di in-
creases, this shoulder evolves into a prominent peak, and
moves to progressively higher energy, but always below
10.6 eV. Similarly, scattering from the co+ branch pro-
duces a loss peak above 10.6 eV which softens as di in-
creases, always remaining above 10.6 eV. As di increases,
the two peaks coalesce, and the gap between them fills in.
What is left in the limit di~oo with dz/d, fixed at a
value greater than unity is a single feature centered at 10.6
eV with a width controlled by the damping factor y in Eq.
{3.23}. Note that as di increases, the low-energy "tail" in
the loss spectrum decreases dramatically, so that there will
be very little broadening of the quasielastic beam for
scattering off thick films.

Upon comparing the dramatic differences between the
energy-loss spectra in Figs. 7 and 8, one may appreciate
that even when the aluminum film is quite thick, the
electron-energy-loss spectrum is influenced by the whole
structure and not just by the properties of its outermost
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FIG. 9. Electron-energy-loss cross section for near-specular
scattering of 200-eV electrons from a semi-infinite superlattice
of aluminum films with vacuum in between. In all cases, the ra-
tio d2/d i is fixed at the value ~ .

constituent. This point is reinforced in Fig. 9, where we
present calculations, again with @ii =1, of the loss spec-
trum for several values of di, but now with the ratio
dildi fixed at —,

' rather than —,'.
In Fig. 10 we present calculations of the loss spectrum

for scattering from a semi-infinite stack of aluminum
films, but now with each separated by a dielectric with a
dielectric constant e~ ——3. In each example, the low-
frequency loss peak has its origin in scattering off the sur-
face excitation in the gap between the co+ and co bulk ex-
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citation branches. For the case d2 ———,'di, the surface
wave which exists only for a limited range of wave vectors
evidently scatters electrons with sufficient intensity to
produce a clear loss peak. The high-frequency feature in
the loss spectrum has its origin in scattering off of the
upper surface wave branch; the peak in each case is shift-
ed somewhat above the 10.6-eV loss energy appropriate to

ENERGY LOSS (ev)

FIG. 10. For e~ ——3, and two sets of values for d ~ and d2, we
show the energy-loss spectrum, with material A again chosen to
be aluminum.

the Al/vacuum interface. The origin of this shift is the
upward dispersion evident in Figs. 5 and 6. Again, one
appreciates from the figure that the loss spectrum reflects
the nature of the structure below the outermost aluminum
film, even for rather thick films.

While we have confined our attention to the case of a
superlattice with a metallic and an insulating material as
the two constituents of the semi-infinite superlattice in
our numerical examples, the theory quite clearly applies to
semiconducting superlattice structures as well. For this
reason, in Secs. II and III we have attempted to present
the analysis in a sufficiently generalized form so that the
interested reader may apply the theory to any structure of
interest. We note, in fact, that electron-energy-loss spec-
troscopy has been applied to the study of the surface exci-
tations of doped GaAs, ' so that it should also prove a
suitable probe of superlattices, although high-resolution
methods are now required since the losses of interest lie in
the range of a few tens of meV. Perhaps Raman spectro-
scopy will also prove a powerful probe of the modes dis-
cussed here in semiconducting systems. We currently
have semiconducting superlattices under study and the re-
sults will be reported elsewhere.
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