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The Mn?* impurity-associated mode that lies just below the host spin-wave band in FeF, has a
residual linewidth (in the limit of very small impurity concentrations, sample dimension, and tem-
perature) in excess of 1 kQOe. This value is surprisingly large, since the k =0 magnon has a
linewidth less than 30 Oe and since the down-going impurity mode is energetically the lowest-lying
magnetic excitation in the system. In this paper we analyze several phonon-associated processes
that would contribute to the decay of local magnon modes in antiferromagnets in the limit of van-
ishing impurity concentration and zero temperature. We show that the linewidth of the down-going
impurity mode (v < 1.507 THz) can be quantitatively accounted for by the decay into a single acous-
tic phonon, whereas that of the up-going mode above 1.93 THz is due mainly to decay into a
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phonon-magnon pair.

I. INTRODUCTION

In FeF,:Mn, an Sy-symmetry local magnon (totally
symmetric under the local crystal-group operations) exists
just below the host spin-wave band.! In the absence of an
external magnetic field and in the limit of very small im-
purity concentration the local modes associated with the
impurities in the up and the down sublattices are degen-
erate, with frequency 1.507 THz (50.27 cm™!). The mag-
non bands extend from 1.575 to 2.35 THz (52.54 to 78.39
cm™!) at zero field. When a magnetic field is applied
along the symmetry axis, the degeneracy is lifted: The
frequency of the local mode decreases or increases with in-
creasing field, depending on whether the associated im-
purity spin lies on the sublattice with spin dominantly
parallel or antiparallel to the field. We will refer to them
as the “down-going” and “up-going” modes, respectively.

These local modes have recently been investigated in de-
tail experimentally with high-resolution far-infrared laser
spectroscopy.!~3 Because of the proximity of their energy
to the magnon band edge, the wave function of these local
modes is spatially extended around the Mn impurity so
that there is substantial participation of the host Fe spins
in the excitation. Experimentally observed consequences
include the “frequency pulling” of the host and impurity
modes and the large enhancement of the impurity-mode
intensity in far-infrared absorption' and Raman scatter-
ing.* One of the most interesting aspects of the dynamics
of these modes is the manner by which they relax their en-
ergy to the lattice. The experimental linewidth varies
strongly with the impurity concentration and thickness of
the disk-shaped samples, as well as with temperature. The
thickness-dependent contribution has been shown to arise
from radiation damping.!=3 The concentration depen-
dence is due to the impurity-impurity interaction,” which,
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because of the large spatial extent of the modes, con-
tributes to line broadening even at impurity concentrations
as low as 105, More interesting yet is the fact that the
linewidth extrapolated to zero impurity concentration,
zero thickness, and zero temperature is greater than 1 kOe
and changes with frequency, whereas the residual intrinsic
linewidth of the k =0 magnon is only of the order of 30
Oe.

For the up-going local mode the only published experi-
ment! measures the linewidth at a field where this mode is
degenerate with the down-going magnon continuum. An-
isotropy and dipolar interactions which break the spin-
rotational symmetry about the field axis provide a mecha-
nism for decay of the local modes into band magnons, but
calculation® suggests that less than half of the observed
width can be explained in this way. More obviously for
the down-going local mode, which is energetically the
lowest-lying magnetic excitation in the system, the large
residual width implies important interaction with, and de-
cay into, nonmagnetic excitations, almost certainly pho-
nons. It is this phenomenon to which the present paper is
devoted. The qualitative suggestion of a phonon decay
mechanism to explain the residual local-mode linewidth
has been made in print by Motokawa’ and has been allud-
ed to elsewhere,® but the behavior we predict below is both
more complex and more interesting than had previously
been envisioned.

In this paper we investigate several local-mode decay
processes involving phonons that might contribute to the
residual impurity linewidth in FeF,:Mn. At least two ar-
guments suggest that phonons play an important role in
the damping of the local mode: Acoustic phonons are the
only collective excitations in FeF, with energies below the
Mn impurity mode, and the magnetic moments (“spins”)
of the Fe?* ions that participate in the local-mode excita-
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tion couple strongly to lattice vibrations. In pure FeF,
phonons do not contribute to the relaxation of magnons®
because their dispersion relations are very different; thus
energy and momentum cannot be conserved simultaneous-
ly. But in Mn-doped FeF, there is no translational sym-
metry around the impurities, and the requirement of
momentum conservation is relaxed.

The coupling between spins and lattice vibrations arises
from several sources, the most important of which are the
phonon modulation of the crystal field and the modula-
tion of the exchange integral. Regardless of its origin, the
spin-lattice interaction energy can be well described by the
lowest-order terms in its expansion in lattice displace-
ments (or phonon - coordinates), with phenomenological
constants. In crystals with inversion symmetry, in the
continuum limit, the lowest-order term of the interaction
energy between a spin S and the lattice displacement T
can be written® as

du,

~ N ,
Hs1~bapys axs

(1.1

where the b,g,s are the magnetoelastic coupling coeffi-
cients and the Greek subscripts and superscripts label the
three Cartesian directions. The terms in S$*S? and S’S*
give rise to one-magnon—one-phonon decay, whereas
those in S*S”, S%S% etc., give rise to two-magnon—one-
phonon decay processes. The former terms are also re-
sponsible for the coupling between propagating magnons
and phonons that produce hybrid magnetoelastic modes.
These modes have been extensively studied in ferromag-
nets with microwave resonance and ultrasonic tech-
niques.’® In FeF, the dispersion relations of the magne-
toelastic excitations have been measured over the entire
Brillouin zone with inelastic neutron scattering.!! From
these measurements one can obtain values of suitable com-
ponents of the magnetoelastic coupling tensor b, and
thereby an estimate of the decay of the local mode into
acoustic phonons. Such an estimate suggests that this
mechanism might indeed contribute substantially to the
observed linewidth. Here, however, we will go back to the
spin-lattice interaction Hamiltonian () derived by
Lovesey'? from first-principles. This will give us the extra
flexibility to calculate the interaction between magnons
and optical phonons, and to explore the corresponding ad-
ditional relaxation channels. As shown by Lovesey, the
dominant mechanism for the interaction between the spins
of the Fe** ions and the lattice vibrations is the modula-
tion of the crystal field. Since the Mn?* impurity has an
orbital S-symmetry ground state, the spin couples negligi-
bly to the lattice. This results in a much smaller magne-
toelastic coupling in MnF, (Ref. 13) (b~2X101¢ erg)
than in FeF, (b ~6X 10~ erg). Therefore, for the local-
mode—phonon decay processes to be significant, the parti-
cipation of the Fe** neighbors in the impurity mode is
essential.

In Sec. II we derive the Hamiltonian for calculation of
the relaxation rates. This includes a magnetic part, ap-
propriate for the impurity-mode problem, a phonon part,
and the various possible magnon-phonon interaction
terms. In Sec. III the contributions of the various
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phonon-assisted processes to the linewidth of the local
magnon mode are calculated. In Sec. IV we evaluate the
linewidth for the FeF,:Mn system and compare the result
with the existing data.

II. HAMILTONIAN

The system of coupled magnons and phonons is con-
veniently described by a Hamiltonian separated as

%=ymag+%ph+%int B (2.1

with independent magnons and phonons represented by
the first two terms; the remaining small magnon-phonon
interaction can be treated perturbatively.

A. Magnons

The rigid-lattice magnetic Hamiltonian is taken to in-
clude isotropic exchange, single-ion uniaxial anisotropy
along the c axis of the lattice (chosen here as the z direc-
tion), and the Zeeman interaction with a magnetic field
H, applied also along the c axis,

H mag= k5Ho ggISf+zi %E Si45—D ; (72

+2J580 385, — 218" 385 —D'(S§)?,  (2.2)
82 81

where sites are labeled by subscripts on the spin operators
and a single impurity is located at the origin (/ =0). We
have retained only the dominant exchange terms, between
next-nearest neighbors on opposite sublattices of the
body-centered tetragonal arrangement of magnetic atoms,
for the pure-FeF, host or between Fe spins. The impurity
spin is taken to couple with its eight next-nearest neigh-
bors at positions §,, and its two nearest neighbors at posi-
tions §;. This approximate exchange Hamiltonian is
known'* to give a satisfactory description of the magnon
spectrum. Additional small terms which break rotational
symmetries, notably the dipolar and orthorhombic aniso-
tropy interactions which relax total S, conservation, can
be important sources of magnon decay processes even
though they have little effect on the spectrum. Their con-
tribution to the local-mode linewidth has been analyzed
elsewhere® and should be added to the contribution calcu-
lated here.

The approximate diagonalization of (2.2) as a sum of
independent (unrenormalized) magnon contributions is ac-
complished by a transformation to boson operators,

ca= 3 TISF/(25)12, 2.3)
1
where the normalization has been chosen so that
SO — SO =18,,, 2.4)
i J

with i summed over sites on the “up” and j over those on
the “down” sublattice. The positive sign on the right-
hand side [and St operators in (2.3)] holds for modes
whose energy increases with increasing field (up-going
magnon branch) and the negative sign [and S~ operators
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in (2.3)] for the down-going branch. For the pure crystal
these are the usual® plane-wave solutions,
[r=N"12y, , F}-‘zN‘l/zvke_i?'?j ,
where N is the number of sites per sublattice; the coeffi-
cients v; and ug =(v+1)!/? determine the relative spin-
deviation amplitudes on the two sublattices. The mode in-
dex A in this case labels wave vector k and branch [up-
going or down-going; the relation (2.5) has been written
explicitly for the up-going branch]. The diagonalization is
complete only insofar as higher than quadratic terms in
the spin-deviation or boson operators are neglected, a use-
ful approximation in the low-temperature limit to which
we restrict ourselves. We define the corresponding quad-
ratic boson Hamiltonian for the pure- (with full crystal
translational symmetry) FeF, system as %7 and that for
the impure system (with a single substitutional Mn impur-
ity at the origin) as ="+ V,

H= E%Imbl zeacaca ’

-
ik

(2.5)

(2.6)

where we have defined a representation labeled by site in-
dices, with b; a suitably defined boson annihilation opera-
tor at site /. The equation of motion for c, then gives

2 (ea81m "%Im )I‘; =0 5 (2.7)

Lm

which can be solved for both eigenfrequencies €, and
eigenfunctions I' in terms of the solution to the pure-
crystal problem in a familiar way—by taking advantage of
the spatial locality of the impurity perturbation V, and
rewriting Eq. (2.7) as

I'*=Gy(e,)VTe, (2.8)
where Golw)=(w—H#,)~! is the pure-crystal Green’s
function in the quadratic-boson-Hamiltonian approxima-
tion. The properties of Gy(w) are well known, and the ele-
ments for small separation of its spatial indices have been
numerically tabulated.!> The right-hand side of Eq. (2.8)
involves only those I';’s at the few sites / for which the lo-
calized perturbation V,,; is nonzero; thus (2.8) gives a
small set of coupled linear homogeneous algebraic equa-
tions for those I';)’s (and the eigenvalues €,). Then the
right-hand side of Eq. (2.8) is determined, and I'j, at an
arbitrary site m is given directly by that equation.

In particular, the energy just below the magnon-band
minimum and the wave function of the S, local mode as-
sociated with the Mn2?* impurity in FeF, have been stud-
ied in detail.'® We have already pointed out that the
local-mode wave function spreads over many host Fe**
spins. This is evident in the greatly enhanced response of
the impurity mode to long-wavelength external probes,
such as in far-infrared-absorption and Raman scattering
experiments. Since the spins of the Fe’* ions couple
strongly to lattice vibrations, whereas the orbital S-state
Mn?* ion does not, the substantial participation of the
neighbors of the Mn impurity in the local mode also pro-
vides spin-lattice relaxation channels for the impurity
mode. The coupling between the local mode and the lat-
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tice is thus expected to change with the intensity of the
field H, since the g factor of the Mn impurity (2.0) is dif-
ferent from that of the host Fe ions (2.23), and the spatial
extent of the local mode is highly sensitive to its separa-
tion in energy from the band minimum.

B. Phonons

The lattice vibrational modes are, of course, also affect-
ed by the impurity. However, the substitution of one dou-
bly charged 3d ion (Fe**) by its equally charged neighbor
in the Periodic Table (Mn?*) has little effect on either the
masses or force constants in the dynamical matrices.
There will certainly be no highly localized phonons with
energies outside the bands, and we can safely neglect the
deviations from plane waves of the wave functions ap-
propriate to the pure crystal. Thus the phonons will be
characterized by wave vector d and band index u, with
the phonon Hamiltonian

+4
H= 3 fiw, (a?ﬂuaﬁ’u 7).
T

The boson operators a and a' are related to the atomic
displacement U by

(2.9)

-

U(q,u)= expliq-1;)€;(d,u)

: 172 t
X(ﬁ/ZNM,coa.”) (aﬁ’u+a—§’ ), (2.10)
where [ labels the unit cell and i the position within that
cell, M; is the mass of the ion at site i, and € is a normal-
ized polarization vector:

SEH@p)E(q ) =0 & By . @10
i

C. Magnon-phonon interaction

The spin-lattice interaction in FeF, was studied in detail
by Lovesey,'? who showed that the dominant mechanism
is phonon modulation of the crystal field. This domi-
nance over alternative mechanisms, such as phonon
modulation of exchange fields, is confirmed by the fact
that the theory neglecting all other effects accounts very
accurately for the neutron- 1ne1ast1c-scattermg data!! on
hybrid magnon-phonon excitations in FeF,. Since the
low-lying crystal-field states in this material are well un-
derstood, the magnon-phonon coupling can be reliably cal-
culated from first principles. Similar calculations have
been made for FeCl,-2H,0, giving quantitative agreement
with the experimental data for that system.!” 18

To second order in the spin-orbit interaction for Fe?+,
the effective spin-lattice interaction Hamiltonian is of the
form of Eq. (1.1), with the coefficients b,g,s proportional
to the square of the spin-orbit coupling constant, the in-
verse of each of two crystal-field energy-level splittings,
and matrix elements of the crystal-field (Coulomb) in-
teraction expanded in lattice displacement or phonon
coordinates. To lowest nonvanishing order, the latter in-
volves terms linear in the displacements, and therefore
creation or destruction of a single phonon [as in Eq. (1.1)].
All the relevant parameters are well known for FeF,.
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The Coulomb matrix elements begin with an interaction
with the quadrupole moment in the multipole expansion,
and the one-phonon terms fall off at least as fast as the in-
verse fourth power of the distance of the source from the
Fe** ion in question. Therefore, it is sufficient to consid-
er the effects of only the six F~ ions nearest the Fe site,
and the small distortion of their configuration from a reg-
ular octahedron can be neglected.'> For acoustic phonons
the polarization vector at such a F~ site, at position § rel-
ative to the Fe, is
|

l

5 ;m(ac phonon)= —ib(#S3/MN)/2 2 w_l/z ze
qomA i#0
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Ex(q,n)=expliq- 5} Mp /M) ?8(q,0) , (2.12)

where My is the F~ mass, M is the total mass of a unit
cell, and &(q,u) is a unit polarization vector for the acous-
tic branch labeled by u. The wave vectors of importance
will be sufficiently small (7 <0.4 A~") that | ¢8| <1 (the
F~ distance 8 is 2.1 A), and the phase factor in (2.12) can
be approximated as 14iq- 5. Then the one-
magnon—acoustic-phonon interaction Hamiltonian takes
the form

F [g.(e x—ite,,) +e,,(gx —itg,)]

+2e~i JI‘ [g:(te,x —ieyy ) +e,,(tg, —igy)] a%pe;;}—H.c.,

J

where the magnetoelastic coupling constant

A2(2S —1)P§
V2A,ALS

defined in analogy with the coefficients b,g,5 of Eq. (1.1),
is expressed explicitly in terms of the spin-orbit coupling
constant A, and the Coulomb matrix element P and
crystal-field splittings A,, and A,, defined in Ref. 12.
The coefficient ¢ in Eq. (2.13) is the ratio =R /P~0.4,
where R is a second Coulomb matrix element defined and
evaluated in Ref. 12. We have used the notation e,y for
the x component of the unit polarization vector &(q,u).
The sum over the three acoustic branches is complicated.
However, the calculations of Refs. 12 and 19 suggest that
the q dependence of &(q,u) is unimportant. We also note
that insofar as the three acoustic modes for given g can be
characterized as longitudinal and transverse, there is no
coupling to the longitudinal mode [no terms of the form
daeuq in Eq. (2.13)]. Thus we expect little quantitative er-
ror from the substantial simplification of replacing the
sums over modes u of the p- dependent factors in Eq.
(2.13) by g/(,)'"* where o, is a suitable representative

b= (2.14)

FUg)=wg[(do+24 )0t +7,)+84,(0™ —y)]/[(0 + 05 *—al] Ty,

where w; is the local magnon energy, wg = 16J8S is the ex-
change energy, wy=gugH, is the Zeeman energy,
o0*=(0; +ogtopte,) /o with o =(2S —1)D the an-
isotropy energy, and 8y,= 2 =exp(iqg- §) with &
summed over lattice vectors from a magnetic site to
nearest magnetic neighbors on the opposite sublattice (i.e.,
to next-nearest magnetic neighbors). The three numbers
Ap, Ay, and A4, are essentially the local-mode amplitudes,

A= Vil (2.18)
m

(2.13)

f
acoustic frequency (the “transverse”-acoustic frequency,

insofar as that can be defined). Then

#inlac phonon)= — i (#S3/MN)!/?
Xb 3 [q/(0g)*IFr(g)ajcr+H.c.

q,A
(2.15)
where the form factor F*(g) is defined as
FMg)=3 e T TiTde (2.16)

10

essentially the Fourier transform of the magnon wave
function at the phonon wave vector. As one would ex-
pect, this simply measures the extent of spatial matching
of the two excitations, excluding the impurity spin at the
origin / =0, which does not couple to the phonon field.
For A=0, corresponding to the local (Sy-symmetry) mag-
non, from Eq. (2.8) and the explicit form of the pure-
crystal Green’s function,'® we have

(2.17)

I
where A, refers to / =0 (the impurity site), 4, to [ =8, (a
nearest-neighbor site), and 4, to /=8, (a next-nearest-
neighbor site). For the S-symmetry mode the value of 4,
is, by definition, independent .of which of the eight next-
nearest neighbors is chosen; similarly 4; does not refer to
a particular near neighbor. The values of the 4; are given
in Ref. 16. For H( <0 the result (2.17) refers to the up-
going local mode, and for H, >0 it refers to the down-
going mode.

Of the various optical-phonon branches only that with
B, symmetry at ¢ =0 lies low enough to fall within the
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frequency range of interest here: At g =0 its frequency is
2.04 THz (68 cm™!); thus this branch can provide a chan-
nel for single-phonon decay of the up-going local magnon
at reasonable magnetic fields. In general, at small g the
relative motion of atoms within a unit cell is larger for an
optical than for an acoustic phonon, and one would antici-
pate a relatively strong magnon-phonon coupling. That
expectation is mitigated somewhat in this particular case
where at ¢ =0 only the F~ ions move, and their displace-
ments are perpendicular to the line joining them to the
nearest magnetic ion.»20 Of course, this is also the
reason that the corresponding optical-phonon frequency is
relatively low. Nevertheless, this is a potentially impor-
tant decay mechanism. Using the proper normal coordi-
nates and assuming ¢ << 1, we can sum the body-centered
and corner-site interactions over all sites except i =0 to
find

sshs |72 .
—1/2pA
Him(Big)= ISNMF b q%q%oa B*(q)ayc)+H.c. ,
(2.19)
where the coupling parameter now is given by
q°BMq)=iFMq)q.q,+FMq)gyq; , (2.20)
J
2ris? 172
;i mag+ac phonon)~ N l P
q,k,
Ap

where u now labels the acoustic-phonon branch. For the
down-going impurity mode the interaction takes exactly
the same form, but with u; and v, interchanged.

III. LINEWIDTH CALCULATION

The simplest process for local-magnon relaxation is
direct decay into a single phonon. In the absence of crys-
talline translational symmetry (because of the impurity),
the requirements of wave-vector conservation are relaxed.
In general, the local magnon can decay into any phonon
energetically degenerate with it (unless other symmetries
prevent magnon-phonon coupling), as illustrated in Fig. 1.
In FeF, the transverse-acoustic phonon bands extend as
high as 3 THz, and above 2.04 THz the magnon also be-
comes degenerate with phonons in the B,, optical band.
At temperatures low compared with the local-magnon en-
ergy, where the number of thermally excited phonons de-
generate with that magnon is negligible, the standard
golden-rule expression for the decay rate of the local mode
into a single phonon from the branch labeled by u gives
the linewidth contribution

_ 2T 2
AH, = VP % 1V, | ‘80 —og,) , (3.1

where VT;’ is the matrix element of the interaction Ham-
iltonian between the states of a single-local-magnon exci-
tation and excitations of a single phonon of wave vector q

b3 qcoq_ﬂl/z[ka,?'(?j-i—E)+ukF}\(?1'+E)]a;,,c;l\c;~+H.c. ,
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with

FMg)=wg[ (49+24))o*
—84,7,1/[(0L + 0V —w;]-T,, 2.21)
FM@) =0g[(4o+24,)7, +84,0" /[0 +op P —2] .

The terms in S*S?, (S*)?, and (§%)? in the spin-lattice
Hamiltonian give rise to processes in which the local mag-
non mode decays into one phonon and one propagating
magnon. However, contrary to the situation for the one-
magnon interaction described by (2.13), in general acoustic
phonons of all polarizations are coupled to two magnons
of arbitrary wave vectors. The interaction Hamiltonian is
now lengthy, since there are three different magnetoelastic
coupling coefficients, and each one multiplies a different
combination of products of momentum and polarization
vectors of the type that appear in (2.13). But since the en-
ergies of the two excited crystal-field states are not much
different, and 1~0.4, the three coupling coefficients are
nearly the same. Assuming they are all equal and using
the same type of approximations as before we obtain, for
the up-going impurity mode,

(2.22)

3.0 T 71 1100
(em™)
-*
20
~ .
I
!
> -50
£ & MAGNON
Wl -
&
1.0 R
TA B
0 IR N W W NN SN R N SN S 0 (o)
0 0.5 1.0

WAVE VECTOR [110] &™)

FIG. 1. Dispersion relations for low-lying phonons and both
magnon branches in a magnetic field for FeF,:Mn. The local-
mode energies (on both sublattices) are indicated as dashed lines;
their potential decay into a single acoustic (TA) or optical (By,)
phonon or into a down-going magnon is indicated by the solid
circles.
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on branch p. For g along the high-symmetry directions
[100] or [110] in FeF,, the matrix elements V_(f# vanish
for the longitudinal- and one of the two transverse-
acoustic branches. Although the situation is more compli-
cated in a general direction of d we approximate the sum
over p in (3.1) by assuming an effective contribution from
a single branch. The phonon dispersion relation can be
approximated by the isotropic analytic expression

o(g)~coq —c1q°, 3.2)

where the values ¢y =19.6 meV A and c1=3.9% meV A3
reproduce'? the experimental dispersion curve accurately
for q in the [100] direction and represent a good approxi-
mation for the transverse phonons in all directions.
Within this approximation the linewidth contribution
(2.15) from decay into single transverse-acoustic phonons
becomes

S%? q* 2
AHpp~ v quwq | F(q) |0 —g)
S%2  qo|F(go)|?

(3.3)

= mvfip wr(co—3c1q3)

where p is the mass density, the form factor F(q) is given
by Eq. (2.17), and g, is the wave number of the phonons
degenerate with the local magnon, w(gy)=w;. The pho-
non density of states, characterized by the denominator
(c0—3c1q(2))‘1, is the important feature of the acoustic-
phonon spectrum affecting the linewidth. The smooth,
monotonically increasing function of our approximation is
a reasonable representation of the actual density of states.

For the B, optical phonon we use the interaction Ham-
iltonian (2.19) and assume an isotropic dispersion relation
of the form

w(q)=w0+aq2 (3.4)

The zone-center minimum energy o has been determined
at T =10 K by Raman scattering* to be 2.06 THz. Since
the full dispersion relation for FeF, has not been experi-
mentally determined, we assume it to be similar to the iso-
morphic antiferromagnetic crystal MnF,, with very simi-
lar lattice parameters and ionic masses. The phonon
dispersion relations for MnF, are well known,?! and in

MnF, the coefficient a in (3.4) is a~2.5 THz A% Then
we find for this contribution to the linewidth

95| F(go) |
()4

_Sbe8)?
~ 60mytiap

M
4Mx

AH(By,) , (.5

where the effective form factor is
| F(go) | *=F/(q0)+F(q0) ,

i.e., the sum of the corresponding factors for the two sub-
lattices.

Between 1.54 and 1.93 THz the up-going local mode is
degenerate with the down-going magnon continuum, but
decay into this continuum is strongly inhibited by total S,
conservation. The relaxation of this requirement by the
small symmetry-breaking terms of the magnetic Hamil-
tonian (dipolar and orthorhombic anisotropy interactions)

(3.6)
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has been calculated in Ref. 6; it seems to explain only a
fraction of the observed linewidth. But the magnon-
phonon coupling also provides a mechanism for opening
this decay channel. The down-going “magnon” excita-
tions are more properly coupled magnetoelastic modes,
and though the phonon admixture is small, except near
the point where the magnon and acoustic-phonon disper-
sion curves cross, it does also allow direct decay of the lo-
cal magnon to these modes, as illustrated in Fig. 2. In
fact the crossing of the magnon and phonon dispersion
curves occurs right in the region of interest, at an energy
of about 1.75 THz at a magnetic field such that the up-
going local mode also has this energy. Nevertheless, the
effect of this magnetoelastic mixing on the linewidth turns
out to be small. The calculation is straightforward, start-
ing from the pure-crystal magnetoelastic Hamiltonian,

%0a(mag'e1)= 2 hekac;acka‘i' 2 hwqa;aq
k q
+i#/2) S oreiar+He. , (3.7
k

where we have again simplified the calculation to a single
effective phonon mode and have written only the part ap-
propriate to one of the two magnon branches, here labeled
by a. The magnetoelastic coupling constant o, for the
down-going magnon is given by
ab?s? | .
T M (ug +vg)

O = (3.8)

within the approximation that the band-magnon wave
functions are given adequately by plane waves (in fact
they must be distorted precisely in the neighborhood of
the impurity so as to be orthogonal to the local mode, but
it is very difficult to account for that explicitly).

[N W N T N |

1
) 0.5 .10
WAVE VECTOR [110] (A7)

ol_1 1 1

FIG. 2. Potential decay path for the up-going local mode into
a single spatially extended excitation, as in Fig. 1, but for a field
such that this final-state excitation is a strongly mixed magne-
toelastic mode.
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The Hamiltonian (3.7) is quadratic in boson operators
and therefore readily diagonalized by a canonical Bogo-
liubov transformation®®

Ck=Xpbr 4 +zKbr— , ap=zxby  +xxby_, (3.9

with x?+z2=1 to preserve the commutation relations.
The calculation of the decay of a local magnon into the
magnetoelastic modes created by by + goes through just as
before [with the result (3.3) for the linewidth] except that
the effective coupling b2 will contain an extra multiplica-
tive factor x? or z} reflecting the phonon admixture in
this magnetoelastic excitation, and the density of states
will be that of those mixed excitations. In general (see
Fig. 2), the local-mode frequency intersects both magne-
toelastic branches. If the local magnon is well above the
crossover energy, where uncoupled magnon and acoustic-
phonon dispersion curves cross, as sketched in Fig. 2, then
the decay mode on the upper branch (created by bk 1)
is primarily a phonon, the admixture factor z2 is close to
unity, and the density of states is nearly that of acoustic
phonons. The earlier results, in other words, are only
slightly modified. The new channel is provided by the
crossing of the lower magnetoelastic branch, which is
largely of magnon character. The coupling is modified by
the mixing factor

1
2

21-172
0_2

k
~——,
Hwr —€xa)’

(3.10)

Ok

xi=

1 Tk
2 D —€gg

which is small compared to unity in the region of interest,
but the density of states is essentially that of magnons,
which becomes large near the zone boundary. However,
we will find below that this contribution does not become
numerically important in this region. One might expect
the magnetoelastic coupling to lead to substantial altera-
tions in the linewidth for local-mode energies near E,, the
magnon-phonon crossover energy. In fact, this is not the
case. A standard, nearly degenerate perturbation-theory
calculation at precisely that energy gives solutions at wave
vectors g — g, = +0y(cocm ) 1’2, where again the subscript
“x” denotes the crossover pomts, and ¢y and c,, are the
group velocities of bare phonon and magnon at that point.
Factors in the linewidth involving analytic functions of g,
including u,, v,, and the form factors, are given by their
values at the crossover plus second-order corrections in
| g —g, | when summed over the two solutions symmetri-
cally located in g —g, (as first-order corrections cancel).
There remain the factors zqzzcm /(co+c¢,, ), measuring the
phonon admlxture, and the density of states, proportional
to (dE /dq)~!, appropriate to the new mixed magnetoelas-
tic modes with energies E (g),
zq2 Cm co+Cm
2, Co

1

- 3

11
20s (3.11)

dE/dg~ | co+cm

for each of the two modes, so that through first order in
| g —gx | the contribution to the linewidth is the same as
from the original bare phonon, with zq2—>1 and
dE /dq =c, (note half the contribution comes from each
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of the magnetoelastic modes at energy E,). Numerical
calculations bear this out; the bare-phonon contributions
to the local-mode linewidth are altered by less than 1%
when the proper coupled magnetoelastic modes are used.
Finally, we consider the local-mode linewidth contribu-
tions due to decay into a magnon plus an acoustic phonon,
described by the interaction Hamiltonian (2.22). For
reasons of energy conservation this mechanism applies
only above a local-mode threshold energy of 1.54 THz
(i.e., only for the up-going local mode and at fields
Hy>11 kOe). Again the magnetoelastic modes should
really be considered, but with energy conservation now re-
stricting only the sum of magnon and phonon energies in
the final state, these excitations can be located over much
of the Brillouin zone for any given local-mode energy. In
general, they are well removed from the crossover region,
and the admixture effects are less important than before.
Because of the magnon energy gap, for fields (and local-
mode energies) of interest here, the majority of the energy
goes into the final magnon, and the low-energy final pho-
nons are adequately described by the linear dispersion re-
lation @,(q)=cg,q for the acoustic branch labeled by p.
If we neglect the wave-vector anisotropy in the dispersion
relations w,(q) for phonons and e(k) for down-going mag-
nons, then the golden-rule expression for the linewidth can
be readily written as an integral over the final magnon

momentum K only,
S%b%Q
4ty ip
X [ d*k g3tk | C(K,Go) |?/c, ,

AH (mag+ phonon)~

(3.12)

where gy(k) is the phonon wave vector demanded by ener-
gy conservation: ®,(qo)=w; —e€(k), and the effective
form factor is

C(K,Go) =0k Fy (K +Go)+u Fy(K +o) - (3.13)

In doing the integral over g to arrive at the result (3.12),
we have neglected the weak dependence of F; and F; on

the direction of their argument, K+ do-

IV. NUMERICAL RESULTS AND COMPARISON
WITH EXPERIMENT

We can evaluate the magnetoelastic coupling coefficient
b defined in Eq. (2.14) with the values of the parameters
given by Lovesey.”? With A=85 cm~', A,, =800 cm~,
A, =1000 cm~!, § =2, §=2.12 A, and P =0, 004e%/a},
where e is the electron charge and a, is the Bohr radius,
we obtain b =6.6X 1015 erg. Note that this value, de-
rived from first principles, gives a magneto-
elastic splitting o [defined in Eq. (3.8)], at k, ~0.4 AL
of 0.13 THz or 0.53 meV, which agrees very well with the
experimental neutron-inelastic-scattering value of about
0.4 meV (in the [100] direction; the value is direction
dependent since anisotropic dispersion relations for bare
magnons and phonons lead to different crossing points for
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FIG. 3. Residual local-mode linewidth in FeF,:Mn from
phonon-associated relaxation processes. Theoretical curves are
labeled A4 (decay to a single phonon) and B (decay into a
phonon-magnon pair). Proper treatment of the region between
1.54 and 1.93 THz is beyond the scope of this paper (see text).
Experimental error for the point of 1.36 THz is smaller than the
diameter of the solid circle; the other error bars are discussed in
the text.

the dispersion curves in different directions in reciprocal
space). With this value of b we obtain the linewidth
shown in Fig. 3 as a function of the local-mode frequency.
Note that the ranges below and above 1.507 THz corre-
spond to the down-going and the up-going local modes,
respectively.

Curve 4 in Fig. 3 represents the contribution from the
direct one magnon to one bare acoustic-phonon process
given by Eq. (3.3). Near 1.7 THz, as we have pointed out
above, the bare phonon is not a good approximation to the
relevant magnetoelastic mode because there is substantial
admixture of a magnon from the down-going branch, but
the net effect of this admixture on the linewidth is small.
Away from this region the frequency dependence of curve
A arises from two sources: (i) the phonon density of
states, essentially proportional to ® since the phonon
dispersion relation is almost linear over the range of fre-
quencies of interest, and (ii) the form factor |F(q)|Z%
The wave function'® is roughly Yukawa shaped,
T'; ~exp(—kr;)/r;, with the characteristic size k~! of the
order of a few lattice spacings. Thus F(g)~(g%+«*)~},
and for ¢ >« and g~ /c (cy is the velocity of sound) we
see that | F(q)|?>~w~* which dominates the density-of-
states factor. Further, as the local-mode frequency in-
creases, it is separated further from the magnon band
edge, because the g factor of the Fe spin is about 10%
larger than that for Mn. The impurity mode then be-
comes increasingly localized spatially; i.e., x increases.
The overall result is a substantial decrease of linewidth
with increasing frequency.

The contribution of the B;, optical phonon to the
linewidth, given by Eq. (3.5), is always small. It vanishes
at frequencies below 2.06 THz, rises to a maximum of

1645

about 5 Oe at 2.3 THz, and falls slightly out to the max-
imum frequency values of interest here (~2.7 THz). It is
instructive to compare the single optical- and acoustic-
phonon contributions as given by Egs. (3.5) and (3.3),
respectively. As expected, the optical process is enhanced
by a relative density of states, cy/2ag~1/q (in A~!) and
by comparatively large relative ionic motion, as reflected
in the factor M /4Mg~2.5. As we mentioned above,
however, the symmetry of this optical mode implies rather
weak coupling, at least at small g, reflected in the extra
factor of (gd)? and in the angular factors g¢,q,/q* and
99, /q* of the coupling constant (2.20); the square of each
gives an angular average of 1/15, an explicit factor in Eq.
(3.5). The relevant Coulomb matrix element is also small-
er; the factor of ¢? in (3.5) gives a reduction of approxi-
mately 0.16. The net result is a reduction from the acous-
tic contribution, typically of the order of 100 Oe, to a few
Oe for the optical phonon over the range of interest.

We find that at high frequencies the linewidth is dom-
inated by relaxation to a magnon—acoustic-phonon pair,
as given by Eq. (3.12). Because the square of the matrix
element is inversely proportional to the phonon energy
and the density of states is inversely proportional to the
phonon velocity, this process is dominated by the
transverse-acoustic-phonon branch with the lowest energy.
Along [110] this corresponds to polarization e, =e,,
e,=0, and a sound velocity of cg~2X10°> cm/sec, the
lowest for any direction of propagation. The velocity rises
to a maximum of cy~3X10° cm/sec along [100]. The
angular integrals in Eq. (3.12) are difficult to perform, and
there are no reported measurements of the phonon disper-
sion relation in general directions in any case, so we have
replaced all angularly dependent factors in the integrand
by simple averages of their maximum and minimum
values. As we remarked below Eq. (3.13), we recognize
that F;(k+d,) and F j(f{+ qo) depend importantly only
on the absolute value of their arguments. Then the only
dependence on the direction of { is in the factor e A(q),
which is replaced by its average over the [100] and [110]
directions. The form factor itself is then replaced by the
average between K parallel and antiparallel to ¢ (i.e.,
GT{ =0 and m). The contribution to the local-mode

liné;idth of this process of relaxation to a magnon plus a
phonon, as calculated within the approximation just
described, is plotted as curve B in Fig. 3. The contribu-
tion becomes significant around 2 THz and increases rap-
idly with frequency. We indicate the behavior only up to
2.7 THz; at higher frequencies the approximation for the
phonon dispersion relation is inadequate.

We have discussed above local-mode decay into magne-
toelastic modes in the frequency range 1.54—1.93 THz
where the up-going local mode is degenerate with the
down-going magnon band. Of course, the S,-
symmetry—breaking interactions (notably orthorhombic
anisotropy) discussed in Ref. 6 also provide for decay into
these same final states, and we should properly take into
account the quantum interference between the amplitudes
for the two processes in calculating the probability for de-
cay. Since the two mechanisms calculated independently
give comparable contribution to the linewidth in the re-
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gion of interest, the interference term can be of substantial
importance. However, to carry out the amplitude calcula-
tion for the symmetry-breaking anisotropy interaction to
find both magnitude and phase, we need the final-state
wave function. The impurity offers primarily a magnetic
contrast to the host atoms, and as opposed to the phonon
final states we have considered above, which are well
represented as plane waves, the continuum magnons are
distorted from plane waves precisely in the neighborhood
of the impurity where their overlap with the initial local-
mode state is substantial. The Green’s-function calcula-
tion of Ref. 6 does not suffer from this problem, but it
also does not yield the essential information about the
phase of the transition amplitudes. Therefore we have
marked this region where these processes can take place
with vertical lines in Fig. 3, and have included only the in-
dependent contribution to the linewidth of the phonon
mechanism. We do not know whether constructive in-
terference, a slightly larger orthorhombic anisotropy con-
stant than estimated in Ref. 6, or a combination of these
may explain the relatively large observed linewidth! of 3
kOe at 1.75 THz, as compared with a combined theoreti-
cal value of about 1 kOe from the two mechanisms treated
independently. But we do note that a factor of 2 in the
anisotropy constant or completely constructive interfer-
ence would each essentially remove the discrepancy, and
neither seems unreasonable.

Outside the range 1.54—1.93 THz the impurity-mode
linewidth has been measured only at three frequency
values. Of the data points in Fig. 3 the one at 1.36 THz is
the most reliable, since the contributions from radiation-
damping and impurity-banding effects could be clearly
identified and the measurements were made in a highly
uniform field. It is gratifying that this point agrees with
the calculation within 20% considering the various sim-
plifying assumptions that were made in the evaluation of
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the final result. The bars at 0.85 and 2.5 THz represent
data taken at the High Field Laboratory of Osaka Univer-
sity.2* The upper end of the bar represents an extrapola-
tion of the measured absorption linewidth to zero sample
thickness and impurity concentration, and the length cor-
responds to the estimated field nonuniformity in the sam-
ple. Since the field profile and the shape of the absorption
line are difficult to measure with precision, one cannot use
deconvolution techniques to extract the true linewidth, but
it probably lies somewhere near the middle of the bar. So
at these frequencies the predictions of the theory are also
confirmed by experiments.

We emphasize that there are no adjustable parameters
in the theory, so the agreement with experiment is highly
satisfying. We are confident that we have identified the
primary local-mode-broadening mechanisms. On the oth-
er hand, the preliminary nature of two of the measure-
ments and the considerable experimental uncertainty still
leave us short of a clear demonstration of the predicted
linewidth behavior as a function of frequency. With the
development of broadband sources in this frequency re-
gion, notably the free-electron laser, we look forward to
definitive experimental results over the whole range of
Fig. 3.
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