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Monte Carlo optimization of pair distribution functions:
Application to the electronic structure of disordered metals
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We show that the random-number-based annealing techniques of statistical physics can be used to
obtain two site distribution functions that are suitable for use in connection with electronic structure

computations based on the muffin-tin model for structurally disordered metals. To illustrate this

procedure, me study the tel.perature dependence of the density of states and electrical resistivity of
liquid Cu. Our first-principle calculations pxedict reasonable values for the negative temperature

coefficient of the resistivity (for the appropriate range of Fermi energies) and thus provide support
for the Faber-Ziman semiempirical model.
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where IT is a distance roughly equal to twice the muffin-
tin radius. On the other hand, in momentum space, h (E)
is subject to the inequality6

In a series of recent papers we have shown that the
effective-medium RpproxlIIiatloii (EMA) provides R satis-
factory description of the electronic properties of structur-
ally disordered metallic systems. In particular, we
have focused our attention on energy regimes in which the
electrons undergo strong scattering that is either atomic or
structural in origin. Examples of the atomic case are d
states in noble and tx'ansition metals, ' while the structur-
al case is illustrated by electrons whose effective wave vec-
tors, k, are roughly equal to Es/2, where E~ specifies the
location of the principal peak in the structure function
s (E).'

Within the framework of the muffin-tin model, EMA
calculations proceed in terms of three input units: (1) the
atomic potentials, (2) the average atomic density n, and (3)
the radial distribution function g(R). The first of these
ingredients is constructed theoretically by one of a number
of different techniques and will not be of direct interest in
the present paper. We focus here on the second two units,
both of which are, in principle, available from experi-
ment. In particular, x-ray-diffraction measurements

directly yield s(E), and g(R) is then obtained via the
Fourier transform

Unfortunately, it is not a simple matter to obtain pairs
[h(R), h (E)] that satisfy the constraints (2) and (3) and
are also related by the Fourier transformation (1). The
problem is that x-ray-diffraction measurements yield data
that are (1) subject to experimental uncertainty, and (2) ex-
tend over a limited range of momenta (typically, the data
are subject to cutoffs at both large and small E). Even the
most reasonable extrapolation procedures (in E space) will

generally lead to an h (R} that violates (2). If this h (I(l) is
adjusted "by hand" to satisfy (2), its Fourier transform
will almost certainly violate (3).

It 1s clear that thc problem dcscribcd above scvcrcly
limits the utility of the muffin-tin EMA method. We
show in the following section that the Monte Carlo tech-
niques introduced by Metropolis et al. s can be used to
overcome this difficulty. The algorithm described there
essentially automates the construction of [h(R), h(E)]
pairs that are suitable for realistic electronic structure cal-
culations. In the third section we use this method to
study the effects of temperature on the electronic spec-
trum of a prototype d-band system. Beginning with ex-
perimental data on molten Cu at 1150 and 1600'C, we
compute electronic densities of states and resistivities.
Two features of our results are of particular interest.
Firstly, within the d bands there is noticeably more struc-
ture than was indicated by our previous calculations.
(We argue that this structure was suppressed by spurious
features of the pair distribution function employed in Ref.
2.) Secondly, if the Fermi energy Er is assumed to lie in
the vicinity of the structure-induced minimum of the
average density of states, then the resistivity is found to
decrease as the temperatux'e is increased. This behaviox' is
related to the broadening of the principal peak in s(E)
and is consistent with the Faber-Ziman description of
negative temperature coefficients in liquid and amorphous
metals. However, in the present case no assumptions re-
garding the behavior of the effective Fermi wave vector,
kg~ arc required.
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MONTE CARLO OPTIMIZATION

In practice, it is convenient to eliminate h (R) in favor
of H(R) =Rh (R). The conditions to be satisfied by the
pair [H(R), h (K)] are

(R) R, R(o
& —R, R&o.

lim H(R)=0,
R —+op

h(K) & —1,
lim h(K)=0,

(5)

(6) 0

h (K)= JH(R)sin(KR)dR .E (8)

In Monte Carlo optimization schemes one seeks a vec-
tor V (in an abstract space) that minimizes an objective
function EI Vj." The basic steps of the process are the
following. (1) a random change in V is proposed, (2) the
change in the objective function hE I Vj is computed, and
(3) the proposed change in V is accepted with a probability

1, AE (0
e ~, AE &0

where T is an effective temperature. For a given T, these
steps are repeated until fluctuations in E are small. The
process begins at a temperature T greater than the largest
4E expected; by slowly reducing T, the system is "an-
nealed" toward the state of minimum E. To apply this
technique to the construction of suitable pairs [H(R),
h (K)], we begin with an experimental ho(K) that satisfies
(6) and (7) (after careful extrapolation to large and small
K). The transform, Ho(R), of ho(K) will, in general, not
satisfy (4), but can usually be adjusted to do so by setting

0

0—

8 (a.u. )

20

Ho(R) =
Ho(R), R )o . (10)

The functions Ho(R) and ho(K):—hp(K) satisfy (4)—(7)
but not (8}. Our objective is to find functions [H'(R),
h'(K)] that minimize

E I H'(R ) j = IP i (R )[H'(R ) —Ho(R )] dR

~, X h X —I, X 'eX.

Here P, (R} and P2(K) are weighting functions which can
be designed to place more emphasis on particular ranges
of R and K, H'(R) is generated by random changes in

Ho(R), and h'(K) is calculated from H'(R) via (8). It is
hoped that [H'(R), h'(K)] will satisfy (4)—(8) and differ
from [Ho(R), ho(K)] by amounts that are no greater than
the experimental uncertainty. Without going into further
detail here (see the Appendix), we illustrate this procedure
by considering the case of liquid Cu at 1600'C. ' In Fig.
1(a) we show Ho(R) and Ho(R). In Fig. 1(b), ho(K) is
compared with the transform of the adjusted function
Ho(R) shown in Fig. 1(a). (The unphysical features of the
dashed curves in Fig. 1 are indicative of the basic problem
described above. ) In Fig. 2 the final [H'(R), h'(K)] are

K(a.u. )

FIG. 1. In (a) are shown Ho(R) (dashed line) [the transform

of ho(k)] and Ho(R) (solid line) [defined by (10)]. In (b) we

compare Ao(E) (solid line) with the transform of Ho(A) (dashed
line).

compared with [Ho(R), ho(K)]. We note that over most
of the R and K range the changes introduced by the an-
nealing process are quite small.

TEMPERATURE EFFECTS IN LIQUID Cu

The procedures described above have been used to com-
pute [H(R), h (K)] pairs for liquid Cu at T =1150 and
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FIG. 3. EMA spectra shown in (a) are based on Monte

Carlo —annealed pair distributions for two temperatures. In (b)
the present T =1150'C spectra (solid line) and the results ob-
tained in Ref. 2 (dashed line) are compared.
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FIG. 2. Converged pair [H'(R), h'(lC)] and the objective pair

[Ho(R) hp(IC)] are compared. In (a) are shown Ho(R) (solid
line) and H'(R) (dash line) [arrows indicate those values of R
where Ho(R) and H'(R) differ by more than 1%]; in (b) are

shown hp(K) (solid line) and h'(E) (dashed line).

T %00oG
T=1%0 G

1600'C.' The corresponding EMA densities of states
p(E) are compared in Figs. 3 and 4 for two energy ranges
of interest. In Fig. 3(a} we see that at both temperatures
the d bands exhibit a distinct three-peaked structure that
can be understood as a smoothed version of the crystalline
spectrum. In going from 1150 to 1600'C, the nearest-
neighbor peak in H (R ) broadens slightly. Since the d
states are especially sensitive to local fluctuations, their
contribution to the average spectrum is a somewhat
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FIG. 4. Structure-induced minima in p(E) for T =1150 and
1650'C.
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10-
could be used to estimate the dependence of the resistivity
on the Fermi energy EF. In Fig. 6 we show the resistivity
maxima calculated for E~ in the vicinity of the structure-
induced minimum in p(E). Since the scattering is reduced
at higher T, it is not surprising that the resistivity is lower
at 1600 than at 1150'C. The resulting value for the nega-
tive temperature coefficient,

FIG. 5. Monte Carlo —annealed pair distribution for
T =1150'C (solid line) is compared with the corresponding dis-
tribution used in Ref. 2 (dashed line).

smoother function of energy at the higher temperature. In
Fig. 3(b) the present results for T =1150'C are compared
with our previous EMA calculations at that temperature.
Note that the structure within the d band is much less
pronounced in our earlier results. The pair distribution
function employed in Ref. 2 was based on the same exper-
imental data of Waseda; however, in the earlier calcula-
tions, the problems described above were dealt with by a
series of modifications introduced "by hand. " The H(R)
used in Ref. 2 is compared, in Fig. 5, with the one
prepared by the techniques developed here. The small os-
cillations in the dashed curve are spurious consequences of
the crude method used to adjust the [H(R), h(K)] pair.
One effect of these oscillations is to broaden the distribu-
tion of nearest-neighbor distances which would tend to el-
iminate the structure in the d-band part of p(E).

Turning to Fig. 4 we see that increasing the temperature
leads to a less well pronounced minimum in the density of
states. ' Physically, this is expected because, as T in-
creases, the principal peak in s(K) is broadened and the
strength of the associated scattering effects is reduced. In
Ref. 3 we showed that the EMA spectral density functions

o0 o

o
(0

(A

+ o-4J (g)

o
o

~ =O.036
AT

measured in pQcm/'C, is quite typical for a range of
liquid and amorphous metallic alloys. ' As we noted in
Ref. 3, the effects described in Figs. 4 and 6 are usually
interpreted in terms of the empirical Faber-Ziman
theory. ' It is reassuring to see that qualitatively similar
results are obtained from the present ab initio calculations.
Calculations on liquid and amorphous alloys are required
before we can claim that a satisfactory description of
these effects is in place. Two-component systems require
three pair distribution functions, hzz(R), hz~(R)
=hzq(R), and hzz(R), but as we have shown in Ref. 4,
the methods developed here are readily applicable. Calcu-
lations on a prototype transition-metal —metalloid glass
are in progress and are planned to be described in a subse-
quent publication.
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APPENDIX

The functions Hp(R), H'(R), hp(K), and h'(K) appear-
ing in Eq. (11) are each stored on uniform N-point grids,
where X=2, m ~ 11. We denote the spacings on the R
and K grids as b~ and b,». A typical value for Az is 0.1
a.u. and b,k is taken equal to 2n. /(Nb, z). The procedure
begins with H'(R)=Hp(R); a random point i of the R
grid is chosen and the value of H'(R) is changed by an
amount hH, randomly chosen to be positive or negative,

H'(R),
i
R —R;

~
)b,~/2H'(R) = ~

(A 1)H'(R )+~,
i
R R/

i (b,g /2 . —

(Here R; =i h~ )hH lies .between 0.01 and 0.001 a.u. and
its value is fixed throughout the computation. The corre-
sponding change in the objective function is'

b E=Pg(R; ) [(AH) +2[H'(R; ) Hp(R; )]AH I bg—
+QP(KJ. ) I[D(KJ )]

0.5
I

Q. 7 0.9
EF (Rg)

1.3 +2[h'(KJ ) hp(E~ )]D(KJ ) I b,»—,

FIG. 6. Electrical resistivities (for E~ within the structure-
induced minimum) for T =1150and 1600 C. ~here Z, =Ja~ and
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sin(KR; )
D(K) =4ttn ~b, tt .E (A3)

The value of E [Ho(R)] is calculated at the outset and at
each stage is updated to E+AE. This avoids the need to
carry out a complete Fourier transform at each stage as
might be inferred from Eq. (11). (As a precaution against
accumulation of errors, E [H'(R ) ] is periodically
reevaluated from (8) and (11) using a fast Fourier
transform. ) If we sPecify R; =i b, tt and K =jb,x., where i
and j run from 1 to X, Eq. (A3) can be rewritten as

D(K)=D(j Et')=4trn ( —1) 'cos n2E (A4)

where n& and nz (nz &N/2) are integers defined such that
the product ij =n|N/2+n2. Since the cosine function in

(A4) needs to be evaluated at only X/4 distinct argu-
ments, which can be easily stored, the value of b,E can be

computed quite rapidly and the many iterations required
to minimize E[H'(R)] do not require excessive amounts
of computer time.
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