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Quantized Hall effect and edge currents
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It is shown that the quantized Hall current may always be expressed as the difference between
diamagnetic currents flowing at the two edges. It is argued that the high precision of the quantiza-
tion may be aided by the establishment of a local equilibrium in each edge region. The basic ideas
are illustrated by the discussion of a free two-dimensional electron gas in an infinite confining po-
tential. Our derivation establishes the connection between quantum-mechanical and classical ther-
modynamic explanations for the quantum Hall effect.

I. INTRODUCTION

Since the discovery of the quantized Hall effect by von
Klitzing et al. ,

' many papers devoted to the theoretical
explanation of this interesting phenomenon have appeared
(for a review, see, e.g. , Ref. 2). In most of these works the
influence of surface currents is not made explicit. On the
other hand, a recent thermodynamical derivation by
Streda and Smrcka, using an approach originally suggest-
ed by Widom, leads to the conclusion that the quantized
Hall current may be viewed as arising from the response
of the edge diamagnetic currents only. In this article we
use quantum-mechanical arguments to establish the essen-
tial role played by these edge currents in quantizing the
Hall conductivity. In so doing we establish the connection
between the approach of Laughlin and Halperin and the
thermodynamic derivation.

II. IDEAL CASE
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dimensional harmonic-oscillator eigenstate. Near the
boundary, however, we must take account of the confining
potential by setting P„x(+L„/2)=0. If we write
e„x——iitco, (v„+—,
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) the general solution to Eq. (3) may be

written as

and aL, ficl ——je ~8 and co, = Ie ~8/mc. If we impose
periodic boundary conditions with length Iz as a function
of the y coordinate, which is equivalent to requiring single
valuedness in a ring geometry, the allowed values of the
quantum number X are separated by 2maL, /L~:—5X. The
precise form of the confining potential is unimportant for
what follows, but for the sake of definiteness we take

%e begin by considering a system of noninteracting
electrons in the x-y plane in a potential which confines
the electrons to a finite range as a function of one of its
coordinates In a ma.gnetic field B=(0,0,8)= V'XA the
one-electron Hamiltonian is
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where V(x) is the confining potential. In the Landau

gauge A=(0,8x,0), we can separate variables in the usual
way and seek solutions of the form

lb(x,y) = exp, y„x(x),
I iXy

(2)
aL

where P„x(x) obeys

fs d 1+—mco, (x —X) + V(x) P„x(x)
2m d~ 2
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where Z =x —X. Near the edge x = L„/2 we can fix-
cc/p by requiring that p„x(x) vanishes as x~+ ao. This
leads to

p nv„ I ( 1+v„/2. )—=2 tan
, I ( —, +v, /2)

=~.,x0.,x(x» Then the discrete eigenvalue spectrum for given X can be
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FIG. l. Eigenvalues [@=fico,(v+ —,
' )] as a function of X, the

orbital center in the absence of a confining potential, for an in-

finite wall confining potential. In this figure X=O is at the

edge, X&0 is outside the edge, and X~O is inside the edge.
Note that at X=0 all the odd-integer harmonic-oscillator eigen-

values appear.

determined by finding the zeros of P„x( I.„/2). The-
eigenvalues and eigenfunctions at the other edge are sim-
ply related. The eigenvalue spectrum near the edge is il-
lustrated in Fig. 1. The important point is that the eigen-
values in the edge region lie between those for the bulk
Landau levels. It is clear that this must be the case for
any confining potential.

We now turn our attention to the current carried by the
electrons in this system. The expectation of the current
operator in each eigenstate is given by

eaL Be„,x
2

& n, X
I jy I

n, X& =

so that the total current carried by the nth branch of the
energy spectrum, when all the bulk states for that branch
are occupied, is
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where p" is the chemical potential at the right (positive-x)
edge of the sample and p is the chemical potential at the
left edge. Note that in the equilibrium case, where p is
constant, no current Aows. This remains true even if we
include an electric field term in our potential [i.e.,
V(x) = eEx in Eq. (4a)]. —In that case P„x(x)~P'„x(x)
=P„x(x), where X' =X+eE/m co, and e„x—+e„' x
=e„x eEX' +(m/2)(cE—/8), but Eqs. (7) and (8)
remain valid. In other words, in the equilibrium case,
p =p, the bulk current which Aows in the presence of
an electric field is exactly canceled by the surface diamag-
netic current. In the nonequilibrium case the current

flowing in the bulk depends on the internal electric field
when there is a chemical potential difference between the
two edges. For noninteracting electrons all the current
would flow at the edges and the quantized Hall current
would just be the difference between the two edge
currents. For interacting electrons a chemical potential
change at the edges must always be accompanied by a
charge redistribution and a consequent internal electric
field. (As discussed by MacDonald et al. , however, this
electric field is unlikely to be constant. ) The point we
wish to emphasize here is that any bulk current which
flows will always be compensated by an additional edge
current. As discussed in the next section these statements
remain true when we add a random potential term to our
Hamiltonian.

III. GENERAL CASE

We consider adding a random potential term to our
Hamiltonian which is sufficiently weak that the eigen-
functions IP~ „(x,y) I and eigenvalues I e~ „(x,y) I can still
be labeled by a Landau-level index. (This does not mean
that we do not allow any mixing between different Landau
levels. ) In the equilibrium case the total current from the
nth Landau level

g &a n
I Jy I

a n &8(p —&,, )=o1
y

must be zero. We will restrict our attention to the Hall
current when the chemical potential lies between bulk
Landau levels and consider changes in the chemical poten-
tial at each edge of the sample. To be precise about this
we define a local current density by

jy"(X)= g +&a,nIX, m&&X, m'Ia, n&
rn, m' a

&& &X,m
I jy I

X,m'&8(p —e„) .

Here I I
X,m & J are the eigenstates for the ideal case dis-

cussed in Sec. II. Since jy has no matrix elements between
any of these states with different values of X, the total
current is

I„=f dXjy(X) .

Now consider

8jy"(X) g +&a,nIX, m&&X, m'Ia, n&
m, m' a

x&X~m
I jy IX~m'&5(p dna)

(12)

Since the only states which exist at energy p are localized
at the edges of the sample, we shall assume this function
is peaked within a distance 8'-aL of the edge of the sam-
ple and drops essentially to zero in the middle. This is
certainly true in the ideal case and as disorder is added 8'
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may increase but presumably not drastically. (As we see
below, the accuracy of the Hall current quantization may
be related to W.) It is worth noting that the existence of
states well localized at the edges for energies in the intra-
Landau-level gaps which occur in a periodic potential has
been established by an explicit calculation. To calculate
the Hall current we take the chemical potential to be con-
stant at each edge of the sample, i.e.,

&j,"(X) Bj»"(X)I„=f dX 5@1+f dX kg
Bp ()p

5j»"(X)= f dX "
(5@~—5@i),

R Qp

(13a)

(13b)

where f denotes an integral over the region near the
left or right edge where Bj„"(X)/Bp is nonzero and Eq.
(13b) follows from Eq. (13a) by noting that I„must still be
zero if 5pi ——5@~. Since there are no energy gaps between
surface states, electrons lying in the vicinity of the chemi-
cal potential at each edge will try to establish a local
equilibrium to force the chemical potential to be constant
in each edge region. The probability of an electron being
scattered from one edge to the other, of course, is very
small because of the large momentum difference between
the electrons and a chemical potential difference between
the two edges would relax very slowly, corresponding to
nearly dissipationless current flow. We believe this is why
there is little dependence of the Hall conductivity on edge
imperfections. For example, the confining potential need
not be a function of one coordinate only. (The hypothesis
about local equilibrium at edges allows us to neglect the
dependence of 5pz and 5pz on Landau-level index. )

To express the total Hall current

8j "(X)I= g f dX (kg 5—pi )
R Qp

in terms of known quantities we note that

BH
J» ='a~ (14)

Equation (14) is valid for arbitrary H (i.e., with or without
a random potential) and, as first pointed out by Laughlin,
this relation is essential to the quantum Hall effect. By
introducing edge states Halperin was able to improve the
argument for the quantization of the Hall current based
on Eq. (14). This has been discussed more explicitly by
Girvin and Jonson in connection with their treatment of
the thermal conductivity and thermopower which we
mention briefly below. Here, however, we start from Eq.
(14) and take a different approach which relates this
quantum-mechanical treatment with the thermodynamic
derivation. ' We consider the grand potential at zero
temperature

&(p,B)= g (~,—p)e(p —e' „) .
a, n

The Hall current [Eq. (13b)] will eventually be shown to
be proportional to 8 O(p, B)/BpM, and so we begin by
looking at the change in 0 with a small change in 8. To
do so we note that when 8~8+M then, in the Landau

gaugers Ay ~Ay +Mx, so that using a Hellman-Feynman
theorem we obtain

BQ(p, B) 1

aa
= c.„=—+8(p —e~„)(a,n i j»x i

a, n)

=—Xe(s —~,.) g1

C a, n X m&, m2, m3

Since the thermodynamical definition for the magnetiza-
tion M is i30(p, B)/BB = —M, Eq. (16) may be regarded
as providing the quantum-mechanical equivalent of the
classical expression relating the current and magnetization
densities in the thermodynamic derivation. ' Differen-
tiating Eq. (16) with respect to p just changes the factor
e(p —e „) to 5(p —e „). It follows, making use of Eq.
(12), that

'gfdX ' X (17a)
Bp88 c Bp

(16)

j

with the sum being over occupied Landau levels.
Note that in passing from Eq. (16) to Eq. (17a) we have

dropped terms containing factors such as
(X,m2

~

x —X
i X,m3), which would give corrections of

order a/Ll„c opmr adeto those we have retained. Simi-
larly, to go from Eq. (17a) to Eq. (17b) we replace X by
+L„/2 at the edges which has corrections —W/L„. [Ac-
tually, these corrections should cancel to leading order at
the two edges to give a correction factor —(aI /L, ) .] To
the same order we may replace X(p)/L„L» by the num-
ber of states per unit area in a bulk Landau level to obtainL»L„Bj»"(X)

dX
c & Bp

so that comparing with Eq. (13b) we have

I= QI„= (5pA 5@1.)c (j Q(p B)
I.„I.y BPBB

(5pR 51 L )C (j+(p)
I.„Ly BB

(17b)

(17c)

eI = n(5S ~ 5C i »— —

where n is the number of filled Landau levels which is the
usual expression for the quantized Hall current.

IV. DISCUSSION AND CONCLUDING' REMARKS

Treatments of the quantized Hall effect which begin, as
we do, from Eq (14), norma. lly make use of the so-called
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gauge-invariance principle which requires the eigenvalue
spectrum to be unchanged when oA~L~ =C&o. This prop-
erty is not used explicitly in our derivation; the same in-
formation in our case enters through the use of the expres-
sion for the number of states per unit area in a Landau
level. Equation (17c), however, contains more information
since it can, and has been, ' applied to the case of a
periodic potential where gaps appear within a Landau lev-
el. The connection between Eq. (17c) and the "gauge-
invariance" principle has been discussed recently by Ram-
mal et ai." Our equation has previously been derived us-
ing Widom's thermodynamic argument as elaborated by
Streda and Smrcka. The quantum-mechanical derivation
of this expression makes the approximation hidden in the
classical approach apparent and establishes the connection
between this approach and previous quantum-mechanical
treatments. It also stresses the fact that the Hall current
can always be regarded as the difference of the diamagnet-
ic currents at the two edges. The same expression has also
been derived from the Kubo formula, ' and here, as well,
a detailed analysis of the derivation leads to the same con-
clusion.

In real systems of interacting electrons, at least without
a random potential, some current may flow in the bulk,
and the surface currents will adjust to cancel this, leaving
the quantized value for the total Hall current. (In our
derivation, we only look at the difference between the
currents in equilibrium and nonequilibrium situations.
This is localized at the edges but the tota1 current need not
be. ) A useful experimental indication of the relative im-
portance of surface and bulk currents may be the thermal
conductivity. It can be concluded from the arguments of
Girvin and Jonson that plateau values for this quantity
are given by

m k~T
K= fl

3h
(19)

if the current flows only at the edges, but it is not certain
that this will be the case if some of the heat current flows
in the bulk.

It is clear from the quantum-mechanical derivation that
while Eq. (17c) has corrections -( IV/L„), it need not be
true that Eq. (18) will have errors of the same order. In
fact, if the confining potential can be taken to be a func-
tion of one coordinate only and the random potential can
be set to zero in the edge regions, Eq. (14) leads directly to
Eq. (18) with corrections which decrease exponentially
with (L„/ai ) . Whether such a situation is ever realized
experimentally, however, is an open question.

Finally we note that the derivation of Eq. (17c) may
readily be generalized to the case of interacting electrons
merely by substituting the language of second quantiza-
tion for the language of single-particle wave functions
which we have employed. It follows that whenever a
discontinuity in the chemical potential exists which, as a
function of magnetic field, is pinned to a certain filling
factor v of the Landau level,

will hold, independent of the origin of the gap.
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