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The important longitudinal ( 3 3 3 ) vibrational modes in Mo, Nb, and bcc Zr as well as the H-

point modes in Mo and Nb have been studied using the frozen-phonon approach. These entirely
first-principles calculations involve the precise evaluation of the total crystalline energy as a func-
tion of lattice displacement and yield calculated phonon frequencies to within a few percent of the
experimental values. Anharmonic terms are readily obtained and are found to be very important for
causing the tendency toward the co-phase instability in bcc Zr. The charge densities and single-

particle energies obtained in the course of the calculations allow a detailed analysis of the electronic
response to lattice distortions and the mechanisms causing phonon anomalies. The calculations also
provide first-principles benchmarks at a few wave vectors where the validity of phenomenological
models can be tested or their parameters determined.

I. INTRODUCTION

Measurements of phonon dispersion curves not only
yield data useful for understanding the thermophysical
properties of materials, but also provide information about
the essential interatomic forces in solids. In metals the
fundamental phenomena of conduction-electron screening
is manifested in the dispersion curves, and by careful
analysis one may gain basic knowledge concerning both
the electronic screening of interionic forces and the
strength of the electron-phonon interaction. For nearly-
free-electron metals such as Na for which the change in
total energy caused by a phonon distortion of the lattice
can be accurately obtained using a pseudopotential and
second-order perturbation theory, the calculations of the
phonon dispersion curves seem reasonably well in hand. '
However, for materials containing transition metals the
same methods are less satisfactory, and although great
progress has been made in the last ten years there is still
no completely adequate first-principles method for obtain-
ing the lattice dynamics of solids possessing d-like valence
electrons. ' The numerous anomalies found in the pho-
non dispersion curves and the observed lattice instabilities
in many transition-metal compounds, especially those ex-
hibiting high-temperature superconductivity, provide ad-
ditional motivation for studying the lattice dynamics and
interatomic forces in these inaterials. In this paper we use
an entirely first-principles method (the so-called frozen-
phonon method) to study the lattice dynamics of some
prototypical transition metals. Our results, which we
describe later in the paper, are encouraging and confirm
that the frozen-phonon method is a powerful new tool for
investigating the microscopic interactions in solids. A
brief description of this work has already been published,
and another paper describing the extension of the method
to include the calculation of interatomic forces by using
the Hellmann-Feynman theorem has also been published.
Before giving the details of the method and our results, we
first place them in perspective by briefly describing earlier

approaches and models.
Within the harmonic approximation the first goal of

theory is to obtain the changes in total crystalline energy
accurately to second order in the atomic displacernents.
The traditional method as reviewed by Born and Huang
or Maradudin et al. is to make a formal expansion of the
energy to second order (or higher) and to treat the expan-
sion coefficients (force constants) as adjustable parameters
(empirically determined). This approach has kept its utili-
ty as an interpolation and fitting scheme for experimental
data with which the phonon density of states can be calcu-
lated and the lattice contribution to the specific heat
determined. However, it has frequently failed as a heuris-
tic model since for many solids with long-range forces the
number of parameters required for a good fit becomes ex-
cessive and obscures the physical implications. For under-
standing the microscopic mechanisms which determine
the lattice dynamics it is preferable to have a first-
principles approach. The first steps in this direction were
taken about the time neutron-inelastic-scattering results
became available and there developed the strong interplay
between experiment and theory which has characterized
the field of lattice dynamics ever since. The principle
theoretical ideas that were developed utilized the dielectric
approach, which involves the determination of the
valence-electron screening using linear-response theory.
This method forms the basis for calculations of the simple
metals, ' and is the foundation for lattice-dynamical
models of covalent crystals. ' " lt is formally correct for
any crystal; but direct implementation of the method,
which includes the precise evaluation of the dielectric ma-
trix, has proved numerically difficult. If matrix elements
are neglected (a serious approximation), the calculation is
reduced to the determination of the bare susceptibility or
response function, P (q), which can be easily calculat-
ed, ' ' and has been used frequently to locate nesting
features of Fermi surfaces and to confirm the electronic
nature of the corresponding observed phonon
anomalies ' ' However, not all anomalies in the experi-
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mental phonon spectra of transition metals can be identi-
fied with structures in X (q), ' and the magnitudes of
those anomalies that have been associated with such peaks
have not been determined for lack of accurate matrix ele-
ments. There have been more recent efforts to reformu-
late the method in terms of localized basis states which
would be appropriate for d-band metals, and this has led
to a greater emphasis on the role of charge-density distor-
tions. ' However, details of the self-consistent screening
(exchange and correlation effects) as well as other techni-
cal problems continue to hinder the adoption of this
method for first-principles calculations. The simplified
models based on this rigorous formulation have focused
on the charge-fluctuation component of the electronic
screening, ' ' and subsequent empirical models are able to
fit the phonon dispersion curves of Nb with considerably
fewer adjustable parameters than the Born —von Karman
model by including charge-fluctuation degrees of free-
dom. ' Nevertheless the number of parameters is still
disturbingly high, and there has been no good test to
determine if the fluctuations predicted in these models
have physical significance, or if they merely provide for a
better fitting scheme.

A more recent reformulation of the theory, motivated
in part by the success of local-density theory in calculat-
ing the ground-state electronic structure of metals, has
many appealing features and has been adopted using an
empirical tight-binding band-structure method to give the
most successful treatment of transition-metal lattice
dynamics to date. The idea is to calculate to second or-
der the phonon-induced changes in the total energy when
it is separated into a "band-structure" term consisting of
the sum of one-electron eigenvalues and a term which in-
cludes both the so-called "double-counting" energy, aris-
ing from the Hartree and exchange-correlation parts of
the potential, and the ion-ion energy. The second-order
changes in the band-structure term are straightforwardly
calculated from perturbation theory and give rise to many
of the interesting features of the phonon spectra. The
remaining second-order terms can be grouped together
and interpreted as arising from the interaction of neutral
objects so that only short-range forces come into play. In
their brilliant execution of these ideas, Varma and Weber
were able to reproduce the anomalous features in the pho-
non dispersion curves of the Nb-Mo series of alloys.
Their methods have since been applied successfully to oth-
er systems. These calculations have confirmed the
importance of states near the Fermi level in producing
phonon anomalies and have helped to clarify the role
played by the electron-phonon matrix elements in systems
with localized (rather than plane-wave-like) orbitals. To
expedite their calculations Varma and Weber considered
only the band-structure term and used a set of first- and
second-nearest-neighbor force constants as adjustable pa-
rameters to account for the additional short-range interac-
tions. Since some anomalies in phonon spectra and lattice
instabilities can depend on short-range interactions, it is
desirable to go beyond simple parametrization and obtain
first-principles understanding of these forces.

The new approach to lattice dynamics which we use in
this paper involves the precise determination of the crys-

talline total energy as a function of the lattice displace-
ments associated with a particular phonon. The method,
which is commonly referred to as the frozen-phonon
method, utilizes first-principles band-structure techniques
to obtain the total energy for each frozen-in position of
the lattice. The phonon frequency can then be obtained
from the resultant potential-energy curve. Unlike previ-
ous methods, this method requires no experimental input
to obtain the phonon frequency. The only approximations
made are the local-density approximation for evaluating
the ground-state total energy and the Born-Oppenheimer
approximation. Information concerning phonon anhar-
monicity and possible lattice instabilities can also be ob-
tained because of the nonperturbative nature of the calcu-
lations. This approach is complementary to the other
methods since, for computational reasons, it is necessary
to focus on a few particular modes and examine the mi-
croscopic response and trends among several systems,
while other methods model the whole phonon spectrum at
one time. Recently, successful applications of the frozen-
phonon method have been reported for semiconduc-
tors ' and simple metals. The method has also been
extended to calculate interplanar force constants from
which entire dispersion curves along a particular direction
may be obtained if the forces are mostly short ranged.
There have been several other significant studies making
use of frozen-phonon ideas, but accurate total energies
were not calculated. In this paper, we give details for
the application of the method in studying transition met-
als: We have performed frozen-phonon calculations for
the longitudinal ( —,', —', , —,

'
) phonon modes in Mo, Nb, and

the high-temperature bcc phase of Zr as well as the H-
point phonon modes in Mo and Nb. In general, we find
that the frozen-phonon approach yields phonon frequen-
cies within a few percent of the measured values. The
only exception is the H phonon of Mo where severe
Fermi-surface nesting causes renormalization (or many-
body) effects to become significant.

The motivation for studying the longitudinal ( —', , —,', —,
'

)

mode [abbreviated L( —,', —,', —, )] and the H-point phonon in

Nb, Mo, and Zr is the marked difference in the phonon
spectra of these metals at these wave vectors. Figure 1

shows the phonon dispersion curves for the longitudinal
(111) branch measured by inelastic-neutron-scattering ex-
periments for Mo, Nb, and the high-temperature
(1400-K) bcc phase of Zr. For Nb the longitudinal (111)
phonon branch exhibits a dip near the ( —,, —, , —, ) position,
whereas the same branch in Mo is flat near (

—', , —,', —, ) but
shows a dip at the zone boundary (point H). Of particular
interest is the L( —,', —,', —', ) phonon of bcc Zr. This element
undergoes a phase transformation to the hcp structure as
the temperature is lowered below —1100 K. However,
there is a competing transformation to the so-called co

phase by alloying or by the application of high pres-
sure. " ' The atomic displacements for the bcc—to—m-

phase transition are in the same directions as the polariza-
tion vectors for the L( —,', —,', —', ) phonon mode. The experi-
mental phonon dispersion curves for the high-temperature
bcc phase (Fig. 1) indicate a huge dip in the (111) longitu-
dinal branch with the minimum at ( —,', —,', —', ) and a corre-
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FIG. 2. (a) bcc lattice and three neighboring (111)planes. (b)
Spacing of (111) planes in the bcc phase, the fully collapsed co

phase, and the phonon-distorted crystal pattern corresponding to
the L( 3 3 3 ) phonon.
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evaluating the eigenvalues and wave functions. This en-
sures a maximum cancellation of errors in subtracting en-
ergies to find the distortion energy. It is also essential that
the grid for the distorted structure contain a complete set
of k points so that the charge density regains the full cu-
bic symmetry in the limit of zero distortion. This is not
automatic when the electronic structure of the cubic crys-
tal is calculated with the large unit cell containing three
atoms and having hexagonal symmetry. Without this care
in choosing k points, significant errors in the charge den-
sity and even unphysical charge transfers can be intro-
duced at small displacements unless the number of k
points sampled is made unnecessarily large.

Unlike the case with semiconductors where experience
has shown acceptable convergence can be obtained with as
few as 6 k points, the k-point sampling in metals must be
large enough to adequately account for the partial occupa-
tion of the bands crossing the Fermi level. Based on con-
vergence studies we have used sets of uniform grid points
in the present calculations: 57 k points within the irredu-
cible wedge of the Brillouin zone (IBZ) for the L( —, , —, , —, )

phonon and 126 k points in the IBZ for the H-point pho-
non. These particular grid points correspond to SS and
112 k points, respectively, in the bulk bcc IBZ. For per-
forming Brillouin zone sums it is necessary to carefully
consider the weighting of those states with energies near
the Fermi level. This is discussed further in the next sec-
tion.

distortion corresponds to leaving every third plane {labeled
plane 1) stationary and moving the remaining pair of adja-
cent planes (labeled planes 2 and 3) towards each other (or
apart). When planes 2 and 3 collapse together as depicted
in Fig. 2(b), the structure is known as the co phase.

The distorted lattice can be described with a hexagonal
primitive cell with 2 =V 2a and C =(V 3/2)a, where a is
the lattice constant of the bcc crystal and the C axis is
along the (111)direction. The distorted crystal belongs to
the trigonal system with space group D3~(P3mi). For the
co phase, the space group is D6I, (P6/mmm). In our work
we have kept the ideal C/A ratio of v'3/8 =0.612; howev-
er, measurements have indicated a slight distortion in the
C/A ratio for the co phase of Zr: 0.622. We note that
the co-phase crystal structure can be obtained from the
Zr82 structure by simply replacing the boron atoms by
Zr atoms.

2. H-point phonon

For this phonon the displacements have been chosen
along the (100) direction. The primitive cell of the
phonon™distorted lattice is simple cubic with two atoms,
and the space group is D4q (P4/mmm) (nonsymmorphic).

C. k-space sampling

Since the Brillouin zone of the phonon-distorted lattice
is commensurate with that of the bulk bcc crystal, it is
possible to choose a k-point sampling grid common to
both the distorted and undistorted bcc crystals when

D. Calculational procedures

The calculations proceed in analogy to that of the bulk
bcc structure, except for the larger real-space unit cell
and lower symmetry for the phonon-distorted structure.
Our calculations were made using a first-principles pseu-
dopotential method employing a mixed basis of plane
waves and Gaussian functions which are included to en-
sure adequate convergence for the localized d-1ike orbi-
tals. The nonlocal ionic pseudopotentials are generated
from first-principles atomic calculations according to the
norm-conserving scheme of Hamann, Schluter, and
Chiang, and are the same as those used in the bulk calcu-
lations. With these pseudopotentials the atomic
valence-electron wave functions are reproduced exactly
outside a core radius of about 2.3 a.u. for s-p —like states
and about 0.8 a.u. for the d-like states. Thus the charge-
density plots we show later should give an accurate repre-
sentation of the actual valence charge density except in the
small-volume region in the immediate vicinity of the nu-
clei. The Hedin-Lundqvist form of the local exchange-
correlation potential was used. The lattice constants
used correspond to the calculated equilibrium values
(3A60, 3.265, and 3.139 A for bcc Zr, Nb, and Mo, respec-
tively ). The cutoff energy (Ec 10.5 Ry) used to l——imit
the plane-wave basis set to about 60 plane waves per atom,
and the exponents of the Gaussian orbitals (A, = 1.30, 1.20,
and 1.12 a.u. for Mo, Nb, and Zr, respectively) also have
the same values as used in the bulk calculations.

Several different schemes were attempted for weighting
the k points near the Fermi level to account for the par-
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tial occupation of the bands. This is particularly impar-
tant when considering distortions in metals so that the
screening includes effects from the emptying of some
states at the Fermi level and the filling of others. The
scheme we found to be most effective was to broaden each
energy level by a Gaussian whose width is chosen to be the
same for all k points and is roughly equal to the disper-
sion of the energy bands between neighboring grid points
near the Fermi level. The weight of each state is then
determined by the portion of its Gaussian distribution
which lies below the Fermi level. This scheme is easy to
implement and in the cases we have tested it gave excel-
lent convergence (see below and Ref. 54).

For small displacements ( —1% of the lattice constant)
about equilibrium, the distortion energies involved are of
the order 0.001 Ry per atom and numerical precision is
extremely important. The calculations are feasible be-
cause we require only energy differences so that the major
errors associated with the local-density approximation and
k-point sampling cancel in the subtraction. To insure
that our calculations reach the desired level of precision
we have made a number of convergence studies. Table I
lists the results for the phonon frequency of the
L( —', , —,', —', ) mode of Nb obtained from calculations with
different numbers of sample grids and different values of
the Gaussian smearing used in the Fermi-surface weight-
ing. As mentioned above, the convergence is seen to be
quite acceptable as long as the width of the Gaussian is
well chosen. We have also carried out one calculation
with a plane-wave cutoff energy of 14.5 Ry and a Gauss-
ian orbital exponent of 1.25. The shift in the calculated
phonon frequency was only 1%. Because nesting features
of the Fermi surface are important for the H-point pho-
non of Mo, this particular case was studied extensively
and grids of up to 196 points in the phonon IBZ were test-
ed.

Since it has certain desirable features, we have also
studied the k-point sampling method described in Ref. 58.
In this method, the IBZ is divided into a number of large
tetrahedrons (up to 96 in the phonon IBZ have been test-
ed) with the center of mass of each tetrahedron serving as
a point on the k-point grid. Upon each iteration the ener-

gy eigenvalues at the sample grid points are fit with an
empirical tight-binding (TB) method (the typical nns error
of the fits are less than 0.05 eV). The weight of a state is
then represented by the occupied volume of the large
tetrahedron. An accurate volume is obtained by dividing

each of the large tetrahedrons into 64 smaller ones and ob-
taining the energy eigenvalues at the corners of the small
tetrahedrons using the TB fit. Linear interpolation of the
bands inside the small tetrahedrons is accurate and the oc-
cupied volume can be obtained analytically. ' ' The pho-
non frequency is then determined by comparing the dis-
tortion energies between two neighboring phonon displace-
ments. The displacements must be larger than for the
Gaussian technique since for very small displacements
this method has a systematic error (from band crossings)
which cause the total energy to deviate from the bulk or
undistorted result. For this reason and because the TB
method is more involved, we used the Gaussian technique
for the calculations in this paper; however, in some cir-
cumstances where it is desired to have an accurate density
of states (via the tetrahedron method' ' ) or an interpola-
tion of the first-principles eigenvalues, then the TB
method might be considered.

In the iterations towards self-consistency, the dielectric
matrix scheme has been used to accelerate the conver-
gence of the calculations. Self-consistency within 10
Ry on the Fourier components of the electronic potential
can be achieved in four to five iterations for a typical run.

III. RESULTS

In addition to the total energy at each lattice distortion
the results of our calculations yield other important quan-
tities such as the band structure and charge density for
every lattice configuration. This is an enormous amount
of information and in this section we limit our presenta-
tion to just the "data" relevant for gaining a basic under-
standing of the electronic response for the phonons stud-
ied. Further analysis of the results and discussion is given
in Sec. IV.

A. Total energy

The calculated total energies for Mo, Nb, and Zr as a
function of lattice displacement corresponding to the
L( —,, —, , —, ) mode are shown in Fig. 3. The curves for Mo
and Nb are close to parabolic and indicate nearly harmon-
ic behavior for small displacements. The frequencies, ob-
tained from analysis of the curvature near zero displace-
ment, are 6.1 and 3.6 THz for Mo and Nb, respectively.
These compare well with measured values of 6.31+0.04
and 3.57+0.06 THz from inelastic neutron-scattering-
experiments. ' The anharmonic components of the

TABLE I. Convergence of the frequency of the L( 3 3 3 ) phonon in Nb as the number of k points
in the sampling grid of the phonon IBZ and the value of the Gaussian smearing width (6) used in the
Fermi-surface weighting are varied.

6=0.025 eV
Phonon frequency (THz)

6=0.05 eV 5=0.1 eV

20 k points (20)'
57 k points (55)
124 k points (112)

3.36
3.57
3.63

3.63
3.61
3.56

3.61
3.63
3.57

'Numbers in parentheses denote the corresponding number of grid points in the bcc IBZ.
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FIG. 3. Calculated total energy as a function of the displace-
ment corresponding to the L( 3 3 3 ) phonon for Mo, Nb, and

bcc Zr. Inset shows the displacement pattern for the {111}
planes of the bcc crystal. Planes 2 and 3 coincide for the co

phase.

phase at low temperature is discussed further in the next
section.

The total energy-versus-displacement curves for the H
point phonons of Nb and Mo do not have a third-order
term (by symmetry). The harmonic part of the curve for
Nb yields a frequency of 6.4 THz which compares well
with the 6.49+0.10 THz from experiment. On the other
hand, the calculated frequency for the H-point phonon of
Mo was 5.0 THz which is 9%%uo less than the measured
value of 5.51+0.05 THz. ' ' This discrepancy for Mo is
larger than we would expect from the numerical precision
of the calculations and the quoted experimental uncertain-
ty. Detailed study of the discrepancy has led us to believe
it is due to renormalization effects on the electronic states
near the Fermi level. The renormalization is a many-body
effect caused by the excitation of virtual phonons and is
not included in the frozen-phonon calculations which as-
sume the electrons move among a lattice of static (frozen)
ions. The effect is significant only when nesting features
on the Fermi surface allow electrons within a few fuuD, &~,

of the Fermi energy to contribute strongly to the electron-
ic screening, as is the case for a Kohn anomaly in the pho-
non spectrum. In such cases, the frozen-phonon results
would tend to overemphasize the dip in the phonon
dispersion curve. A complete analysis of this effect is
contained in a separate paper. The calculated phonon
frequencies for the H-point and L( —,', —,', —,') phonons of
Mo and Nb along with the experimental values ' ' are
summarized in Table II.

energy-versus-displacement curves are displayed more
clearly in Fig. 4 where the harmonic contribution has been
divided out. It is interesting to note that while the poten-
tial well for Mo softens with increasing displacement, Nb
behaves oppositely. Experimentally, the frequency of the
L( —,', —,', —', ) mode in Mo softens rapidly with increasing
temperature while that of Nb is relatively temperature in-
dependent. Our results suggest that in Mo the effect of
anharmonicity enhances the phonon softening produced
by thermal expansion of the lattice, while in Nb the ef-
fects of anharmonicity and thermal expansion counterbal-
ance each other. Of particular interest is the curve we cal-
calculated for bcc, Zr, also shown in Fig. 3. The calculat-
ed potential well is strongly anharmonic; moreover, the
minimum in energy does not occur at the bcc phase but
rather it occurs when two of the bcc (111) planes in the
unit cell collapse together to form the co phase. We obtain
an energy difference of 0.045 eV (or 520 K) per atom be-
tween these two phases. There is some uncertainty in the
energy difference because we have assumed no core relaxa-
tion by using a pseudopotential and have kept an ideal
C/A ratio for the ~ phase. It should also be noted that
temperature effects have not been included in the calcula-
tions. The stability of the bcc phase at high temperature
is thought to be due to either its higher lattice vibrational
entropy or else the temperature dependence of the strong
third-order (anharmonic) term in the potential. The ten-
dency of the bcc phase towards the formation of the co

6E
I/2 k p2 Mo

FIG. 4. Total-energy curves of Fig. 3 with the energy scaled

by the different harmonic contributions to illustrate the nonhar-
monic character of the energy changes for displacements about
equilibrium.
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TABLE II. Comparison of the calculated and measured values for the frequencies of the L( 3 3 3 )

phonon and the H-point phonon in Mo and Nb. Calculated frequencies in this table are obtained from
the curvatures of the energy-displacement curves at small displacements about the bcc position. We
also made estimates using both an Einstein model in which a single particle vibrates in the slightly non-
parabolic wells (these results are quoted in Ref. 5) and a Hellmann-Feynman force analysis (see Ref. 6).
The various estimated values differ typically by +0.1 THz.

Mo
Expt. Calc. Expt. Calc.

Phonon frequency (THz)

L( ———)
2 2 2
3&3&3

H point

6.31+0.04'

5.51+0.05' 5.0

3.57+0.06'

6.49+0. 10"

3.6

'Reference 61. This value was measured at 10.5 K.
"Reference 46.

B. Charge density

In view of the charge-fluctuation models ' ' we have
made an angular (I,m) decomposition of our calculated
charge-density deformations about each of the atoms in
the phonon-distorted lattice. According to these Inodels
the monopolar fluctuations are important for longitudinal
phonons away from the zone boundary. Figure 5 shows
the change with smaljL displacement of the monopolar or
spherical charge density (poo) for the L( —,', —', , —', ) phonons
of Mo, Nb, and Zr. In this figure hp is defined as

hp(r) =pg'"'"(r) —poo'"(r), (4)

and poo of the jth atom is given by

poo(r) = g p(Gj)o(«)e

where p(G) is the component of charge density in recipro-
cal space, jo(x) is the spherical Bessel function of zero or-
der, and ~ denotes the atomic position vector.

For small displacements about the bcc equilibrium posi-
tion the charge-density fluctuations are similar in magni-
tude but very different in character; the Ap curves for Nb
and Zr (Fig. 5) indicate a transfer of d-like density from
atoms in plane 1 to d-like density on the equivalent atoms
in planes 2 and 3, whereas the Ap curves for Mo show
that there is a transfer of s-p —like charge about atoms in
plane 1 to more d-like charge about atoms in planes 2 and
3. For Nb and Mo the charge-transfer character remains
the same for large displacements, while for Zr a transfer
of d-like charge from plane 1 to s-p —like charge in planes
2 and 3 develops (Fig. 6), accompanied by a decrease in
the kinetic energy —just the direct opposite of the charge-
transfer character for Mo. In the co phase of Zr, 0.14 e/at.
in plane 1 are transferred to planes 2 and 3, an amount
which may be detectable experimentally, although the dif-
ferent character of the charge transferred may prevent a
simple analysis of experimental results. A measurement
of the electric field gradient in the co phase suggested no
charge transfer; however, this conclusion was based on
comparison with lattice sums of point charges. The
parallel conclusion that the valence appropriate for the ~-

I.6 I.6-
00

-4.8

0.0 0.8
I

I.6
r (a.u. )

I

!.6
r (o.u. )

FIG. 5. Spherical component of the charge-density differ-
ences bp(r) =pQ'"'"(r) —poo'"(r) for a small displacement
(5=0.5 for a full displacement to the ~ phase). By symmetry,
atoms in plane 3 are equivalent with those in plane 2. The
charge density has been multiplied by the unit-cell volume.

FIG. 6. Similar to Fig. 5 showing the character of the charge
fluctuation for Zr with a displacement corresponding to the co

phase. Charge is transferred from atoms in plane 1 to atoms in
planes 2 and 3.
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phase Zr ions is + 3 is also contrary to our results and
probably due to the oversimplified point-charge model.

The nonspherical part of the charge density is best visu-
alized with contour plots. Figure 7 shows a side view of
the planes perpendicular to the (111) direction in the bcc
crystal. The planes are labeled according to the scheme of
Fig. 2 with the directions of the atomic displacements to-
ward the co phase indicated by arrows. From this figure it
can be seen that the interatomic distances for neighboring
atoms along the (111) direction remain fixed for the
L( —,', —,', —,

'
) phonon .Thus one may think of this phonon

as a shear motion of chains running along the (111) axis.
In fact the L( —, , —,, —, ) phonon is not in the IBZ and could
be labeled as a transverse phonon on the zone boundary at
( —, , ——,', ——,

'
) between the P and H points. We will con-

tinue to use the conventional nomenclature. Contour plots
of the valence charge density in this plane for three dif-
ferent displacements are shown in Figs. 8—10. We only
show the densities for Mo and Zr since these metals
display opposite extremes in the L( —, , —, , —, ) phonon fre-
quency. The frequency of this phonon for Nb falls be-
tween those of Mo and Zr and the charge density is simi-
larly "in between. " The Nb frequency is "normal" in the
sense that most simple bcc metals have a dip in their pho-
non dispersion curves similar to that of Nb near the
( —,', —,', —, ) point; thus the L( —,', —', , —, ) phonon in both Mo
and Zr may be considered anomalous. With small dis-
placements (Fig. 8), the charge density for Mo shows
strong d lobes giving a clear density maxima between
neighboring atoms. For large displacements (Fig. 9), two
main features are discernible. Firstly, the d lobes in Mo
(unlike Zr) do not show appreciable change in their orien-
tation, which indicates the d states j,n Mo maintain a
strong interchain coupling. Secondly, overlap of d-like
states has developed in Mo between nearest-neighbor
atoms in planes 2 and 3, whereas for Zr the charge tends
to spread into the interstitial region as the atoms are
brought closer. The second feature becomes more prom-

/I Q

(bj

FIG. 8. Contour plots of the valence charge density for (a)

Mo, and (b) Zr in the cubic (110) plane, where atoms in planes 2

and 3 have been displaced by an amount 5=0.05 (5=0.S for a

full displacement to the co phase). Solid circles denote the atom-

ic positions and arrows denote the directions of atomic displace-

ments.

inent for the co-phase configuration (Fig. 10). This delo-
calization is evident in the monopolar charge-fluctuation
plot of Fig. 6 where d-like charge in plane 1 is transferred
to s-p —like charge in planes 2 and 3. The completely op-
posite behavior in the charge-density response of Zr and
Mo suggests that Zr is able to stabilize the ~ phase by
delocalizing the charge in the high-density plane (nearest-
neighbor distances are now 0.817a in this plane compared
with the 0.866a of the bcc lattice, where a is the bcc lat-
tice constant). This result contradicts the model proposed
by Doherty and Gibbons who suggested the stability of
the co phase was due to the development of strongly local-
ized s—d bonds in the collapsed 2-3 plane.

FIG. 7. Atomic displacements corresponding to the

L( 3 3 3 ) phonon in the cubic (110) plane of the bcc lattice.

Shaded circles, triangles, and circles represent atoms in planes 1,
2, and 3, respectively. Dotted lines outline the diagonal plane of
the bcc cubic unit cell and arrows indicate the directions of
atomic displacements associated with the distortion caused by
the L( —,, —,, —, ) phonon.2 2 2

C. H-point phonon

The sharp dip at point H in the phonon dispersion
curve of Mo has been related to nesting features of the

ermi surface 25, 45, 65 and a charge-densify analysis is less
informative. Measurements of the Mo phonon dispersion
curves as a function of temperature show that the H-point
anomaly diminishes at high temperature indicating the
importance of states near the Fermi level in contributing
to the dip. ' Plots of the distorted Mo band structure for
displacements corresponding to this phonon confirm that
a large band splitting occurs at the Fermi level between



FIG. 9. Similar to Fig. 8 showing the contour plots of the
valence charge density for (a) Mo, and (b) Zr in the cubic (110)
plane, where atoms in planes 2 and 3 have been displaced by an
amount 6=0.25

FIG. 10. Similar to Fig. 8 showing the contour plots of
valence charge density for (a) Mo and (b) Zr in the cubic (110)
plane, with a displacement corresponding to the u phase.

bRnds with jRIgc Rnd oppositcIQ diI'ected Fcrlm vcIGcitics.
This is shown in Fig. 11. In this figure the solid lines
represent the band dispersion for the bcc crystal along the
k, direction with (k„,k~)=( —,', —,', )2m/a, and the dotted
lines are the corresponding band structure for the distort-
ed crystal with a displacement of 1.5% of the lattice con-
stRnt. Note thRt with thc Phonon PI'cscnt thc Umt cell
now colltRins t%G Rtoms Rnd tjlc bcc BrilloUin XGQc is
"folded" into one-half of its original volume. With a dis-
PlRccIIlcnt of this IRgnitUdc, thc totRl cncI'gg chRIlgcs bg
-0.01 eV/atom while the band splitting is larger than 0.5
eV. Furthermore, for this wave vector the splitting occurs
over a large volume of the Brillouin zone and significantly
lowers the total energy of the crystal by lowering the ener-

gy of the occupied bands and raising the energy of the
unoccupied bands. This accounts for the dip in the pho-
non dispersion curve. The large volume of the Brillouin
zone affected and the size of the splitting for modest dis-
plRccmcnts R11ows coIlvcI'gcncc of totR1"encl gg cRIcU18-

tions with a reasonable number of k points (-75 in the
IBZ) using the Gaussian smearing scheme. The validity
of the adiabatic approximation has been questioned for
phonons such as this which involve a large Fermi-surface
nesting. ' We have stUdied this RpproxiIIlRtion Rnd
found it to make less than a 0.01-THz difference for the
H-point phonon of Mo. The details of this study are con-
tRined in Ref. 44.

FIG. 11. Band structures along the k, direction, with

(k~pky)=( 8 p pg )277*/Qs for the bcc lattice (solid 11nes) and

phonon-distorted lattice (dotted lines) associated with the distor-
tion caused by the Mo H-point phonon.
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rv. DrscvssroN

A. co phase

Certainly one of the most interesting results of this
work is the total-energy curve for Zr (Fig. 3) showing the
small (but finite) restoring force for small displacements
about the bcc phase and the stability of the co phase rela-
tive to the bcc phase at low temperatures. Because the
bcc—to—to-phase transition is an important transition af-
fecting mechanical and superconducting properties there
have been numerous studies of the co phase in alloys of the
group-IVB metals (see Ref. 48 for a review) M. any
phenomenological theories for the co-phase transformation
have been proposed; however, there does not seem to be
any one model which explains all the data. A recent study
found the co phase formed in the NiAl system and critical-
ly compared the various competing models, finally decid-
ing that only trapping of the L(—', , —,', —', ) phonons by point
defects could explain the results. This explanation is
questionable for single-crystal bcc Zr since the results of
Stassis et al." showed that at higher temperatures, with
presumably more vacancies to act as trapping sites, the
quasielastic peak corresponding to the co phase diminished
greatly, unlike the temperature behavior in NiAl. It
seems to us that there is indeed a likelihood for the co-

phase properties of alloys to be greatly influenced by pin-
ning sites (Stassis et al. did observe greater co-phase
quasielastic scattering for increased oxygen impurities),
but the fact that clean hcp Zr (and Ti) forms in the pure co

phase under high pressure ' and its bcc phase exhibits a
huge dip for the L( —', , —,', —', ) phonon suggests the co-phase
instability is intrinsic to the bcc phase of the group-IVB
elements (and probably to the bcc phase of the group-IIIB
elements also '). Our calculations confirm that the insta-
bility is intrinsic and caused by electronic structure ef-
fects. Our calculations also suggest the bcc—to—co-

phase transition is weakly first order since the small bump
in the total-energy curve between the bcc and the co phase
will likely cause the order parameter (the atomic displace-
ments) to jump discontinuously during the transition. Our
calculations are, however, only valid for T=O, so there is
still some question as to the nature of the transition. A
related question has to do with what mechanism stabilizes
the bcc phase at high temperatures. We believe that the
most likely explanation involves the larger vibrational en-

tropy (from low-lying modes) of the bcc phase; however
the phonon dispersion for the ~ phase has not been mea-
sured and would be required to confirm this. To explain
the drop in specific heat at the hcp-to-bcc transition the
phonon spectrum for the bcc phase would also seem to re-
quire some phonon modes at higher energy than in the
hcp phase. ' A different view of the transition to the bcc
phase has been suggested by the work of de Fontaine and
Buck who developed a simple model for the interactions
in the co phase and then used Monte Carlo simulation of
the dynamics at high temperatures to show the change in
the average configuration from the co to the bcc phase.
Another question concerns the importance of anharmonic
effects involving the L( —,', —', , —, ) phonon. These are ex-
pected to be large because of the very low frequency and

B. Analysis of the L{ 3 3 3 ) phonon

The predicted bcc—to—co-phase instability in Zr and the
accurate first-principles determination of phonon frequen-
cies are definite successes of the frozen-phonon method;
however, from a pedagogic viewpoint, we still have not ex-
plained the vastly different frequencies for the L( —,', —,', —', )

phonon. An analysis giving the distortion dependence of
the various terms in the expression for the total energy
(i.e., the kinetic, and electron-electron, the electron-ion,
the ion-ion, and the exchange-correlation energies) does
not seem very enlightening to us since the total energy de-
pends on a very delicate cancellation between these large
contributions. For example in Figs. 13 and 14 we show
how the "pseudokinetic" energy and the electrostatic ener-

gy change with the L( —, , —,', —, ) distortion. The cancella-
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FIG. 12. Electronic density of states for the ~ phase of Zr.

the uniqueness of this phonon in coupling via phonon-
phonon interactions to itself in third order

(q +q„+q„=o). ' These are clearly interesting ques-
tions having to do with details of the temperature depen-
dence of the microscopic mechanisms driving phase
transitions —a topic starting to be addressed by first prin-
ciples.

The electronic structure of the co phase has been calcu-
lated previously using the augmented-plane-wave
method. These calculations were not self-consistent,
and, we believe, did not use a sufficient number of basis
functions for adequate convergence. These calculations
placed the Fermi level at a peak in the density of states
(DOS) with N(E&)=23.8 states/Ryatom. Our DOS for
the co phase is shown in Fig. 12. It is similar to the DOS
for hcp Zr, and places the Fermi level near a valley with
N (EF)=9.8 states/Ry atom. Specific-heat measurements
at low temperature would certainly distinguish between
these two values. The DOS for the corresponding bcc
phase of Zr is very similar to that reported by Myron
et al. , although our N(E~) =16.5 states/Ry atom is
smaller than the 18.2 states/Ry atom of Ref. 70 since our
lattice constant was smaller and the bandwidth was there-
fore wider.
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FIG. 13. Kinetic energy and electrostatic energy for the
L( 3 3 3 ) distortions of Zr. Energies are given relative to their

values for the bcc phase. Also note that these quantities are for
the pseudowave functions and do not represent the actual kinetic
or electrostatic energy for the valence electrons in the real crys-
tal.

FIG. 14. Kinetic energy and electrostatic energy for the
L( 3 3 3 ) distortions of Mo. See Fig. 13.

tion between these terms results in small changes in the
total energy (compare the energy scale with the one in Fig.
3). We note that the lowering of the pseudokinetic energy
for the displacements toward the co phase of Zr corre-
sponds to the increased s-p character in the charge density
and is opposite to the behavior seen in Mo as already dis-
cussed. The charge-fluctuation models which have been
proposed are also of limited value. In order to treat the
change in character of the fluctuating charge indicated by
our calculations, the models would have to become more
sophisticated and would have to treat the kinetic-energy
changes more accurately if the correct potential-
energy —kinetic-energy cancellation is to be achieved.

Although a truly simple and heuristic model may be
forthcoming for transition-metal lattice dynamics we
have, for now, pursued a different approach. Since we
have the wave functions available for the distorted lattice,
it is possible by using the Hellmann-Feynman theorem
to obtain the contribution of each electronic state to the
interatomic forces. The details of such an analysis are
described in a separate publication. We briefly summa-
rize below the essential results.

The systematic development of the dip in the longitudi-
nal phonon branch about the ( —,, —, , —, ) position as the
number of valence electrons decreases (Mo to Nb to Zr)
suggests that this anomaly is not associated with a sharp
feature of a particular Fermi surface. Independent of any

model one would expect a relative decrease of the phonon
frequencies of L[111] branch in the vicinity of the
( —', , —,', —,

'
) position for any monatomic bcc crystal, since

for this vibrational mode the nearest-neighbor distance be-
tween atoms in the [111]direction is preserved (illustrated
in Fig. 7). Thus the corresponding restoring force van-
ishes, and, as previously mentioned, the atomic displace-
ments for this mode can be viewed as a shearing motion
between chains of atoms along the [111] direction. In
view of the above discussion, the absence of the dip in Mo
(also in isoelectronic Cr and W) must be due to some spe-
cial aspects of the electronic structure. The increase in the
frequency of the L( —,', —', , —,

'
) phonon as one goes from Zr

to Mo is accompanied by an increase in the bonding d-like
charge density directed along the nearest-neighbor (111)
direction of the bcc lattice. Using the Hellmann-
Feynman force analysis we have determined that the in-
creased frequency of this phonon for Mo over Nb is
caused by the development of directional bonding from
the additional occupied d states. This gives rise to bond-
bending forces which help to restore the equilibrium posi-
tion much like the situation in covalently bonded semicon-
ductors. This is opposite to the behavior of simple metals
where free-electron screening merely acts to reduce the
ionic restoring forces. Similar analysis for Zr revealed the
d electrons along the (111) chains moved almost rigidly
with the displaced ions. Since these d states are more lo-
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calized than free-electron orbitals, the screening is more
effective than for simple metals. The transition to the to

phase involves large displacements, and, through a force
analysis, the driving mechanism was traced to shifts of the
band structure near the Fermi level. These shifts in band
occupation result in the change in charge density already
discussed.

core approximation are adequate for meaningful calcula-
tions. In addition, the method has the distinct advantage
over other approaches to lattice dynamics in that the dis-
placements of the nuclei about their equilibrium position
need not be small. Thus the microscopic mechanisms
governing structural phase transitions can be studied in
much greater detail than previously.

V. CONCLUSION

The calculations presented in this paper represent a new
and potentially very powerful first-principles tool for the
study of interatomic interactions in solids. They demon-
strate that the phonon frequencies of transition metals can
be accurately calculated using the frozen-phonon-method
with the only required input being the atomic numbers
and masses. The accuracy of the results suggests that the
use of the local-density-functional theory and the frozen-
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